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Inverse magnetic force microscopy of superconducting thin films
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The recovery of the London penetration depthl from magnetic force microscopy~MFM! data is described
in the case of finite-thickness superconductors. The thickness of the superconductorb can either be treated as
available data or as an additional unknown. Specifically, we show that the problem of recovering the pair (l,b)
from experimental data is well posed and we give proof of the uniqueness. No assumption is made on the
symmetry of the stray field and problems with spatially extended tips of arbitrary magnetization patterns can be
treated. With the inclusion of a complex penetration depth the theory is extended toforce gradient detection
modes, in which the MFM tip is oscillated at a drive frequencyvd . For such cases, the customary methods of
analysis have been revised, with the inclusion of energy transfer between the sample and the tip. We show that
both the penetration depthl and the normal fluid conductivitysnf can be recovered.

DOI: 10.1103/PhysRevB.63.094502 PACS number~s!: 74.20.De, 74.25.Nf, 07.79.Pk, 02.30.2f
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I. INTRODUCTION

Since the early days of superconductivity, much attent
has been paid to the determination of the penetration d
l. In particular, the temperature dependence of this quan
l(T) gives information on the density of superconducti
electronsns. For instance, recall that in the London theoryns
may be operationally defined in terms of the carriers eff
tive mass and charge asm0l25ms/nsqs

2 . On the other hand
in the context of the BCS theory, and based on a two-fl
picture, the decrease of the superfluid densityns with tem-
perature results from the flow of normal fluid quasiparticl
In turn, the spectrum of these excitations strongly depe
on the gap symmetry.1 Thus, the measurement ofl(T) al-
lows the underlying microscopic theories to be explored
renewed interest on such measurements has arisen wit
discovery of high-Tc superconductors, for whichd-wave
pairing has been strongly suspected2 and now seems to b
convincingly established from scanning tunneling micro
copy measurements.3

In the last decade, a new promising technique, the m
netic force microscopy4,5 ~MFM! has been applied to supe
conductors, which offers the advantage of probingl within
very small areas of the sample. This overcomes the diffic
ties associated to surface imperfections and inhomogene
that can be hardly avoided in these materials. From the
perimental point of view this technique features a more a
more versatile operations.6 However, some open question
still remain concerning the interpretation of measured d
especially in the realm of quantitative MFM~see Refs. 7 and
8 and the references therein that contain a thorough gathe
of the state of the art!. Essentially, it can be affirmed that on
can seldomly usel as a fit parameter for the experimen
On the contrary, due to the lack of complimentary inform
tion, one must deal with fundamental inversion procedu
In this sense, the ignorance of the magnetization function
the tip M (r ) or a nonhomogeneous penetration depthl(z)
has been already been incorporated into the theory in
aforementioned works and appropriate mathematical tr
ments have been devised. Nevertheless, only some simp
systems have been theoretically considered at present. In
0163-1829/2001/63~9!/094502~11!/$15.00 63 0945
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ticular, recall that one must assume asuperconducting half-
spacefor l to be the only intrinsic property, which can thu
be determined by means of MFM. On the contrary, the av
able methods are questionable if other length scales
present in the problem. Along this line we should menti
that a recent work9 deals with the inverse MFM of a supe
conducting sphere, thus incorporating a finite size of
sample.

From the practical point of view, the very important sit
ation of MFM for superconducting thin films still require
theoretical consideration. This case involves a magnetic
above a superconducting slab of thicknessb comparable to
l. Naturally, the magnetic force will then depend on both t
scalesl andb. The topics addressed in this work will be th
forward and inverse problems in such cases. In particular,
will show that one can uniquely determinel, even in the
cases in whichb is an additional unknown. Moreover, a pre
scription on the recoverability ofb from such measurement
will also be given, thus allowing a nondestructive evaluati
of the film thickness. Additionally, we shall focus on th
analysis ofac measurements, for which an additional length
scale is involved: theskin depthof normal-fluid excitations.
For such measurements, we show that the customary m
ods of force gradient detection modesmust be revised.

We also wish to mention that a wealth of phenome
related to the penetration depth in very thin samples1 have
been disregarded in this work. In particular, one should c
sider further restrictions when the thicknessb shrinks to val-
ues similar to the other fundamental superconducting len
j ~coherence length!. This geometrical restriction on th
wave-packet size leads to a weakened superconductivity
thus, to an increased effective penetration depth. Con
quently, the present work extends the previous knowledg
the rangej!b,l, otherwise relevant in important exper
mental conditions.

In view of the above exposition, we can define the sco
of the theory developed in this paper. Our results can
expeditiously applied to MFM experiments on type-II supe
conducting films in the Meissner state. To be specific,
would like to mention two systems. For the convention
NbTi one has the Ginzburg-Landau limits at zero tempe
©2001 The American Physical Society02-1
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ture:lNbTi(0)5300 nm andjNbTi(0)54 nm. For the high-
Tc compound YBaCuO one has in-plane value
lYBaCuO,ab(0)530 nm, jYBaCuO,ab(0)53 nm; and along
the c axis:lYBaCuO,c(0)5200 nm, jYBaCuO,c(0)50.4 nm.
On the other hand, film thickness of several tens of nano
eters is routinely produced.

