
Superconducting wire subject to synchronous oscillating excitations:
Power dissipation, magnetic response, and low-pass filtering

H. S. Ruiz,1,a) A. Badı́a-Majós,1 Y. A. Genenko,2 H. Rauh,2 and S. V. Yampolskii2
1Departamento de Fı́sica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragón
(ICMA), Universidad de Zaragoza–CSIC, Marı́a de Luna 3, E-50018 Zaragoza, Spain
2Institut für Materialwissenschaft, Technische Universität Darmstadt, Petersenstrasse 32, D-64287 Darmstadt,
Germany

(Received 19 December 2011; accepted 23 February 2012; published online 15 March 2012)

Numerical simulations of a type-II superconducting wire subject to an ac transport current and
oscillating transverse magnetic field are performed using the theory of the critical state. Time-
dependent distributions of the current and the density of magnetic flux, the local power dissipation,
and cycles of the magnetic moment are displayed. Noticeable inhomogeneous dissipation and field
distortions are exposed. Results for hysteretic ac losses are reported too, and significant differences
to predictions of available approximate formulae identified. Finally, a distinct low-pass filtering
effect intrinsic to the wire’s magnetic response is revealed. VC 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3693614]

Practical configurations of type-II superconducting
wires exhibit complicated nonlinear and hysteretic behavior
in oscillating electromagnetic fields. Thus, with a view to
future power applications, considerable effort has been made
to grasp the factors that determine the ac losses of such wires
under typical operating terms. Major features of their macro-
scopic electromagnetic behavior have been captured in
Bean’s model of the critical state.1 Magnetization currents
induced within the superconductor during variations of the
magnetic field redistribute themselves across the sample so
as to screen the penetrating flux, with their density adopting
the critical value Jc at a given temperature and specified
field. Although simple for idealized configurations, the elec-
trodynamics underlying Bean’s model becomes cumbersome
when realistic configurations are addressed.

In this letter, we consider the synchronous action of an
impressed ac transport current ItrðtÞ directed along the z-axis,
the main axis of an infinite type-II superconducting cylinder
of radius R and cross section X and a transverse magnetic field
of flux density B0ðtÞ ¼ ð0;By; 0Þ as sketched in Fig. 1. Such a
configuration may serve as a prototype element of large mag-
netic coils in which each turn is affected by its neighboring
constituents. This translational invariant, two-dimensional sys-
tem implies the following complexity. Due to the change with
time of the excitations, a sort of free-boundary problem is con-
ventionally solved: variations of the magnetic flux penetrate
from the wire’s surface, marking off the evolutionary profile
of the flux front. Determining such a front, or the core within,
is a tough mathematical challenge, which has been met by
several approaches before.3–13 Front tracking methods, in par-
ticular, are hard to use owing to the intricate dynamics of the
flux front, which may even split into multiply connected
domains. Here, we follow the most popular trend in the analy-
sis of electromagnetic applications, viz. numerical simulations
implementing finite-element techniques. The latter method
works without explicit inclusion of the (as yet unknown)
boundary: the computations involve the entire superconduct-

ing domain, furnishing the boundary as part of the solution
itself. Then, taking advantage of this methodology, we report
on systematic investigations of the electromagnetic behavior
of the superconducting wire. In particular, we establish (i) the
distribution of local power dissipation, (ii) the need for
thoughtful application of some standard approximations relat-
ing to hysteretic ac losses understood as an averaged physical
quantity, and (iii) a distinct low-pass filtering effect revealed
in the wire’s magnetic response.

Finite-element simulations proceed from a discretization
of the wire’s cross section X by a collection of parallel cylin-
drical filaments i, each of them contributing the current den-
sity Ji in their respective cross section Xi and carrying the
partial current Ii to make up the total transport currentP

i Ii ¼ Itr, which is bound by the upper limit Ic ¼ pR2Jc. We
solve Faraday’s law dB ¼ $r% EðJÞdt iteratively, relating
the change of the magnetic flux density dB to the electric field
E after an increment of time dt.14 Here, we recall that B
includes the external source as well as the response of the
superconductor. Following Bean, the restriction imposed on
the (only non-zero) current density component longitudinal to
the wire thereby reads jJzj & Jc (an equivalent would be the
use of the current-field relation EzðJzÞ ¼ qJz, with the electri-
cal resistivity qðJzÞ ¼ 0 for jJzj & Jc and qðJzÞ!1 if
jJzj > Jc). In the quasistatic regime, a discrete form of Fara-
day’s law obtains by a purely spatial variational principle.15

Thus, upon averaging the electromagnetic field Lagrangian
within each interval of time, one ends up minimizing the vol-
ume integral of the quantity ð1=2Þ½Bðtþ dtÞ $ BðtÞ)2, cou-
pling successive layers of time.14,15 Constraints originate from
the excitations and from the chosen material law. Eventually,
on introducing the vector potential A to represent the density
of the magnetic flux, the quantity to be minimized at time
tþ dt transforms into
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the inductance between (unknown) partial currents Ii; Ij flow-
ing through the filaments i, j, the tilded quantities concerning
time t. Computations, with Itr supplied, have been performed
resorting to specialized large-scale constrained minimization
algorithms described elsewhere.14

