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An asymptotic theory is formulated, which allows us to recover the London penetration depth # in super-
conductors from magnetic force microscopy measurements. An ad hoc interpretation of the forward problem
allows us to accomplish a complex variable based power series reversion scheme. The asymptotic series
expansion of # can be generated in terms of measurable quantities. Simulations for analytically tractable
situations have been performed which confirm the stability of our approach, even for cases where noise
corrupted data is considered. The method does not restrict to any particular symmetry and is suited for covering
the whole temperature range #(T), with obvious implications on the knowledge of the superconducting pairing
state. By comparing with the analytic model of Coffey $Phys. Rev. B 57, 11 648 !1998"% we discuss the
limitations and possible extensions of the existing theory. $S0163-1829!99"05637-4%

I. INTRODUCTION

Asymptotic expansions have been widely used in funda-
mental physical theories for the computation of a variety of
functions. In particular, a celebrated approximation of quan-
tum mechanics, the WKB method is based on an asymptotic
series in terms of & . Recall that the representation of a func-
tion f (x) by partial sums of an asymptotic infinite series is
an arbitrarily good approximation for large values of x. On
the contrary, for a finite value of x such series can even be
divergent and one has a corresponding number of terms
which provide an optimum approximation. In this article, we
propose an asymptotic series method to solve an inverse
problem in the magnetic force microscopy1 !MFM" of super-
conductors.
Specifically, we will deal with a theory which allows us to

recover the London penetration depth # from the measured
force between a magnetic tip and a Meissner state supercon-
ductor. This statement belongs to a class of problems to
which both theoretical physics and applied mathematics de-
vote special consideration: one wants to reconstruct a sys-
tem’s properties from indirect observations. Ideally, a tabu-
lar approach, which consists of building as complete as
possible a catalog of direct transformations and then looking
up the desired inverse should be avoided. Unless one pos-
sesses a solid previous knowledge of the system, this can
lead to an ambiguous fitting procedure with questionable free
parameters. Additionally, fundamental inversion topics as
uniqueness and robustness can be considered if a more gen-
eral procedure is afforded. This will be our aim for the men-
tioned MFM problem.
MFM has become a high performance technique for the

investigation of superconductors2,3 and other magnetic mate-
rials. It is noteworthy to mention that MFM instrumentation
is under continuous development,3–5 while the interpretation
of measurements is still a challenge6–8 in some aspects.
Thus, accurate MFM calibration has been described4 by us-
ing micronscale current rings biased by a precision current
source, spatial resolution of less than 10 nm has been
achieved5 based on a force gradient measurement, and low-
temperature inherent problems have been overcome with a
reported pico-Newton resolution at 4.3 K.3
For a given magnetic tip and a superconducting sample in

the Meissner state, the repulsion force F is determined by the
temperature dependence #(T).9 This quantity has been se-
lected as a sensitive probe distinguishing between different
coupling states for the superconducting carriers. In fact, for a
given s-wave BCS gap ' , #(T)!#(0) experimentally ap-
proaches zero as exp(!'/kT). On the other hand, other pair-
ing states as the dx2!y2 type give rise to a linear dependence
1!aT at low temperature.10 Recently, the topic has been
addressed for high-Tc superconductors in which the pairing
state is still a controversy. See Ref. 10 for a very compre-
hensive review on this subject. The main conclusion is that
there is increasing experimental evidence of an unconven-
tional quasi-particle excitation spectrum as would corre-
spond to a d-wave pairing state, instead of the BCS s wave.
Nevertheless, several inconsistencies remain to be solved.
One of the potential reasons for these discrepancies stems
from the fact that for macroscopic measurements, #(T)
holds nothing but an averaged permeability. Recall that, in
high-Tc compounds, even the presumed high quality crystals
are not absent of grain boundaries and other inhomogeneities
to which these materials are highly sensitive, owing to their
short coherence length. Nonetheless, MFM offers a local
probe by means of which very small !submicrometric scale"
regions of the sample can be scanned.
In the magnetostatic case, the relation between the mea-

