MODELLING CURRENT-VOLTAGE CHARACTERISTICS OF PRACTICAL SUPERCONDUCTORS

A. Badía¹, C. López²

¹Departamento de Física de la Materia Condensada I.C.M.A.–C.S.I.C., Universidad de Zaragoza, SPAIN ²Departamento de Física y Matemáticas Universidad de Alcalá, SPAIN

Outline

1. Statement of the problem

Motivation The underlying physical problem Macroscopic *material law*

2. (Numerical) modelling

Thermodynamic model: general framework The power-law-like $\mathcal{F}(\mathbf{J})$ formulation The power-law-like $\mathbf{E}(\mathbf{J})$ formulation 4htsMOD <u>badía-ló</u>pe2

STATEMENT

MODELLING APPLICATION

Title

Page 2 of 24

Back Full Screen

Close

Quit Home Page

>>

44

3. Application

Approximations to the *helical cable* geometry Fingerprints of the $\mathbf{E}(\mathbf{J})$ law

4. Conclusions

1. Statement of the problem

1.1 Motivation

The Macroscopic Maxwell Equations must be supplied with a **SOUND** and **PRACTICAL** expression of the superconducting material law

In quasistatic conditions:

$$\begin{split} \mathbf{E}(\mathbf{J}) &= \rho(\mathbf{J})\mathbf{J} \\ & \Downarrow \\ \left(\mu_0 \frac{\partial}{\partial t} - \rho(\mathbf{J})\nabla^2 \right) \mathbf{H} = (\nabla \times \mathbf{H}) \times \nabla \rho(\mathbf{J}) \end{split}$$

 \star A number of particular choices exist for $\rho(\mathbf{J}),$ but FE codes lack an implementation for general purpose

 $\star \rho(\mathbf{J})$ is not always a scalar, neither a tensor !!

1. Statement of the problem

1.1 Motivation

The Macroscopic Maxwell Equations must be supplied with a SOUND and PRACTICAL expression of the superconducting material law

In quasistatic conditions:

$$\begin{split} \mathbf{E}(\mathbf{J}) &= \rho(\mathbf{J})\mathbf{J} \\ & \Downarrow \\ \left(\mu_0 \frac{\partial}{\partial t} - \rho(\mathbf{J})\nabla^2 \right) \mathbf{H} = (\nabla \times \mathbf{H}) \times \nabla \rho(\mathbf{J}) \end{split}$$

 \star A number of particular choices exist for $\rho(\mathbf{J}),$ but FE codes lack an implementation for general purpose

 $\star \rho(\mathbf{J})$ is not always a scalar, neither a tensor !!

4htsMOI badía-lópe. STATEMENT MODELLING APPLICATION Title 44 >> Page 3 of 24 Back Full Screen Close Quit Home Page

1. Statement of the problem

1.1 Motivation

The Macroscopic Maxwell Equations must be supplied with a **SOUND** and **PRACTICAL** expression of the superconducting material law

In quasistatic conditions:

$$\begin{split} \mathbf{E}(\mathbf{J}) &= \rho(\mathbf{J})\mathbf{J} \\ & \Downarrow \\ \left(\mu_0 \frac{\partial}{\partial t} - \rho(\mathbf{J})\nabla^2 \right) \mathbf{H} = (\nabla \times \mathbf{H}) \times \nabla \rho(\mathbf{J}) \end{split}$$

 \star A number of particular choices exist for $\rho(\mathbf{J}),$ but FE codes lack an implementation for general purpose

 $\star \ \rho(\mathbf{J})$ is not always a scalar, neither a tensor !!

4hts badí	:MOD a-lópez
• STAT	TEMENT
• Mor	DELLING
Ti	itle
••	••
•	•
Page	3 of 24
Ba	ack
Full S	Screen
Cl	ose
Q	uit
Home	e Page

1.2. The underlying physical problem

Local Geometry of Ampère's law $(J_{\parallel}, J_{\perp})$

$$\mathbf{1} \equiv \mathbf{H}/H$$
 ; $\mathbf{2} \equiv \nabla H/\|\nabla H\|$; $\mathbf{3} \equiv \mathbf{1} \times \mathbf{2}$

$$\Rightarrow \quad \mathbf{J} = H(-\partial_2\theta + \partial_3\phi)\mathbf{1} + (H\partial_1\theta)\mathbf{2} + (H\partial_1\phi - \partial_2H)\mathbf{3}$$