The paper is organized as follows. Section II is devoted
the forward problem of obtaining the force between a sup
conducting slab and a magnetic tip of arbitrary magneti
tion pattern and shape. Some related topics such as th
sessment of the magnetic field lines for such an arrangem
are also discussed. In Sec. III we study the inversion prob
of the recoverability ofl ~and eventuallyb) from experi-
mental data. Section IV includes the extension of the the
to force gradient detection modes~ac regime! that provide a
higher experimental resolution but involve new physical p
nomena. Finally, a discussion is presented~Sec. V! on the
implications of this work and the realm of the previous
developedhalf-space geometrymodels.

II. FORWARD PROBLEM

In this section we will derive expressions for th
magnetic-field inductionB arising when a magnetic tip i
placed at rest above a superconducting slab of finite th
ness. Magnetostatic conditions are assumed and, thus
spatial dependenceB(r ) can be determined by:~i! the rela-
tion B5m0H, valid for empty space and for the superco
ductor in the absence of demagnetizing effects,~ii ! Ampère’s
law ¹3H5J, ~iii ! the London equations@A52(m0l2)J in
compact form#, and ~iv! appropriate boundary conditions
the interfaces.

First, we will concentrate on the simplified situation of
magnetic dipole at point (0,0,a) above the superconducto
and components (mx ,my ,mz) ~see Fig. 1!. The magnetic-
field induction will be written in the customary form

B~r !5H B1~r !1B2~r ! z>0,

B3~r ! 2b<z<0,

B4~r ! z<2b,

~1!

where B1(r ) is the direct contribution from the magnet
dipole,B2(r ) is the induced field above the superconduct

FIG. 1. Sketch of the arrangement considered in this work
magnetic tip is placed at a distancea above a superconducting sla
of thicknessb. In this picture, the tip is represented by a magne
momentm at an angleu respective to the normal axis.
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:

-

o
r-
-
as-
nt
m

ry

-

k-
the

-

,

B3(r ) is the field penetrating inside the superconductor a
B4(r ) denotes the field beyond the superconductor. Follo
ing thescatteringpicture that can be associated to this pro
lem, analogous to some wave-function tunneling throug
potential barrier, these fields will be named afterincident
field (B1), reflected field(B2), penetrating field(B3), and
transmitted field(B4).

A. Incident field

The starting point will be the expansion ofB1(r ) in terms
of cylinder ~Bessel! functions in order to make the symmetr
properties of the stray field stand out. This can be acco
plished by using the customary form for the magnetic ind
tion outside the dipole:

B15
m0

4p

3n~n•m!2m

ur 8u3
, ~2!

wheren is a unit vector in the direction of the field poin
r 8[(x,y,z2a), together with the identity10

1

Ar21z2
5E

0

`

dk e2kuzuJ0~kr!. ~3!

Here and throughout,Jn denotes the Bessel function ofnth
order of the first kind.

Then, accounting for the recurrence relations of Bes
functions, one can express

B1i
5

m0

4pE0

`

dkFk2e2kua2zuS (
j

Gi j mj D G , ~4!

where Latin indices indicate Cartesian components and
matrix elementsGi j are defined as (Gi j 5Gji )

G1152
1

2
J0~kAx21y2!1

x22y2

2~x21y2!
J2~kAx21y2!,

G125
xy

x21y2
J2~kAx21y2!,

G1352
x

Ax21y2
J1~kAx21y2!,

G2252
1

2
J0~kAx21y2!1

y22x2

2~x21y2!
J2~kAx21y2!,

G2352
y

Ax21y2
J1~kAx21y2!,

G335J0~kAx21y2!. ~5!

These elements have actually been obtained under th
striction ua2zu5a2z, which holds in the regiona.z where
the boundary conditions will be imposed.
2-2
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INVERSE MAGNETIC FORCE MICROSCOPY OF . . . PHYSICAL REVIEW B 63 094502
B. Reflected, penetrating, and transmitted fields

Next, B2 , B3, andB4 can be determined by means of th
physical laws mentioned at the beginning of this secti
When combining them with thesolenoidalcharacter ofB,
one gets the governing differential equations

¹2B250,

¹2B35~1/l2!B3 ,

¹2B450. ~6!

The solutions of these equations~Laplace’s and Helmholtz’s!
can be expanded in cylindrical coordinates.11 By comparison
with the symmetry properties of the incident field, we c
use the following forms for the reflected, penetrating, a
transmitted fields:

B2i
5

m0

4pE0

`

dkFC2xy
~k!e2k(a1z)k2S (

j
Gi j mj D

i 51,2
G ,

~7a!

B2i
5

m0

4pE0

`

dkFC2z
~k!e2k(a1z)k2S (

j
Gi j mj D

i 53
G ,

~7b!