sured force F and # can be established by combining Am-
père law and the London equations !the London theory is
preferred to the Ginzburg-Landau approach because the
range of interest is especially at low temperatures". Never-
theless, when boundary conditions are included, even for the
simplest configurations !i.e., axisymmetry" the arising inte-
gral form of Helmholtz equation is cumbersome enough.
Thus, in general, extracting # from the measured force turns
out to be a formidable task. As a consequence, the procure-
ment of a practical scheme for obtaining # as a function of F
is still under development. The availability of a consistent
and robust theory should stimulate novel experiments on the
basic physics of superconductors.
A significant advance in the inversion theory is due to

Coffey7,8 who has recently solved the inversion problem for
a depth-dependent penetration #(z). However, as recognized
by this author, inverse problems are typically ill posed and
stable algorithms must be sought. On the other hand, he as-
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sumes a point dipole magnet, whereas non-negligible finite-
size effects are present for many experimental situations.
Finally, we want to mention that the crudest approxima-

tion to the inverse problem consists of using # as a small
parameter !respect to the other relevant length scales" and
linearizing the expressions which involve this quantity.
Along this line, the direct!inverse" problem was posed in
Refs. 9,11. There, a linear dependence of the levitation force
on # was assumed. In principle, this approach is only valid at
very low temperatures, i.e., well apart from the divergence of
# at T"Tc .
In this report, we hope to shed some more light on the

inverse problem in the MFM of superconductors. The work
is focused on the very general idea of getting a useful power
series expansion of # in terms of the measured force F. We
will show that this is feasible, obtaining an asymptotic series
and giving a practical scheme for recovering # in a realistic
situation. Finally, we will establish the comparison with the
previously existing theory7,8 showing the complementarity of
both approaches and discussing possible further extensions.

II. ASYMPTOTIC EXPANSION

The starting point builds on previous work12 in which the
direct problem was treated by the author. Considering the
typical length scales and the arguments developed there one
can show that the customary MFM experiment may be mod-
eled as a finite size magnet over a semi-infinite supercon-
ductor. In order to bring out the essential physics without
unnecessary mathematical difficulties, at first, we will as-
sume a problem with rotational symmetry !eventually, this
condition will be relaxed in Sec. IV". Now, under the as-
sumption of rotational symmetry, the vertical force can be
expressed as9

F"
(0

4)!0
*

dk!
V
d3r!

V
d3r!

#" k3 !1$#2k2!#k
!1$#2k2$#k

!e!2akM!r"•M!r!"

#e!k(z$z!)J0$k!!x!x!"2$!y!y!"2%# . !1"

Here, the magnet is assumed to rest at a distance a above
the superconductor, which is set to lie parallel to the XY
plane.M(r) stands for the magnetization of the magnet, V its
volume, and J0 is the Bessel function of the first kind of
order 0. The origin of coordinates has been taken at the lower
end of the magnet. Along this section M(r) will be consid-
ered uniform and parallel to the Z axis.
Formally, one can integrate Eq. !1" by power series ex-

pansion in terms of the dimensionless combination #k . In
practice, this will provide a method for computing F for
large values of a because the high wave numbers are attenu-
ated by the exponential function. Then #k becomes a small
parameter and one gets a convergent series.
Observe that the expansion of the pre-exponential factor

leads to

F!a ""F0!a "$ +
n"1

*

f n$ #

a % n, !2"

where F0 can be identified as the force between the magnet
and the completely shielded superconductor (#→0). On the
other hand, the coefficients f n can be evaluated from the
relation

f n",n
!!1 "n

2n
dnF0
dan

an, !3"

with

,1"!,2"!2,,3"!1,,2m$1"
!!1 "m!2m!3 "!!

2m!1m!
.

