Complex Critical States in type-II Superconductors

A. Badía–Majós¹, C. López², and H. S. Ruiz¹

 1 Departamento de Física de la Materia Condensada
–I.C.M.A., C.S.I.C., Universidad de Zaragoza, SPAIN 2 Departamento de Matemáticas, Universidad de Alcalá de Henares, SPAIN

Motivation

Contents

- Variational statement
- Results: DCSM
- Conclusions

1. Motivation (beyond 1D Bean's model)

1.1. Experimental scenario 70's ... 90's: rotation

Hysteresis losses and magnetic phenomena in rotating disks of type-II superconductors

R. Boyer, G. Fillion, and M.A.R. LeBlanc Physics Department, University of Ottawa, Ottawa, Canada K1N 6N5

Motivation

Contents

- Variational statement
- Results: DCSM
- Conclusions

1692 J. Appl. Phys. 51(3), March 1980

1.2. Recent experimental issues: more on crossing

PHYSICAL REVIEW B 75, 174515 (2007)

Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields: Experiment and model

Ph. Vanderbemden,¹ Z. Hong,² T. A. Coombs,² S. Denis,³ M. Ausloos,⁴ J. Schwartz,⁵ I. B. Rutel,⁵ N. Hari Babu,⁶ D. A. Cardwell,⁶ and A. M. Campbell⁶

Motivation

Contents

- Variational statement
- Results: DCSM
- Conclusions

2. Contents

- Variational statement of the critical state
 - \rightarrow MQS approximation for conductors
 - \rightarrow Critical state conduction law
- Results: double critical state model
 - $\rightarrow T(transverse)$ vortex shaking
 - \rightarrow T states vs CT states
 - \rightarrow smooth DCSM
- Conclusions

3. Variational statement

3.1. MQS approximation for conductors

$$\begin{array}{lll} \text{Minimize} & \mathcal{C} \equiv \frac{\mu_0}{2} \int_{\mathbb{R}^3} \|\vec{H}_{\mathrm{n+1}} - \vec{H}_{\mathrm{n}}\|^2 + \frac{\Delta t}{2} \int_\Omega \int_0^J E(J) \\ & & \\ & & \\ & & \\ & & \\ \end{array}$$

Motivation

Contents

- Variational statement
- Results: DCSM
- Conclusions

Title	
••	••
•	•
Page 5 of 12	
Back	
Full Screen	
Close	
Quit	
Home Page	

3.2. Critical state conduction law

Home Page

3.3. Numerical statement

Discretized variational principle

$$\begin{split} & \text{Min} \quad \frac{1}{2} \sum_{i,j} \xi_{i,n+1} M_{ij}^{x} \, \xi_{j,n+1} - \sum_{i,j} \xi_{i,n} M_{ij}^{x} \, \xi_{j,n+1} \\ & + \frac{1}{2} \sum_{i,j} \psi_{i,n+1} M_{ij}^{y} \, \psi_{j,n+1} - \sum_{i,j} \psi_{i,n} M_{ij}^{y} \, \psi_{j,n+1} \\ & + \mu_{0} \sum_{i} \xi_{i,n+1} (h_{x0,n+1} - h_{x0,n}) \\ & + \mu_{0} \sum_{i} \psi_{i,n+1} (h_{y0,n+1} - h_{y0,n}) \end{split}$$
for
$$(1 - h_{x,i}^{2}) \xi_{i}^{2} + (1 - h_{y,i}^{2}) \psi_{i}^{2} - 2h_{x,i} h_{y,i} \, \xi_{i} \psi_{i} \leq j_{c\perp}^{2} \\ & \text{and} \quad h_{x,i}^{2} \, \xi_{i}^{2} + h_{y,i}^{2} \, \psi_{i}^{2} + 2h_{x,i} h_{y,i} \, \xi_{i} \psi_{i} \leq j_{c\parallel}^{2} \end{split}$$

$$M_{ij}^{x} = M_{ij}^{y} \equiv 1 + 2 \left[\min \{i, j\} \right]$$
$$M_{ii}^{x} = M_{ii}^{y} \equiv 2 \left(\frac{1}{4} + i - 1 \right)$$

4. Results

4.1. "T" vortex shaking in thick strips (LUZURIAGA 2009)

• Results: DCSM

4.2. "T" states vs "CT" states (submitted)

 $T \ states \ (vs \ Brandt \ 2007)$

 $T \rightarrow CT$ transition

EUCAS '09

Motivation

4.3. Smoothing of the CS model (submitted)

5. Conclusions

- The *General Critical State* problem in type-II superconductivity may be posed as a quadratic minimization problem.
- The variational statement admits a numerical treatment that can incorporate 3D effects for *realistic* conduction laws $\vec{J} \in \Delta$, related to the vortex interactions (flux pinning and cutting).
- The relative importance and interplay of flux depinning and flux cutting losses is quantified through the influence of the region Δ on the magnetic properties of the superconductor.