B3i
5

m0

4pE0

`

dkH @C3xy

1 ~k!egz

1C3xy

2 ~k!e2gz#e2kak2S (
j

Gi j mj D
i 51,2

J , ~7c!

B3i
5

m0

4pE0

`

dkH @C3z

1~k!egz

1C3z

2~k!e2gz#e2kak2S (
j

Gi j mj D
i 53

J , ~7d!

B4i
5

m0

4pE0

`

dkFC4xy
~k!e2k(a2z2b)k2S (

j
Gi j mj D

i 51,2
G ,

~7e!

B4i
5

m0

4pE0

`

dkFC4z
~k!e2k(a2z2b)k2S (

j
Gi j mj D

i 53
G ,

~7f!

where we have introducedg[Ak211/l2.
We note in passing that mathematically valid, but div

gent solutions for the reflected and transmitted fields h
been excluded.

The problem will be eventually closed after a brief d
cussion on the boundary conditions, which allow the coe
cientsC(k) to be determined. Admissible fieldsB are par-
ticular solutions of Laplace’s and Helmholtz’s equations t
should hold continuous components and continuous nor
derivatives at the interfaces. These properties follow fr
the solenoidality of the field and from the finite valuedne
09450
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of l. It is simple to show that, calling on the mentione
conditions at the interfaces (z50,z52b), one gets

C2z
52D~g22k2!~12e22gb!,

C3z

152kD~g1k!,

C3z

252kD~g2k!e22gb,

C4z
54kgDe2gb, ~8!

where we have usedD51/@(g1k)22(g2k)2e22gb#.
The coefficientsCxy will be determined invoking the con

tinuity of the field and the conditionsC2xy
52C2z

,C4xy

5C4z
that follow from¹•B50 when comparingB2 andB4

with B1. Then, we obtain

C3xy

1 52gD~g1k!

C3xy

2 522gD~g2k!e22gb.

These results have been compared with the vector po
tial oriented predictions of Refs. 12 and 13. Our generali
tion reduces to the particular configurations considered th
in the appropriate limits.

Further confirmation of the orderliness of our issue can
obtained by inspection of the predicted magnetic induct
pattern under particular conditions. In regard to this, Fig
displays the effect of a decreasing value ofl/b on the mag-
netic induction field lines when a magnetic dipole is held
the vicinity of a superconducting slab at a small angleu
55° with respect to the normal axis. These lines have b
obtained by numerical integration in a polar coordinate s
tem and using a Runge-Kutta algorithm. Observe the c
tinuous deformation of the dipole lobes toward a quadrup
pattern for small values ofl/b. Such a final pattern could b
simulated by superimposing an image dipole to the incid
field lines.

C. Magnetic force

In the approximation of a magnetic dipole ti
(mx ,my ,mz) at point (0,0,a), the self-interaction energyU
52(1/2)m•B2 allows a straightforward calculation of th
vertical magnetic forceFz52]aU. Starting with Eqs.~7a!
and ~7b!, and observing the limiting values of elementsGi j
asx,y→0, we have

Fz5
m0

8pE0

`

dk C2xy
~k!e22akk3~m21mz

2!, ~9!

wherem25( imi
2 . This expression is consistent with the r

sults obtained in Ref. 12.
The generalization to problems with spatially extend

tips of an arbitrary magnetization pattern follows calling
superposition. Then, usingM (r ) for the magnetization func-
tion andV for the volume of the tip, one gets
2-3
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Fz~a!5
m0

4pE0

`

dkE
V
d3rE

V
d3r 8H k3C2xy

~k!e22ake2k(z1z8)

3F(
i , j

M i~r !gi j ~r2r 8!M j~r 8!G J , ~10!

where the matrix elementsgi j are defined as

gi j 5H Gi j iÞ3,

2Gi j i 53,

andgi j (r2r 8) indicates that the elements must be evalua
according to Eq.~5! by replacingx→x2x8 and y→y2y8.
Notice that volume integration must be performed with t

FIG. 2. Magnetic field lines for a point dipole above a sup
conducting slab under various conditions. In all cases, a tiltu55°
of the magnetic moment respective to the axis has been assu
The three panels show the field lines ofB on the symmetry plane
~defined bym and the axis! and have been calculated under t
conditiona5b. Notice that the casel/b50.25 has been scaled t
50% for clarity.
09450
d

origin of coordinates at the lower end of the magnet, wh
is assumed to rest at a distancea above the surface of the
superconducting film.

III. INVERSE PROBLEM

Below we shall describe a method for recoveringl from
the measured force in a magnetic force microscope, wh
relies on the Laplace transform inversion of the experimen
data. This method was already applied for the case of h
space geometry.7,8 In the present paper, special emphasis w
be put on the uniqueness of the recoveredl, both for the
cases in which the thickness of the superconductor is av
able data or one must treat it as an additional unkno
Accordingly, we will classify the problem asscalar inver-
sion, if l is the unknown, orvector inversionif one must
solve for the pair~l,b!.