!4"

Thus, Eqs. !1" and !2" allow to anticipate F$a ,#(T)% for
any foregone dependence #(T) and this quantity can be
compared to the experimental results. On the contrary, if one
attempts to recover the material property #(T) from the ob-
servable F(a ,T), an inversion scheme is required. Below, an
inversion program based on the infinite power series rever-
sion is presented. We want to stress that, hereafter, Eq. !2"
will be used at a formal level. In fact, a useful asymptotic
inverse series is obtained even for situations in which the
forward one does not converge.
Assume that F0(a) is known. In any case, one can calcu-

late it by using the image technique or other methods in the
potential theory.13 Define F̄-F!F0 as the difference be-
tween the actual force and the limit F0. The problem can be
posed as follows. !i" We have the direct power series expan-
sion

F̄!a "" +
n"1

*

bn#n, !5"

!ii" bn being known functions of a

bn",n$ !
1
2 % n dnF0dan

, !6"

!iii" and we want to obtain an explicit expression of the kind

#" +
n"1

*

cnF̄n, !7"

!iv" so that we have to solve for the unknowns cn .
A quite general approach for solving the problem can be

made by the use of complex variables. Starting with
Cauchy’s integral formula14

#! F̄ ""
1
2)i &C#! F̄!"dF̄!

F̄!!F̄
!8"

which is valid for # analytic on the complex plane contour C
and within its interior !at least, this will be valid for some
circle of convergence", and using the convergent expansion
for the infinite geometric series .n(F̄/F̄!)n"(1!F̄/F̄!)!1

one can show that

cn"
1
n! lim#→0

' dn!1

d#n!1

#n

F̄!#"n
( , !9"

which can be identified with the so-called residue of the
function 1/nF̄n at the point #"0
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cn"Res#"0' 1
nF̄!#"n

( . !10"

This follows from the fact that 1/F̄n possesses a pole of order
n at #"0.
Therefore, the inversion program can be summarized as

follows. !a" Evaluate the residues of the function 1/nF̄n for
increasing values of n. Here, it is convenient to calculate F̄
starting with Eq. !2". This will provide the coefficients cn in
terms of F0 and its derivatives. !b" Calculate the difference
between the MFM data FMFM and the zero penetration depth
limit F0 : F̄MFM"FMFM!F0 as a function of the recording
distance a !occasionally, just for a given distance". !c" Re-
construct the inverse series by means of Eq. !7" and F̄MFM .
We should mention that the evaluation of residues is cur-

rently standardized, for instance, by using the algebraic ma-
nipulation package MATHEMATICA.15 However, for the read-
ers’ benefit we display several coefficients in Table I. The
number of listed coefficients has been chosen for providing a
very nice inversion in simulated experiments $by using Eq.
!1"% for analytically solvable models. Closed form expres-
sions for F0(a) in the case of spherical and cylindrical tips
are given in Ref. 11. Additionally, we include here the for-
mulas for semispherical and conical tips in Table II. They are
given in terms of definite integrals of the Legendre function
Q!1/2 . For computation purposes, recall that Q!1/2(z)
"!2/(z$1)K$!2/(z$1)% , where K stands for the complete
elliptic integral of the first kind. Notice that alternative ex-
pressions in terms of improper integrals have been obtained
for all these cases in Ref. 16.
As a practical example on how the method works we

include Fig. 1, in which the reconstruction of # for a simu-

lated experiment is illustrated. Synthetic data F(a ,#) were
generated for a cylindrical tip, whose dimensions L"R-D
established the length units of the problem. The recovered #
is plotted as a function of the distance a for an increasing
number of terms in the inverse series. We want to stress that
the asymptotic character displayed in Fig. 1 has also been
observed for #/D%1. One gets a very good approximation
with a small number of terms !eventually one" for a&# ,
whereas an optimum number appears for small distances (n
"3 in the above example".
The effectiveness of the method has been also checked for