EXAMPLE 1: uniform current density + axial field

 $1 = (-y, x, 1) / \sqrt{1 + \rho^2}$ $2 = (x, y, 0) / \rho$ $3 = (-y, x, -\rho^2) / \rho \sqrt{1 + \rho^2}$

$$J_1 = J_0 / \sqrt{1 + \rho^2} = -H \partial_2 \theta$$
$$J_2 = 0$$
$$J_3 = -J_0 \rho \sqrt{1 + \rho^2} = -\partial_2 H$$

4htsMOD badía-lópez STATEMENT Modelling APPLICATION Title **▲** •• ◀ Page 4 of 24 Back Full Screen Close Quit Home Page

1.3. The underlying physical problem

Local Geometry of Ampère's law $(J_{\parallel}, J_{\perp})$

$$\mathbf{1} \equiv \mathbf{H}/H$$
 ; $\mathbf{2} \equiv \nabla H/\|\nabla H\|$; $\mathbf{3} \equiv \mathbf{1} \times \mathbf{2}$

 $\Rightarrow \mathbf{J} = H(-\partial_2\theta + \partial_3\phi)\mathbf{1} + (H\partial_1\theta)\mathbf{2} + (H\partial_1\phi - \partial_2H)\mathbf{3}$

EXAMPLE 1: uniform current density + axial field

$$\begin{aligned} \mathbf{1} &= (-y, x, 1) / \sqrt{1 + \rho^2} \\ \mathbf{2} &= (x, y, 0) / \rho \\ \mathbf{3} &= (-y, x, -\rho^2) / \rho \sqrt{1 + \rho^2} \end{aligned}$$

$$J_1 = J_0 / \sqrt{1 + \rho^2} = -H \partial_2 \theta$$
$$J_2 = 0$$
$$J_3 = -J_0 \rho \sqrt{1 + \rho^2} = -\partial_2 H$$

	4hts	MOD
	badí	a-lópez
	STAT	TEMENT
	Mor	ELLING
•	Арр	LICATION
•	Arr	LICATION
	Ti	tle
	44	••
	•	►
	Page 4	4 of 24
	Back	
	Full S	Screen
	Cle	ose
	Q	uit
	Home	Page

EXAMPLE 2: planar sample in rotating field

4htsMOD badía-lópez STATEMENT • Modelling ٠ Application Title **▲** ◀ ▶ Page <mark>6</mark> of <mark>24</mark> Back Full Screen Close Quit Home Page

 $H_x(--)$, $J_y(-)$ H_y(– –) , J_x(–) J 0.5 1 1 0 0 0 -0.5└-_d -1└ _d -1 L -d 0 0 0 d d d 0.5 20 0 0 0 -20 -1 ^L -d -0.5└ _d 0 0 0 d -d d d 50 0.5 1 0 0 0 Ramping up -50 L -d -0.5 L -d _1 ∟ _d d 0 0 d 0 d 0.5 1 50 0 0 0 -50 _0.5└ _d _1 ∟ _d 0 0 d 0 d -d d

The disappearance of J_{\parallel} ...

Partial conclusions

A) \star Rotations of the magnetic field are shielded by J_{\parallel} B) \star In MQS, when rotation ceases J_{\parallel} disappears

In a superconductor

A) is true

B) both $J_{parallel}$ and J_{\perp} persist in MQS regime

Partial conclusions

A) \star Rotations of the magnetic field are shielded by J_{\parallel} B) \star In MQS, when rotation ceases J_{\parallel} disappears

Here, we have solved:
$$\nabla^2 \mathbf{H} = (\mu_0 / \rho_0) \frac{\partial \mathbf{H}}{\partial t}$$

then
 $\mathbf{J} \cdot \mathbf{H} = 0 \Rightarrow \frac{\partial (H_x / H_y)}{\partial t} = 0$

In a superconductor

A) is true

B) both J_{\parallel} and J_{\perp} persist in MQS regime

Partial conclusions

A) \star Rotations of the magnetic field are shielded by J_{\parallel} B) \star In MQS, when rotation ceases J_{\parallel} disappears

Here, we have solved:
$$\nabla^2 \mathbf{H} = (\mu_0 / \rho_0) \frac{\partial \mathbf{H}}{\partial t}$$

then
 $\mathbf{J} \cdot \mathbf{H} = 0 \Rightarrow \frac{\partial (H_x / H_y)}{\partial t} = 0$