Following the ideas of Refs. 7 and 8, the starting po
will be to notice that the zero penetration depth limit of for
F0(a) can be written as

F0~a!5
m0

4p
LH EV

d3rE
V
d3r 8Fk83e2k8(z1z8)

3S (
i , j

M i~r !gi j ~r2r 8!M j~r 8! D G
k/2

J ~a!,

~11!

where the subscriptk/2 indicates that the quantity betwee
brackets must be evaluated atk85k/2, andL stands for the
Laplace transform operatorL@ f (k)#(a)5* f (k)exp(2ak)dk.
Then, Eq.~10! admits the following expression in terms o
the inverse operatorL 21:

L 21@Fz~a!#~k!5C2xy
~k/2!L 21@F0~a!#~k!. ~12!

Recalling thatC2xy
depends onl and b, one can use the

previous equation in order to devise an operational rela
involving these quantities and experimental or computa
data. In fact,

C2xy
~k/2!5

L 21@Fz~a!#~k!

L 21@F0~a!#~k!
[L Fz/0

21 ~k!, ~13!

and this quantity is the ratio between the actual and the l
iting force inverse Laplace transforms. Next, and for furth
development, we rewriteC2xy

(k) in a manner that will expe-
dite the evaluation of the superconductor finite-thickness
fluence. First, we defineC`[(g2k)/(g1k), which is the
limiting value of C2xy

for b/l→`. Then, we get

C2xy
~k!5C`

12e2bk(C`11)/(C`21)

12C`
2 e2bk(C`11)/(C`21)

. ~14!

At this point, it is instructive to inspect the properties
the inverse Laplace transforms of simulated force meas
ments. This is done in Fig. 3, which displays the functio
L 21@Fz(a)#(k) and L Fz/0

21 (k) for increasing values of the

-

ed.
2-4
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INVERSE MAGNETIC FORCE MICROSCOPY OF . . . PHYSICAL REVIEW B 63 094502
ratio b/l in the case of a cylindrical tip. It is remarkable tha
for a given value ofl, a universal profile is reached as so
asb/l*2. This is an assessment of the validity of thehalf-
space geometrymodels, which remain useful even far fro
the limit in which they were obtained.

The question now is how to extractl ~and perhapsb)
from the available information. For this purpose, it is conv
nient to start with the expression

f ~k;l,b!5L Fz/0

21 ~k!2C2xy
~k/2!50. ~15!

Then, one must distinguish between the cases in which e
l or the pair (l,b) is the unknown.

A. Scalar inversion

Assume, at first, that the thickness of the supercondu
b can be measured by other means and therefore onlyl is to
be recovered from the MFM data. One can proceed as
lows. ~i! Consider the associated coefficientC` as an un-
known and solve for it (C`,R) by means of the experimenta
data and Eq.~15! @upon substitution ofC2xy

by means of Eq.
~14!#, and~ii ! compute the recovered penetration depth a

lR~k!5
1

k

12C`,R~k/2!

AC`,R~k/2!
. ~16!

For this purpose, a numerical scheme has been tested
allows a very efficient computation ofC`,R in terms ofL Fz/0

21 .

The algorithm relies on linear and quadratic interpolat
and bisection14 for finding the zeroes of a real function@in
our casef (k;l,b), wherek andb are given#. Typically, five

FIG. 3. Inverse Laplace transforms for simulated force ver
distance measurements in the case of a cylindrical magnetic
~radius R, length L, and R5L[D) and l50.1D. The different
lines correspond to various values of the ratiob/l as shown in the
inset. The dotted continuous line holds the zero penetration d
limit L 21@F0(a)#(k) for the present geometry. In order to avo
distracting powers of 10, the normalizationm0M251 has been
used. The inset shows the corresponding ratio functionsL 21Fz/0(k)
under the same plot conventions.
09450
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function evaluations or less are enough to solve forC`,R,
which provides a low-cost method for computingl with a
high precision.

Observe that the wave numberk has been treated as
parameter in the previous paragraph. In fact, a plot oflR vs
k is recommended in order to check for consistency.

As a concluding remark of this subsection we must m
tion that existence and uniqueness are guaranteed for s
inversion. On the one hand, existence is obvious by defi
tion of the problem, provided the physical system is d
scribed by our set of equations. On the other hand, con
ering l as implicitly defined by the equation

f ~k;l,b!50,

the issue of uniqueness relies on the condition

] f

]l
Þ0 ;~k.0;l.0,b.0!,

which one can easily verify to hold.
Notice that, for the previous statement, we have implici

considered that the inverse Laplace transform ratioL Fz/0

21 is

unique. In fact, this can be assumed from the physical p
of view, following Lerch’s theorem11 that L 21 is specified
except for a null functionN(t), i.e., *N(t)dt50 when inte-
grated overany domain within the real positive axis.