noise corrupted data as would be the case for experimental
situations. As an example, Fig. 1 incorporates the result of
inverting force data to which a random noise, corresponding
to 0.1% resolution of the measured force has been added.
Raw data with no preprocessing have been directly fed into
the inversion algorithm, which has been implemented for n
"3. The statistical properties of the derived # are a mean
value /#0"0.0999D and a standard deviation 1"0.0009D .
However, notice that scattering increases with the distance a.
This fact can be explained by a simple error propagation
argument. If one assumes an uncertainty 2FMFM in the mea-
sured force it is simple to show that 2#"$1/F0!$O(FMFM
!F0)%2FMFM and 1/F0! is an increasing function of a while
FMFM!F0 tends to zero. As regards the extent of the previ-
ous evaluation, we should mention that pico-Newton resolu-
tion corresponds to 0.1% of the measured signal for a cylin-
drical tip with D"1 (m, (0M"1 T , a recording distance
a)1 (m and a superconductor penetration depth #
"0.1 (m as can be tested by means of Eq. !1".

III. EXTENDED LAPLACE INVERSION METHOD

As mentioned in the Introduction, a comparison of our
work with other models should enrich the state of the art in

TABLE I. Several inverse series coefficients for the penetration depth expansion in terms of the measured
force: #".ncn$FMFM(a)!F0(a)%n. FMFM stands for the MFM data and F0 is the theoretical force between
the magnetic tip and a completely shielded (#"0) superconductor.

c1 1/F0!
c2 !(1/2)F0"/(F0!)3

c3 (1/8)$4(F0")2!F0!F0
(3)%/(F0!)5

c4 (5/8)$(1/2)F0!F0"F0
(3)!(F0")3%/(F0!)7

c5 (1/8)37(F0")4!(21/4)F0!(F0")2F0
(3)$(F0!)2$(3/8)(F0

(3))2$(1/16)F0!F0
(5)%4/(F0!)9

TABLE II. Collected expressions for the repulsion force F0 between semispherical and conical tips and
a completely shielded superconducting plane. The magnets are assumed to be uniformly magnetized along
the symmetry axis, which is perpendicular to the plane and oriented with the sharp end towards the super-
conductor. The distance between the lower end of the magnet and the superconductor is denoted by a while
R and h stand for the radius and height of the tip. m stands for the magnetic moment and Q!1/2 represents a
conical Legendre function. ,1-$R2$2(a$R)(a$R!!R2!r2!!R2!r!2)$!R2!r2!R2!r!2%/rr!, ,2
-$R2$4(a$R)(a$R!!R2!r2)$r!2%/2rr!, ,3-$4(a$R)2$r2$r!2%/2rr!, 51-3$2a$h(r$r!)/R%2

$r2$r!24/2rr!, 52-$(2a$rh/R$h)2$r2$r!2%/2rr!, 53-$(2a$2h)2$r2$r!2%/2rr!.

Semisphere !
9(0m2

8)2R6
6

6a !0
R
dr!

0

R
dr!3!rr!$Q!1/2!,1"!2Q!1/2!,2"$Q!1/2!,3"%4

Cone !
9(0m2

2)2R4h2
6

6a !0
R
dr!

0

R
dr!3!rr!$Q!1/2!51"!2Q!1/2!52"$Q!1/2!53"%4
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the inversion theory for MFM. Below, we will concentrate
on the inversion method developed in Ref. 8, which can be
conveniently generalized by incorporating F0(a) to the
analysis. Under the assumptions of axisymmetry and point
dipole magnetic source, that contribution solves the problem
of a depth dependent penetration #(z). The author employs a
wave number-dependent kernel function K(k) which is ob-
tained via Laplace transform inversion of the MFM data.
Hereafter, we shall refer to this approach as a Laplace inver-
sion method !LIM". In order to show in what sense the LIM
can be complemented by our ideas, we will develop a par-
ticular extension of the method below.
Consider the case of a cylindrical magnetic tip uniformly

magnetized along its axis, which is directed perpendicular to
the semi-infinite superconductor !thus, fulfilling rotational
symmetry". If one assumes # to be a constant, a suitable
expression for K(k) can be derived starting with Eq. !1".
Calling L ,R to the length and radius of the magnet and after
some algebra one gets

F")(0M 2R2!
0

*

dk

#" k3e!2ak K!k "!1
K!k "$1 ' J1!kR "!1!e!kL"

k2 ( 2# , !11"

where the kernel function K(k) is defined as K(k)
-!k2$#!2/k .
Next, we introduce the form factor f

f !k ,R ,L "-' RLk2

2J1!kR "!1!e!kL"
( 2.