In a superconductor

A) is true

B) both J_{\parallel} and J_{\perp} persist in MQS regime

1.3. Material law in type-II superconductors

 \star Electromagnetic energy of the Vortex Lattice

$$W_{
m SC} = rac{1}{\mu_0} \int_{\Omega} \mathbf{V} \cdot \left(\mathbf{b}_1 + rac{1}{2} \mathbf{b}_2 - \mu_0 \mathbf{H}
ight)$$

 $\mathbf{V} = \sum_{i} \Phi_0 \delta^2 (\mathbf{r} - \mathbf{r}_i) \mathbf{n}_i$: vorticity

 \mathbf{b}_2 flux density of the equilibrium Vortex Lattice

 \mathbf{b}_1 flux related to other sources

H field intensity: $\nabla \times \mathbf{H} = \mathbf{J}_0$

* The equilibrium $(\partial_{\eta} W_{\text{SC}} = 0)$ is given by a triangular vortex lattice with a uniform macroscopic field **B** parallel to **H**. Then $\mathbf{B} = \mu_0 \mathbf{H}$ and $\nabla \times \mathbf{B} = 0$ well within the sample

In non-ideal (practical) superconductors B may vary in intensity (J_{\perp}) and orientation (J_{\parallel})

Then: $W_{Full} = W_{SC} + W_{Pinning}$ Equilibrium: $\partial_{\eta}W_{SC} + \partial_{\eta}W_{Pinning}$ (forces + constraints = 0)

$$J_{\perp} \propto F_p^{\perp} = \underbrace{F_p}_{\sim \sim} \cos \alpha \, ; \, J_{\parallel} \propto \tau_p \propto F_p^{\parallel} = \underbrace{F_p}_{\sim \sim} \sin \alpha \Rightarrow \frac{J_{\perp}^2}{a^2} + \frac{J_{\parallel}^2}{b^2} = 1$$

4htsMOD badía-lópez STATEMENT Modelling APPLICATION Title **▲** •• Page 10 of 24 Back Full Screen Close Quit Home Page

Clarifying E(J): CWDC experiment

Supercond. Sci. Technol. 24 (2011) 062002: Clem, Weigand, Durrell, Campbell

MODELLING
APPLICATION
Title
I
I
Page 11 of 24
Back
Full Screen
Close
Quit
Home Page

4htsMOD badía-lópez

STATEMENT

•

An elliptic $J_{\parallel}(J_{\perp})$ law has been reported

Clarifying E(J): CWDC experiment

Supercond. Sci. Technol. 24 (2011) 062002: Clem, Weigand, Durrell, Campbell

Eq.(25) corresponds to the Critical State Theory ...

that postulates a *non-functional* relation $\{\mathbf{E}, \mathbf{J}\} \Rightarrow \mathbf{J} \in \Delta$

badía-lópez STATEMENT Modelling APPLICATION Title •• 44 Page 11 of 24 Back Full Screen Close Quit Home Page

4htsMOD

- 2. Numerical Modelling $\hookrightarrow \mathbf{E}(\mathbf{J})$
- 2.1. Thermodynamic model (SST 2012)

Minimize
$$\mathcal{C} \equiv \frac{\mu_0}{2} \int_{\mathbb{R}^3} \|\mathbf{H}_{n+1} - \mathbf{H}_n\|^2 + \Delta t \int_{\Omega} \mathcal{F}[J]$$

4htsMOD

badía-lópez

STATEMENT

4htsMOD badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

4htsMOD

badía-lópez

STATEMENT

Towards 3D modelling: expanding the yield region

SST 2012, Badía & López

Expanded yield region: first example

Transport along crossed tapes

4hts badi	5MOD a-lópez
• Stat	FEMENT
• Moi	DELLING
• App	LICATION
т	itle
4	•
Page 1	15 of 24
В	ack
Full S	Screen
CI	ose
Q	uit
Home	e Page

Expanded yield region: first example

Transport along crossed tapes

2.2. The power-law-like $\mathcal{F}(\mathbf{J})$ formulation

In SST 2012 it was shown that

$$\mathcal{F}_{\text{QLL}}(J) = \frac{1}{2} \rho \,\Theta_{\Gamma}(\mathbf{J}) \,(J \pm J_{c\perp})^2 \qquad \text{(Quasi-linear-law)}$$

$$\&$$

$$\mathcal{F}_{\text{PL}}(J) = F_0 \,\left(\frac{J}{J_{c\perp}}\right)^{\text{M}}, \, M \gg 1 \qquad \text{(Power-law)}$$

are equivalent in 1D

 \star Here, we generalize $\mathcal{F}_{\rm PL}$ to 3D

$$\mathcal{F}_{ ext{PL}}(\mathbf{J}) = F_0 \left[\left(rac{J_{\parallel}}{J_{c\parallel}}
ight)^2 + \left(rac{J_{\perp}}{J_{c\perp}}
ight)^2
ight]^{ ext{M}}$$