B. Vector inversion

Here, we study the inversion process for the case of
known penetration depth and sample thickness. As bef
we assume thatL Fz/0

21 (k) is known for a collection of values

of the wave numberk. On choosing any couple of nontrivia
valuesk1Þk2, one can pose the following nonlinear syste
of equations:

L Fz/0

21 ~k1!2C2xy
~k1/2!50,

s
tip

th

FIG. 4. Result of a vector inversion for the case of a simula
experiment with (l,b)5(0.2,0.1).lR andbR stand for the recov-
ered values of the penetration depth and thickness, and are pl
as a function of the wave-number ratiot5k2 /k1. In this case, we
have chosenk151 ~see text for details!. The same cylindrical tip as
in Fig. 3 was considered for the simulation.
2-5
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L Fz/0

21 ~k2!2C2xy
~k2/2!50, ~17!

with unknownsl and b, which become explicit when un
folding C2xy

by means of Eq.~14!. For brevity, we will re-
write it in the form

f 1~k;l,b!50,

f 2~k;l,b!50, ~18!

where k[k1 and f 2(k;l,b)5 f 1(t k;l,b), provided t
5k2 /k1. This nonlinear system has been solved numeric
for faked MFM data by means of a secant algorithm.15 The
method has been tested for a variety of values for the qu
tities involved. As an example, Fig. 4 displays the reco
struction ofl and b for a simulated experiment. There,k1
has been fixed andk2 is increased by means of the parame
t ~see above!. It is apparent that the plot of the recovere
quantities versust is convenient to check for consistenc
although a single pair (k1 ,k2) would be enough.

Finally, we want to mention that forvector inversion, ex-
istence is also trivial, whereas one can give proof of
uniqueness by a somewhat elaborate argument.16

IV. ac REGIME

It is well known that a significantly better sensitivity t
long-range forces can be achieved by oscillating the flex
cantilever to which the MFM tip is attached. Specifical
one measures changes in the resonant frequency, asso
to the background magnetic force.17 Therefore,ac operation
modesshould be taken into consideration for supercondu
ing samples. However, as we shall see below, the topic
serves an especial discussion because a number of new
nomena will occur. This was previously discussed
Coffey18 with the coupling of all electromagnetic fields, in
cluding a normal-fluid conductivitysnf in the supercon-
ductor, and supposing thehalf-spacegeometry. Additionally,
this was done in the linear regime, with all fields varying
exp(ivt) and assuming as known, constantsnf . Here, we
will perform a somewhat extensive analysis, with the inc
sion of phase lags for the fields. Such formalism will perm
a further link to the experimental quantities. In particular,
show that bothl and snf may be recovered if one fully
exploits the measurements, either inhalf-spaceor finite-
thicknessconfigurations.

It will be shown that the complete treatment ofac MFM
of superconductors requires a restatement of conventi
methods. In particular, the appearance of losses, which
usually disregarded in theforce gradient detection modes,5

may strongly influence the recorded signal in the case
superconductors. This topic has been fully covered for ot
magnetic materials and is the basis of the so-calledmagnetic
dissipation force microscopyin which a reduction in the
quality factor of the cantilever is detected.19

For the sake of clarity, we divide this section into thr
parts. First, we shall describe the relevant experimental
tails of ac modesand the inclusion of lossy phenomen
Then, we will concentrate on the electromagnetic field eq
tions under steady-state conditions~forward problem!. Fi-
09450
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nally, the correlation between the measured signal and
physical parameters will be established~inverse problem!.
Just for simplicity, this section is developed in the point d
pole approximation for the magnetic tip. However, the ge
eralization to finite-size tips in the manner of Eq.~10! is
straightforward.

A. ac magnetic force microscopy with losses

The vibrational properties of force microscopy cantileve
are customary described according to the behavior o
damped harmonic oscillator. In particular, when such a s
tem is driven by an oscillating forceF5F0cos(vdt), the tip
displacement may be written asz5A cos(vdt2d), with the
usual Lorentzian form of the amplitude

A5A0

v0 /vd

A11Q2~v0 /vd2vd /v0!2
,

and the phase shift given by

tand5
1/Q

v0 /vd2vd /v0
.

Here, we have introduced theresonance frequencyof the
systemv0 and thequality factor Q. Recall the relation to the
damping constant Q5v0 /G.

Now, if one assumes that the system is driven unde
simultaneous external actionF, the compliance of the canti
lever will be changed, yielding modified values for the am
plitude A8 and phase shiftd8. Under certain conditions, on
can reconstructF in terms ofA8 andd8. Here, we will as-
sume small vibrations of the tip and, thus, approximateF as
a linear function. However, as we shall see later, the inc
sion of losses requires aretardedexpression of the kind

F~ t !5Kz~ t2t r!, ~19!

wherez stands for the tip’s displacement in respect to eq
librium, t r indicates the time delay, andK plays the role of a
spring constant. Then, if one defines the phase lagw
[vdtr , the equation of motion becomes

z̈1S G1
K

me

sinw

vd
D ż1S v0

22
K

me
cosw D z

5~F0 /me!cos~vdt !, ~20!