Identifying Eq. !11" as a Laplace transform, K can be ex-
pressed in terms of the inverse Laplace transform of the ver-
tical force

K$ k2 %"
1$!cm /k3" f !k/2,R ,L "L !1$F!a "%!k "

1!!cm /k3" f !k/2,R ,L "L !1$F!a "%!k "
, !12"

where we have used cm-64)/(0m2, m standing for the
magnetic moment. Notice the analogy to Eq. !16" of Ref. 8.
Both expressions differ in the multiplying form factor
f (k/2,R ,L). On the other hand, it is apparent that they coin-
cide when one takes the limit R ,L→0, as in this case f tends
to unity.
Observe that f may be expressed in terms of the zero

penetration depth limit F0(a). In fact, starting with Eq. !11"
for #"0 and inverting again, one has

1/f !k/2,R ,L ""
cm
k3

L !1$F0!a "%!k ",

which leads the straightforward generalization for axisym-
metric situations

K$ k2 %"
1$L !1$F!a "%!k "/L !1$F0!a "%!k "

1!L !1$F!a "%!k "/L !1$F0!a "%!k "
. !13"

The relevance of accounting for the form factor when
inverting MFM data has been checked for simulated experi-
ments in the cylindrical system. Assuming concrete values
for M ,R ,L ,# we have generated a set of synthetic force vs
distance measurements. Then, we get the kernel function by
means of either Eq. !12" or the uncorrected version ( f"1).
Laplace transform inversion has been implemented by ana-
lytic continuation of F(a) onto the complex plane and then
using the Bromwich integral.14 Then, the numerically com-
puted inverse function shows very stable behavior. Neverthe-
less, stability strongly depends on the smoothness of F(a).
In particular, we want to mention that general numerical in-
version procedures display severe convergence problems for
noise corrupted data.
The reconstruction of K(k) for a particular case in which

faked data have been produced by means of Eq. !1" is shown
in Fig. 2. For completion L !1$F(a)%(k) is also displayed as
an inset of the figure. For comparison purposes we plot the
relation K(k)"!k2$#!2/k , which should act as a basis for
extracting # from the experimental data. It is apparent that
neglecting the correction factor may introduce large errors if
one attempts a fit of the uncorrected points to this depen-
dence. The best fit of K(k) for our simulated experiment
with #/D"0.1 outputs a value #/D"0.0998(8) for the re-
dressed data when the cutoff k"20 is used. One can com-
pare the achieved accuracy with the asymptotic method by
means of Fig. 1. For instance, n"2 would provide the same
accuracy provided a/D%6, and n"3 if a/D%0.15.

IV. NONSYMMETRICAL PROBLEMS

In this section we will show that none of the previous
results is restricted to rotationally symmetric situations. In
fact, they completely generalize for any shape of the tip and
any magnetization pattern. Specifically, we will consider a

FIG. 1. Reconstruction of the penetration depth by means of Eq.
!7" for a simulated force vs distance experiment in the case of a
cylindrical magnetic tip !radius R, length L, and R"L-D) and #
"0.1D. The different lines correspond, as labeled, to the truncation
of the series by means of a 1, 2, 3, and 4 term sequence. Both the
penetration depth and the distance between the tip and the super-
conductor are expressed in units of D. Points correspond to the
reconstruction of # with a superimposed 0.1% noise on F and by
means of a 3 term sequence.
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magnet of arbitrary shape and a position dependent magne-
tization $Mx(r),My(r),Mz(r)% above the semi-infinite su-
perconductor.
Using the customary form for the magnetic field

induction9

B!r"""B1!r"$B2!r", z70,
B3!r", z80,

!14"

where B1(r) is the direct contribution from the magnetic
source, B2(r) is the induced field, and B3(r) the penetrating
field inside the superconductor !with surface z"0), one can
solve the problem by imposing

