Electromagnetismo cerca del Estado Crítico en Superconductividad de tipo II

A. Badía, C. López, H. S. Ruiz

Departamento de Física de la Materia Condensada I.C.M.A.–C.S.I.C., Universidad de Zaragoza, ESPAÑA

САВ ј - 2012

Escenario EM Modelo Matemático Problemas Físicos

Indice

- 1. Escenario Electromagnético Definición del problema y aproximaciones
- 2. Planteamiento matemático Hacia un modelo variacional para el EC y más allá
- 3. Problemas Físicos (abordados recientemente)
 EC: Experimento *flux shaking* EC: Resistencia *negativa* ?
 Difusión magnética hacia el EC

САВ ј - 2012

Escenario EM Modelo Matemático Problemas Físicos

Title		
44	••	
•	►	
Page	Page 2 of 22	
Back		
Full Screen		
Close		
Quit		
Home Page		

1. Escenario Electromagnético

El modelo de Estado Crítico

Phys. Rev. Lett. 8 (1962) 250 : Charles P. Bean

En superconductividad tipo-I se conserva la energía

$$-\oint (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{s} = \frac{\partial}{\partial t} \int \frac{B^2}{2\mu_0} dv + \int \mathbf{E} \cdot \mathbf{J} dv$$

si
$$\mathbf{E} = \mu_0 \lambda^2 \partial_t \mathbf{J} \Rightarrow \mathbf{E} \cdot \mathbf{J} = \frac{d}{dt} (\Lambda J^2/2) \qquad y \dots$$

$$\text{Min} \quad \frac{1}{2\mu_0} \int_{\mathbb{R}^3} \mathbf{B}^2 \, \mathbf{dv} + \quad \frac{1}{2\mu_0} \int_{v_S} \lambda^2 \|\nabla \times \mathbf{B}\|^2 \, \mathbf{dv}$$

$$\mathbf{B} + \lambda^2 (\nabla \times \nabla \times \mathbf{B}) = 0$$

Ecuación de London

Home Page

Para los materiales tipo-II NO se conserva la energía (EM) en situaciones dinámicas (variación de J)

$$\int \mathbf{E} \cdot \mathbf{J} dv \neq \frac{dU}{dt}$$

$$\downarrow$$
Existe formulación variacional posible ...?

. .en términos de variables EM si se transfiere energía a otros sectores?

2. Planteamiento matemático

Un sistema mecánico simple irreversible

$$m \longrightarrow V \longrightarrow F_{\nu} = -h\nu$$

LAGRANGIANO CONSERVATIVO DE UNA PARTÍCULA

$$S \equiv \int L(x,v) dt = \int \left[\frac{mv^2}{2} - U(x)\right] dt$$

Min S
$$\Rightarrow$$
 $\frac{d}{dt}\frac{\partial L}{\partial v} - \frac{\partial L}{\partial x} = 0 \quad \Leftrightarrow \quad m\frac{dv}{dt} = -\frac{\partial U}{\partial x} \equiv F_{cons}$

LAGRANGIANO MODIFICADO

$$\hat{S} \equiv \int dt \hat{L}(x, v, t) \quad \text{with} \quad \hat{L} \equiv L + \left[-\int_0^v F_v \, dv \right] t$$

$$\text{Min } \hat{S} \quad \Rightarrow \quad \frac{d}{dt} \frac{\partial \hat{L}}{\partial v} - \frac{\partial \hat{L}}{\partial x} = 0 \quad \Leftrightarrow \quad m \frac{dv}{dt} = -\frac{\partial U}{\partial x} - hv = F_{cons} + F_{visc}$$

* Las variaciones de F_v son despreciables en [0, t] * (invariante adiabático)

Problema electromagnético Irreversible (MQS)

$$H_{n}(\mathbb{R}^{3} \setminus \Omega) \xrightarrow{\int \Omega}_{H_{n}(\Omega)}$$

$$\begin{array}{ll} \texttt{Minimizar} \quad \mathcal{C} \equiv \frac{\mu_0}{2} \int_{\mathbb{R}^3} \|\mathbf{H}_{n+1} - \mathbf{H}_n\|^2 + \Delta t \int_{\Omega} \int_0^J E(J) \\ \\ & \texttt{(E} = \rho \mathbf{J} \quad \text{o bien} \quad F_{diss} = \frac{\rho J^2}{2}) \end{array}$$