whereme is the effective mass of the cantilever. It is appa
ent that a steady-state vibration will occur, but with shift
resonance frequencyv08 and damping constantG8 ~or quality
factorQ8). Notice that, for the casew50 ~external action in
phase with the tip’s displacement!, we getG85G and v08

2

5v0
2(12]zF/mev0

2). These expressions correspond to t
typical assumption inforce gradient detection modesthat the
tip-sample interaction does not induce an energy transfe

B. Forward ac problem

Thermodynamically consistent field equations for theac
problem can be derived by means of thetwo-fluid model,
2-6
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which assumes that the full current density flowing in t
superconducting state,J, incorporates the normal curren
densityJn maintained by unpaired electrons and the sup
current densityJs, so thatJ5Jn1Js.1 Recall that this is a
good approximation well below the energy gap frequenc
(.1 THz). Recall also that, below such frequencies
normal-fluid conduction may be modeled by a nondispers
ohmic relationJn5snf(T)E, where the normal-fluid conduc
tivity has been introduced. On the other hand, the comb
tion of London equations @E5] t(m0l2)Js and ¹
3(m0l2)Js52B# with Faraday’s law (¹3E52] tB) and
Ampère’s law (¹3B5m0J) produces the following govern
ing equation for the magnetic field within the superconduc

¹2B5~1/l2!B1m0snfḂ, ~21!

where the notationḂ[] tB has been introduced for brevity
We are thus ready to solve the time-dependent prob

that arises when the magnetic tip is harmonically driv
Consider a vertical vibration of the tip that can be describ
as a small ripple around a given tip-sample distancea, i.e.,
a85a1A8cos(vdt), with A8!a. In such a case, and upo
replacinga→a8 in Eq. ~4!, the time-dependent incident fiel
components may be approximated as

B1i
5

m0

4pE0

`

dkFk2e2k(a2z)S (
j

Gi j mj D G
2

m0

4p
A8cos~vdt !E

0

`

dkFk3e2k(a2z)S (
j

Gi j mj D G
1

m0

8p
A82cos2~vdt !E

0

`

dkFk4e2k(a2z)S (
j

Gi j mj D G ,
~22!

which we shall reexpress as

B1i
~ t !5B1i

dc1B1i

vd~ t !1B1i

2vd~ t !,

indicating that thedc andac parts of the applied field hav
been detached and the latter grouped in terms of their Fou
components. Notice that we must keep a second-order
proximation because, eventually, a linear approximation
the force is desired.

Next, we write the reflected, penetrating, and transmit
fields as

B2i
~ t !5B2i

dc1B2i

vd~ t !1B2i

2vd~ t !,

B3i
~ t !5B3i

dc1B3i

vd~ t !1B3i

2vd~ t !,

B4i
~ t !5B4i

dc1B4i

vd~ t !1B4i

2vd~ t !.

Hereafter, we will take advantage of the sinusoidal stea
state conditions and use the customary notation of com
numbers. Thus, we can represent the fields in the formB*
5B̃ exp(ivt). The complex amplitudeB̃ allows a possible
phase offset to be absorbed, which arises when one reco
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the physical quantityBac5Re@B* #[B0cos(vt1F). In our
case, the displacement of the tip will set the time scale
erence and, thus, any phase shift will be referred to
quantity. On the other hand,v will take the valuesvd and
2vd , corresponding to the mentioned Fourier compone
Then, it is simple to verify that, on using the time
independent solutions of Sec. II B forB2i

dc ,B3i

dc andB4i

dc , one

gets the following field equations:

¹2B̃2
v50,

¹2B̃3
v5@1/l21 ivm0snf#B̃3

v ,

¹2B̃4
v50, ~23!

for the complex amplitudes associated to the reflected, p
etrating, and transmitted fields. This system takes the form
Eq. ~6! upon defining acomplex penetration depththrough

l̃v
225l2212idnf,v

22 ,

where we have used the standard normal-fluidskin depth
dnf,v[A2/vm0snf. Again v can take the valuesvd and
2vd .

Next, one can impose the boundary conditions in the sa
manner as before~recall that they must hold for all values o
t! and solve for the field components. In particular, the
flected magnetic field may be written as

B2i

dc5
m0

4pE0

`

dkFC2xy
k2e2k(a1z)S (

j
Gi j mj D G

1
m0

16p
A82E

0

`

dkFC2xy
k4e2k(a1z)S (

j
Gi j mj D G

~24!

and

B̃2i

vd52
m0

4p
A8E

0

`

dkF C̃2xy

vd ~k!k3e2k(a1z)S (
j

Gi j mj D G ,
B̃2i

2vd5
m0

16p
A82E

0

`

dkF C̃2xy

2vd~k!k4e2k(a1z)S (
j

Gi j mj D G
~25!

for i 51,2. Here,C̃2xy

v must be obtained from thedc counter-

part by replacingl→l̃v . On the other hand, notice that, i
general, a phase lag betweenB2i

ac andB1i

ac will appear.