In the numerical analysis, a regular grid of identical fila-
ments, of radius a* R, located at positions ri has been
assumed. For a sufficiently refined mesh, the current density
within each of the filaments will be almost uniform, which
allows the magnetic vector potential contribution Ai;z due to
current flow to be readily assessed.15 We note that an arbi-
trary constant may be added to this quantity, leaving the
magnetic field created by the filaments unchanged. Its zero
choice—safe in the absence of charge transport—entails the
self-inductance Mii ¼ l0=8p and mutual inductance
Mij ¼ $ðl0=2pÞlnðdij=aÞ, with the permeability of vacuum
l0 and the inter-filamentary distance dij ¼ jri $ rjj.

Evaluations of the electric field in the presence of cur-
rent flow may, however, be tampered if the ambiguity of the
magnetic vector potential is ignored. Thus, the electric field
must generally be expressed as E ¼ $@tA$ru, including
an electrostatic-like term derived from a scalar potential u.
For the wire at hand,ru should be uniform in space, permit-
ting the representation Ez ¼ $@tAz þ CðtÞ + @tA

0

z, with the
calibrated vector potential component A

0

z.
16 Since Az is only

determined up to an additive constant for each increment of
time, the situation may be tackled by calling upon the dis-
played expression and progressively resolving CðtÞ in ac-
cordance with the physical condition Ez ¼ 0 at those points
where magnetic flux does not change.

Simulations have been performed for the triangular oscil-
lating process displayed in Fig. 1. The following quantities
have been focused on: (i) magnetic field lines derived from
B ¼ r% A, (ii) the apparent sample’s magnetic moment (per
unit length of the wire normal to its axis) M ¼

Ð
Xr% J, (iii)

the local density of power dissipation (E , J), and the hyste-
retic ac losses per unit time and unit volume for cyclic excita-
tions of frequency x yielding the space- and time-averages
L ¼ ðx=2p2R2Þ

Þ
f :c:dt

Ð
XE , J. Here, f.c. denotes a full cycle of

the time-varying electromagnetic sources. Our results and
conclusions are developed along the following paragraphs.

Fig. 1 presents a snapshot of the main electromagnetic
quantities at the time frame spotted in the central plot, for
synchronous ac sources By and Itr. The detailed evolution
with time of the local distribution of current density Jz, the
lines of magnetic flux density B, and the local density of
power dissipation E , J, as well as the dynamics of the mag-
netic moment component My for the wire in a cyclic process
can be followed in the video attached. Interestingly, the inner
region of the wire (green), which is devoid of electric current
and magnetic flux, and the adjacent “active” regions (red,
blue), where Jz alternates between Jc and $Jc, strongly
depart from axial symmetry due to the consumption of the
magnetization currents by the effect of charge transport.
Concomitantly, substantial distortions of the magnetic flux
density outside the wire appear. These are particularly
marked when By and Itr tend to zero during excitation. The
density of power dissipation, which rises from low-value
parts (blue) to high-value parts (red), is highly localized too.
Its pronounced bias unfolding across the wire could increase

FIG. 1. (Color online) Sketch of the elec-
tromagnetic observables derived from our
simulations. Units are ðl0=4pÞRJc for
By; Ic + pR2Jc for Itr; ðl0=4pÞR2J2

c=dt
for E , J, and R3Jc for My. Here, the dis-
played frame corresponds to the external
flux density By ¼ $0:64, and transport
current Itr ¼ $0:24, for the synchronous
triangular excitations centrally displayed,
with amplitudes Bmax

y ¼ 2, and
Imax
tr ¼ 0:75. See Ref. 2 for a detailed

explanation of the different panes
(enhanced online) [URL: http://
dx.doi.org/10.1063/1.3693614.1].
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the probability of quench. From the cycles of My, it further-
more appears that a proper determination of the “active”
regions depends on the history of the virgin branch, thus
bearing witness to the system’s memory. For example, a pos-
itive slope in both By and Itr constitutes increasing power
dissipation in the positive x-direction perpendicular to the
wire.