2

$$\left(\mu_0 \frac{\partial}{\partial t} - \rho \nabla^2\right) \mathbf{H} = 0$$

Ecuación de difusión magnética en un metal

CAB

Quit Home Page El problema del Estado Crítico en superconductividad

CAB- 2012 Escenario EM Modelo Matemático Problemas Físicos Title •• 44 Page 9 of 22 Back Full Screen Close Quit Home Page

Más allá del Estado Crítico en superconductividad: el formalismo de la función de disipación

arXiv:1204.2682 Badía & López

3. Problemas Físicos

3.1. Estado crítico: *flux shaking* (CAB - 2008)

7.1. Simulación del caso paramagnético

Influencia de la dependencia $J_{c\perp}(H)$

CA j - 2 Escenario Modelo M	LB 2012 EM Iatemátic	00	
Problema	s Fisicos		
T	Title		
44	••		
•	►		
Page 1	Page 11 of 22		
Ba	Back		
Full Screen			
Close			
Quit			
Home	e Page		

Ejemplo 1: teoría vs. experimento

Experimentos en MgB_2

Escenario EM Modelo Matemático Problemas Físicos

CAB - 2012

Title		
••	••	
•	►	
Page 1	Page 12 of 22	
Ba	Back	
Full S	Full Screen	
Close		
Quit		
Home Page		

Ejemplo 1: nuevos efectos

ESCALA DE TIEMPO "DIMENSIONAL"
$$(\tau_0 \equiv \frac{\tau_{ac} w}{2d})$$

CAB - 2012

3.2. Estado crítico: resistencia negativa?

Phys. Rev. B 83 (2011) 014506: Ruiz, Badía, López

Escenario EM Modelo Matemático Problemas Físicos

Title	
44	••
•	►
Page 14 of 22	
Back	
Full Screen	
Close	
Quit	
Home Page	

3.3. Sobre el estado crítico: disipación en tipo-II

Minimizar
$$\mathcal{C} \equiv rac{\mu_0}{2} \int_{\mathbb{R}^3} \|\mathbf{H}_{\mathrm{n+1}} - \mathbf{H}_{\mathrm{n}}\|^2 + \Delta t \int_{\Omega} \mathcal{F}[J]$$

Escenario EM Modelo Matemático Problemas Físicos Title •• **▲** ◀ ► Page 15 of 22 Back Full Screen Close Quit Home Page

CAB - 2012

CAB

- 2012

Quit

J /J

Home Page

Difusión hacia el Estado Crítico en cintas superconductoras tipo-II

> arXiv:1204.2682 Badía & López Phys. Rev. B **48** (1993) 12893: Brandt & Indenbom

Experimento de transporte en cintas tipo-II

$$\tau_0/\tau_{
ho}=2$$

Escenario EM Modelo Matemático Problemas Físicos

CAB - 2012

Experimento de transporte en cintas tipo-II

$$\tau_0/\tau_\rho = 0.2$$

CAB- 2012 Escenario EM Modelo Matemático Problemas Físicos Title 44 ◀ Page 19 of 22 Back Full Screen Close Quit Home Page

Problemas en marcha

Supercond. Sci. Technol. 24 (2011) 062002: Clem, Weigand, Durrell, Campbell

САВ ј - 2012

Escenario EM Modelo Matemático Problemas Físicos

T	Title	
44	••	
•	►	
Page 2	Page 20 of 22	
Ba	Back	
Full Screen		
Close		
Quit		
Home Page		

Problemas en marcha ...

Fig7

M. L. Amigó, G.Nieva

Como se ve en la última figura (fig6) la disipación es mayor cuando J//H, es decir en la situación en que la fuerza de Lorentz debiera ser cero para los vórtices en la dirección del campo. Si hay cortes de vórtices debiera haber líneas de flujo que en forma efectiva estarían transversales al campo y se moverían disipando. Porque disipan más? En parte se puede atribuir a la anisotropía electrónica pero no todo. El coeficiente de anisotropía que sacamos de otras mediciones es ~1.2, (como máximo ~1.8).

Θ

Escenario EM Modelo Matemático Problemas Físicos

CAB

Title	
44	••
•	►
Page 21 of 22	
Back	
Full Screen	
Close	
Quit	
Home Page	

Muchas gracias por vuestra atención !

http://fmc.unizar.es/people/anabadia/

- 2012 Escenario EM Modelo Matemático Problemas Físicos Title 44 ► 4 Page 22 of 22 Back Full Screen Close Quit Home Page

CAB