Eventually, one can derive the time-dependent force t
arises when the tip is oscillated. In fact, in the dipole lim
the instantaneous value of this quantity may be calculate
Fz(t)52]a8$2(1/2)m•B2@a8(t)#%. However, it will prove
to be convenient to write it in the formFz(t)5Fz

dc1Fz
ac(t).

On using the linear approximation we get
2-7
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Fz
dc5

m0

16pE0

`

dk@C2xy
k3e22ka~m21mz

2!#

1
m0

16pE0

`

dk@ uC̃2xy

vd uk3e22ka~m21mz
2!#coswvd

~26!

and

Fz
ac.2

m0

16pE0

`

dk@C2xy
k4e22ka~m21mz

2!#A8cos~vdt !

2
m0

8pE0

`

dk@ uC̃2xy

vd uk4e22ka~m21mz
2!#A8cos~vdt

1wvd!2
m0

16pE0

`

dk@ uC̃2xy

2vduk4e22ka~m21mz
2!#A8

3cos~vdt1w2vd!, ~27!

where the definitionC̃2xy

v [uC̃2xy

v uexp(iwv) has been used

The approximation involved corresponds to considering
lowest-order correction for the incorporation of losses to
theory, i.e., takingwv as a small parameter. Physically, th
is attained ifl/dnf,1.

Notice thatFz
dc incorporates both the superconducting a

skin depth diamagnetic terms and that one recovers Eq~9!
when the normal fluid is not present, i.e.,wvd50 and
uC̃2xy

vd u5C2xy
. Notice also that, in such case, theac part of the

force may be used as a linear function with effective spr
constantK5]aFz

dc(a). On the other hand, Eq.~27! may be
written in the form

F̃z52
m0A8

4p E
0

`

dkC̃2xy
~k!e22akk4~m21mz

2!, ~28!

where we have defined

C̃2xy
[

1

4
C2xy

1
1

2
C̃2xy

vd 1
1

4
C̃2xy

2vd.

Eventually, the experimental quantity would be recovered
Fz

ac5Re@ F̃zexp(ivdt)#, which fits the form described by Eq
~19!.

C. Inverse ac problem

We shall now address the topic of recoveringl and snf
from MFM measurements inac modes. First, recall that th
complex amplitude of theac force F̃z5Re@ F̃z#1 i Im@F̃z#
may be experimentally solved by means of the resona
frequency and quality factor changes:

Re@ F̃z#

A8
5K cosw5me~v0

22v08
2!

Im@ F̃z#

A8
5K sinw5mevd~G82G!.
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We call the reader’s attention to the fact that, owing to t
dissipative component of the current, the recorded force
hibits a phase lag respective to the tip’s movement. Acco
ingly, the interpretation ofac modes as a measurement of t
force gradient in terms of the resonant frequency shift is
longer valid. In general, one should also regard the chang
the oscillator quality factor for the problem to be specifie

Several manipulations of the measuredF̃z may be done in
order to obtain the complex penetration depth. Essentia
they are extensions of the dc algorithms to complex va
ables. In order to see how it works, we include the followi
examples.

1. Asymptotic ac method

First, we assume ahalf-space geometryproblem and ap-
ply the asymptotic theory developed in Ref. 8. In fact, t
method relies on power-series reversion, which is prope
defined on the complex plane. Thus, one can just follow
steps taken there. For the sake of simplicity, suppose a p
dipole tip along the normal axis, i.e.,m5(0,0,m). Then, Eq.
~28! leads to

f̃ z[
F̃z

A8
52

m0m2

2p E
0

`

dk@C̃`~k!k4e22ak#, ~29!

where we have usedC̃` for the half-space approximation o
C̃2xy

. Actually, this factor is the superposition of three term

C̃`5C`/41C̃`
vd/21C̃`

2vd/4. Associated to each term, on
can develop an asymptotic series approach as in the m
tioned reference. On gathering them we obtain the se
expansion

f̃ z5F081
1

4 (
n51

` S 2
1

2D n

an

dnF08

dan
~ln12l̃vd

n 1l̃2vd

n !.

~30!

FIG. 5. Recovered penetration depthl and skin depthdnf for a
simulated force versus distance experiment inac operation. A
point-dipole tip and half-space geometry were assumed and

complex penetration depthl̃ was derived by means of Eq.~32!. The
simulation was made for (l,dnf)5(0.1,0.5) under the normaliza
tion m0m251
2-8



ing

e
ra
t
s
ve

a

rs

ite

th

ta.

a
e

y

s in
ious
he
n-

INVERSE MAGNETIC FORCE MICROSCOPY OF . . . PHYSICAL REVIEW B 63 094502
Here,F08(a) stands for the derivative of the perfect screen
limit of the dc force andan is a numerical coefficient.8 Next,
we introduce the complex penetration depthl̃:

l̃[l@12 i ~l/dnf,vd
!2#,

in terms of which

f̃ z.F081 (
n51

` S 2
1

2D n

an

dnF08

dan
l̃n. ~31!