Fig. 2 shows the variation of the hysteretic ac losses in
terms of the amplitude of the synchronous oscillating sour-
ces, LðBmax

y ; Imax
tr Þ. Our results are compared to those

obtained from several analytical approximations6 customar-
ily applied to simplified configurations. Thus, we recall the
equation

LðBmax
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where

Bp + ð2=pÞl0JcR; BpðiÞ + ð1 $ i2=3ÞBp; i + Idc
tr =Ic:

Equation (2) is valid for an ac magnetic flux of amplitude
Bmax

y and an imposed dc transport current Idc
tr . It can be used

either for evaluating the non-coupled dependence LðBmax
y Þ or

the ac/dc coupling LðBmax
y ; Idc

tr Þ. Comparisons reveal the im-
portant fact that a naive linear superposition of contributions
due to either type of excitation is only appropriate for high
strengths of the magnetic field and moderate, or low, cur-
rents; a finding which adds to previous work dealing with the
infinite slab,17 or rectangular strip geometry,18 and sheds
new light on the validity of approximate formulae at the
same time. Consequently, approximations such as LðBmax

y Þ
þLðImax

tr Þ and LðBmax
y ; Idc

tr Þ can drastically under- or overesti-
mate the true losses. Furthermore, additional refinements,
such as that suggested in Ref. 19, which proposes a
time-averaging over the cycle of the expressions with Idc

tr

are clearly insufficient. Notice that this would just pro-
duce a shift in the dependence predicted by the above
equation which only serves to improve the estimate at
high fields.

We note that for small values of Bmax
y (e.g., Bmax

y ffi 1),
the differences between the losses predicted by our numeri-
cal simulations and those obtained by plain superposition
can exceed 100% when Imax

tr ¼ 0:25, but decrease to .15%
as Imax

tr rises to .1. On the other hand, when Bmax
y &Bp (8 in

our units), bringing in the full penetration field for zero trans-
port current, Bp, the difference can vary between .20% for
Imax
tr ffi 0:25 and . 55% for Imax

tr ffi 1, or even more. In gen-
eral, for the extensive set of simulations performed, devia-
tions up to .100% can be observed around the choice
(Bmax

y ¼ Bp=2; Imax
tr ¼ Ic=2). This demonstrates that a proper

evaluation of hysteretic ac losses in the presence of synchro-
nous electromagnetic excitations requires sophisticated anal-
ysis resources, even for a relatively simple configuration like
the one studied here.

FIG. 2. (Color online) Hysteretic ac losses per cycle for synchronous ac magnetic flux density and oscillating transport current of amplitudes ðBmax
y ; Imax

tr Þ.
Results of this work are shown as color solid lines with markers. Comparisons with results from conventional approaches are shown for (i) Left pane: separate
excitations LðBmax

y Þ (black solid line) and LðImax
tr Þ (straight color lines), as well as their linear superposition LðBmax

y Þ þ LðImax
tr Þ (color dashed lines); (ii) Central

pane: an ac magnetic field together with a dc transport current of intensity Idc
tr ¼ Imax

tr , LðBmax
y ; Idc

tr Þ; (iii) Right pane: the whole set of results is also plotted in lin-
ear scale. Units for losses are ðl0=4pÞxR2J2

c .
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Fig. 3 shows the dynamics of the magnetic moment
component My for a range of values of the amplitudes of
the electromagnetic excitations, (Bmax

y ; Imax
tr ). We realize

that only for small values of the amplitude of the ac trans-
port current, almost Bean-like loops of My obtain. In par-
ticular, we recall a progressive disappearance of the flat
saturation behavior for high values of the amplitude of the
oscillating magnetic field, as Imax

tr augments. Remarkably,
this phenomenon ends up with a symmetrization of the
loops, both as functions of By and Itr, into characteristic
lenticular shapes. As a consequence of this process, a dis-
tinct low-pass filtering effect comes to the fore which, in
the case of the triangular input excitations considered here,
yields a nearly perfect sinusoidal (first-harmonic) output
signal MyðtÞ.

In conclusion, we have examined the electromagnetic
response of a straight, infinite, cylindrical type-II supercon-
ducting wire subject to synchronous oscillating excitations
by means of a numerical implementation of Bean’s model of
the critical state. The cardinal assumption underlying our
simulations thus is a current-voltage relation with an infinite
discontinuity at the critical current. For basic configurations,
this is known to lead to (rate-independent) hysteretic ac
losses which are describable by elementary relations
between monotonic and cyclic quantities. We have shown
that even for the plain configuration studied here, intriguing
phenomena may emerge, unexpected in simplified models
based on linear superposition. Thus, we have found strong
distortions of the magnetic flux density outside the wire, pro-
nounced localization effects in the density of power dissipa-

tion, and have identified important failures of approximate
formulae for hysteretic ac losses; finally, we have predicted a
distinct low-pass filtering effect in the wire’s magnetic
response, which may lead to envisage new applications for
superconducting systems of the above sort.
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FIG. 3. (Color online) Magnetic
moment component My relative to
jMyðBp; 0Þj ¼ ð2=3Þ in the case of the
synchronous ac transport current and
oscillating magnetic field of amplitude
ðBmax

y ; Imax
tr Þ, represented by its depend-

ence on the sources (left) By and Itr

[scaling the x-axis according to
Imax
tr ðBy=Bmax

y Þ], and also by its temporal
evolution (right). Plots are done for
Bmax

y ¼ 1, 2, 4, 6, and 8 (colored lines),
as well as for the values Imax

tr ¼ 0.25,
0.5, 0.75, and 1.0 (by rows).
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