2.3. The power-law-like E(J) formulation

$$\mathbf{e}(\mathbf{j}) = \left(j^2 + \gamma j_{\parallel}^2\right)^{\mathrm{M}-1} \left(\mathbf{j} + \gamma \mathbf{j}_{\parallel}\right)$$

with the definitions:

$$\gamma \equiv J_{c\perp}^2 / J_{c\parallel}^2 - 1 \equiv \Gamma^2 - 1$$
$$\mathbf{j} \equiv \mathbf{J} / J_{c\perp}$$
$$\mathbf{e} \equiv \mathbf{E} / (2MF_0 J_{c\perp})$$

 \star Applied to CWDC experiment:

2.3. The power-law-like E(J) formulation

$$\mathbf{e}(\mathbf{j}) = \left(j^2 + \gamma j_{\parallel}^2\right)^{\mathrm{M}-1} \left(\mathbf{j} + \gamma \mathbf{j}_{\parallel}\right)$$

with the definitions:

$$\gamma \equiv J_{c\perp}^2 / J_{c\parallel}^2 - 1 \equiv \Gamma^2 - 1$$
$$\mathbf{j} \equiv \mathbf{J} / J_{c\perp}$$
$$\mathbf{e} \equiv \mathbf{E} / (2MF_0 J_{c\perp})$$

 \star Applied to CWDC experiment:

$$\frac{e_y}{e_z} = \frac{\gamma \sin \alpha \, \cos \alpha}{1 + \gamma \cos^2 \alpha} = \frac{(\Gamma^2 - 1) \tan \alpha}{\Gamma^2 + \tan^2 \alpha} \quad \checkmark$$

3. Application

••

▶

3.1. Approximations to the helical problem

In all cases $I_{tr}(t) = I_0 \sin \omega t$ along each layer

and we obtain $\mathbf{j}(z,t)$ across the layers

Model A: influence of the power-law exponent

Home Page

In this case $\Gamma = 1$

Model A: influence of the anisotropy ratio

In this case M = 10 & $\alpha = 67.5^{\circ}$

4hts badí	:MOD a-lópez
• Sтат	TEMENT
• Mor	DELLING
• App	LICATION
Ti	itle
44	••
•	•
Page 2	2 of 24
Ba	ack
Full S	Screen
Cl	ose
Quit	
Home	Page

Model B: the current flow $(2\alpha = 2\beta = 45^{\circ})$

Anisotropic \Rightarrow inhomogeneous

badi	a-lópez
• STA	FEMENT
• Mo	DELLING
• App	LICATION
Т	ïtle
т 44	itle
τ 44 4	itle
T 44 4 Page 2	itle
T 44 Page 2 B	itle
T 44 Page 2 B Full 3	itle
T 44 Page 2 B Full 2	itle itle
T 44 Page 2 B Full 2 Cl	itle itle itle itle itle itle itle itle
T 44 Page 2 B Full 2 C Home	itle itle itle itle itle itle itle itle

4htsMO2

4. Conclusions

* Elliptic yield region of current density $J_{\perp}(J_{\parallel})$ Experimental evidence (CWDC)

The minimal physical model (unique \mathbf{F}_p)

* Numerical modelling: the "power-law" $\mathbf{E}(\mathbf{J})$ Equivalent $\mathcal{F}(\mathbf{J})$ formulation fully tested A feasible and sound form of $\mathbf{E}(\mathbf{J})$ given Next: implementation of $\mathbf{E}(\mathbf{J})$ in FE codes ...

4htsMOI <u>badía-lóp</u> STATEMENT Modelling APPLICATION Title 44 Page 24 of 24 Back Full Screen Close Quit Home Page

Many thanks for your attention !

http://fmc.unizar.es/people/anabadia/

badí	a-lópez
• Stat	TEMENT
• Mor	DELLING
• App	LICATION
-	
Ti	itle
<i>T₁</i>	itle
	itle
Ti 44 • Page 2	itle
Ti 44 Page 2 Ba	itle
Ti 44 Page 2 Ba Full 5	itle
Ti 44 Page 2 Ba Full 5	itle
Tri 44 Page 2 Ba Full 5 Cl	itle