!i" 92B2"0 and 92B3"(1/#2)B3,
!ii" B1$B2"B3 at z"0,
!iii" 9•B2"0 and 9•B3"0,
!iv" B→0 as z→'* .
Then, particular solutions for Laplace’s and Helmholtz’s

equations arise for B2 and B3 after the source field B1 is
fixed. For instance, if the source is a magnetic dipole at the
point (0,0,a) above the superconductor and components
(mx ,my ,mz) one can show that B2 is given by

B2i"
(0

4)!0
*

dk" k2 #k!!1$#2k2

!1$#2k2$#k
e!k(a$z)'+

j
gi jm j( # ,

!15"

where Latin indices are used for indicating the three carte-
sian components and the matrix elements gi j are defined as

g11"
1
2 J0!k

!x2$y2"!
x2!y2

2!x2$y2"
J2!k!x2$y2",

g12"!
xy

x2$y2
J2!k!x2$y2",

g13"
x

!x2$y2
J1!k!x2$y2",

g21" g12 ,

g22"
1
2 J0!k

!x2$y2"!
y2!x2

2!x2$y2"
J2!k!x2$y2",

g23"
y

!x2$y2
J1!k!x2$y2",

g31"! g13 ,

g32"! g23 ,

g33"J0!k!x2$y2". !16"

Now, the self-interaction energy U"!(1/2)m•B2 and
superposition allow us to calculate the levitation force on an
arbitrary shape magnet at a distance a above the supercon-
ductor (F"!6U/6a). Using M(r) for the magnetization
pattern and V for its volume one gets the generalization of
Eq. !1"

F"
(0

4)!0
*

dk!
V
d3r!

V
d3r!

#" k3 !1$#2k2!#k
!1$#2k2$#k

e!2ake!k(z$z!)

#'+
i , j

M i!r"gi j!r!r!"M j!r!"( # , !17"

where gi j(r!r!) indicates that the matrix elements must be
evaluated according to Eq. !16" by replacing x→x!x! and
y→y!y!. Notice that volume integration must be per-
formed with the origin of coordinates at the lower end of the
magnet.
By comparing Eqs. !1" and !17" one can see that the ex-

pansion given by Eq. !2" is still valid, F0(a) being the force
between the arbitrary magnet and the completely shielded
superconductor. In fact, such expansion directly depends on
the pre-exponential factor, which is determined by the rela-
tion between Laplace’s and Helmholtz’s equations solutions
in conjoined half-spaces. This result extends to the achieve-
ments of Secs. II and III to problems in which no convenient
coordinate system is allowed by symmetry. In general, the
inversion procedure can be performed in terms of the zero
penetration depth limit F0(a).

V. DISCUSSION AND CONCLUSIONS

An asymptotic method for solving the inverse problem in
the magnetic force microscopy of superconductors has been
proposed. The theory developed forms an alternative to other
models in the search of stable inversion algorithms.
The London penetration depth # is obtained as the

asymptotic value of a power series expansion in terms of the
difference between the experimental data FMFM(a) and the

FIG. 2. Recovered kernel function K(k) for a simulated force vs
distance experiment in the case of a cylindrical magnetic tip !radius
R, length L and R"L-D) and #"0.1D . Open symbols stand for
the modified Laplace inversion method $Eq. !12"% while full sym-
bols correspond to the uncorrected theory $ f"1 in Eq. !12"%. The
solid line is a plot of K(k)"!k2$#!2/k , whereas the dashed line
is only a guide for the eye. The inset shows the inverse Laplace
transform of the simulated force, obtained with a complex variable
based algorithm. In order to avoid distracting powers of 10, the
normalization (0M 2"1 has been used.
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zero penetration depth limit F0(a). Although this is a zero-
dimensional method !one could work at a given distance a0),
it is useful to observe the recovered # as a function of the
distance between the tip and the sample a. This provides a
consistency check, as # should tend to the correct value as a
increases. Notice that the appearance of an asymptotic
series14 is guaranteed by the factor exp(!2ak) in the integral
representation of F $see Eq. !1"%.
It should be noted that the asymptotic expansion comes

from a standard power series inversion technique, allowed by
the knowledge of F0(a) regardless the symmetry of the
problem. In fact, the theory has been extended to situations
in which both the shape of the magnet and magnetization
pattern are completely arbitrary. F0(a) can be computed if
the magnetization pattern of the tip is known and we give the
results for several customary tips under axisymmetry as-
sumption. Nevertheless, an assessment of the computation
can be made by experimental means. It can be either inter-
preted as the repulsion force between the tip and a perfectly
diamagnetic plane or the attraction force between the tip and
an infinitely permeable plane. Thus, one could use a super-
conducting film in a setup in which # can be neglected or a
high permeability material for calibration purposes. Addi-
tionally, if the zero penetration depth limit is known one can
use it as a test against irregularities in surface topography or
inhomogeneous penetration depth.
The validity of our theory has been checked for a wide

range of values of # , which was successfully recovered with
a few terms for simulated experiments in analytically trac-
table situations. Moreover, the asymptotic theory provides a
practical method for real data with the concomitant noise.
This point has been checked for artificially corrupted data
which were directly fed into the algorithm. This seems an
advantage respect to LIM methods in which preprocessing
smoothing steps can be seldom eluded.
The zero penetration depth limit F0(a) has also permitted

an extension of the Laplace inversion method to situations in
which the dipole approximation is not valid. Thus, we pro-
pose a modified model readily applicable when # is a con-
stant and which incorporates L !1$F0(a)% . We want to men-
tion here that complex variable inversion of the Laplace
transform by means of Bromwich integral provides a robust
numerical method. This method has been preferred for simu-

lations, as the analytical continuation of F(a) is straightfor-
ward. At least, this is a convenient tool at the theoretical
level, because of the difficulties inherent to real variable
based inversion methods.
We have shown the advantages of incorporating F0(a) to

the inversion problem: !i" this function allows an asymptotic
method which gives an alternative to the delicate task of
Laplace inversion and !ii" it is also a key for correcting
Laplace inversion methods when # is a constant. As forth-
coming research, it would be advisable to extend this con-
cept to situations in which # is depth dependent and one is
concerned with the unavoidable range of small distances be-
tween the tip and the superconductor. This region cannot be
neglected as it provides the higher experimental resolution.
In particular, recall that Laplace transform inversion is intrin-
sically unstable and tiny uncertainties in F(a) may result in
an important degradation of L !1$F(a)%(k).
The results of this work can be expeditiously applied to

the determination of the temperature dependence of the pen-
etration depth in superconductors by means of low tempera-
ture MFM. # is assumed to be constant along the thickness
of the sample s, which has been considered infinite. In fact,
this is a very good approximation, excepting very thin films
in which s(# .17 On the other hand, lateral variations can be
detected over distances below 1 (m. The infinite supercon-
ductor assumption of our calculations relies thus on having
homogeneous areas well over 1 (m2.
Finally, we want to remark that the recovery of #(T) is of

great interest as it allows us to get insight into the basic
physics of high-Tc superconductors. This quantity provides
useful information on the pairing wave function. Consensus
has not yet developed about the nature of the superconduct-
ing state in these compounds. Allegedly, an inversion theory
such as the one presented here, which allows unambiguous
recovery of # from physical observables should be at our
disposal.
Note added in proof. We recently became aware of a

paper18 that should be mentioned here for completeness.
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