It is apparent that one can getl̃ from the inverse series

l̃5 (
n51

`

c̃n~ f̃ z2F08!n, ~32!

where the coefficientsc̃n may be obtained from theirdc
counterpart8 just by replacingF0

(n)→F0
(n11) .

The asymptotic nature of the method for complex valu
l̃ is illustrated in Fig. 5. We display the recovered penet
tion depthl and skin depthdnf from a simulated experimen
in which synthetic values off̃ z(a) were obtained by mean
of Eq. ~29!. The inverse series was approximated with fi
terms. Notice that the approximationln12l̃vd

n 1l̃2vd

n .l̃n

produces a tiny reduction in the recovered values for the c
l/dnf50.2.

2. Laplace inversion ac method: finite-thickness superconducto

To close this section, we address the problem of fin
thickness superconductors in theac regime. It will be shown
that a straightforward extension of thescalar inversion
method to complex variables can be established.

Assume a situation in which the sample thicknessb can-
not be neglected but is available. Let us also restrict
~without loss of generality! to the case of a point-dipole tip
(0,0,m). Then, from Eq.~28! one gets

FIG. 6. Recovered penetration depthl and skin depthdnf in a
simulatedac MFM experiment with an oscillating dipole tip over
finite-thickness superconductor (b50.3). The simulation was mad
for (l,dnf)5(0.1,0.5) under the normalizationm0m251. l anddnf

are plotted versus the wave numberk and have been obtained b
means of Eq.~35!.
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f̃ z52
m0m2

64p
L@k4C̃2xy

~k/2!#~a!, ~33!

whence

C̃2xy
~k/2!52

64p

m0m2k4
L 21@ f̃ z~a!#~k!. ~34!

This equation may be used to solve forl anddnf . The quan-
tity f̃ z is supposed to be available from experimental da
Next, one can calculate the associated valueC̃`(k/2) from

C̃`

12ebk(C̃`11)/(C̃`21)

12C̃`
2 ebk(C̃`11)/(C̃`21)

1
64p

m0m2k4
L 21@ f̃ z#~k!50,

~35!

FIG. 7. Recovered penetration depthlR by means ofhalf-space
geometrymodels for simulated force versus distance experiment
the case of a cylindrical tip above superconducting slabs of var
relative thicknessb/l. The upper panel displays the results for t
asymptotictheory as a function of the recording distance for a tru
cated inverse series of three terms~see text!. The lower panel cor-
responds to theLaplace inversionmethod andlR is plotted against
the wave numberk ~see text!.
2-9
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which is analogous to Eq.~15! for the dc counterpart. If we
assume again thatl/dnf,1, the complex functionC̃` is re-
lated toC` by the substitutionl→l̃.

Eventually, we are led to the problem of finding the z
roes of a transcendental complex equation. This process
been explored for simulated experiments in whichf̃ z was
obtained by means of Eq.~28!. We have implemented
Müller’s method,20 which was originally developed for poly
nomials but is also used for finding complex zeroes of a
lytic functions. To assess the method we include Fig. 6
which the recovered values ofl and dnf are plotted versus
the wave numberk. As in the previous subsection, the use
the approximate complex penetration depth dependence
duces a small reduction in the recovered values.

V. DISCUSSION AND CONCLUSIONS

Throughout this work we have described the progr
made in the theory for recovering fundamental lengths
superconductivity by means of magnetic force microsco
The main issues have been~i! the inclusion of the thicknes
of the sampleb in the problem of the recovery of the pen
etration depthl and ~ii ! the revision of the standardforce
gradient detectionmodes so as to recoverl and the normal-
fluid skin depthdnf in ac measurements.

Regarding the topic of the finite thickness influence,
have introduced the so-calledscalar and vector inversion
methods, in which eitherl or the pair (l,b) are unknown.
However, this problem deserves some further discuss
which can be stated as the following question: How mu
information can one extract from MFM measurements ab
the pair (l,b)?

As it was previously discussed, the quantitative behav
of force data~and the associated Laplace transforms! is con-
trolled by the parameterb/l. In fact, force data merge a
soon asb/l*2 provided the remaining length scales a
fixed. Thus, one should expect that the recovered penetra
depth by means ofhalf-space geometrymodels can be
trusted if this condition is satisfied, while any informatio
about the film thickness is simultaneously lost. In order
verify this statement, we have performed the inversion
simulated data by blindly using theasymptotic8 andLaplace
inversion7 techniques, despite a finite value ofb/l. Typical
results are shown in Fig. 7 for both approximate metho
This figure permits an answer to be given to the ques
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made above. If one faces the problem of full ignorance ab
the pair (l,b), the application ofhalf-space geometrymod-
els can be used as a first test on the relative value ofb/l. A
nonconstant value of the recovered penetration depthlR as a
function of the recording distancea ~even when augmenting
the number of terms in the series expansion! and as a func-
tion of the wave numberk indicates an inconsistent hypoth
esis, and a vector inversion with initial guess according
b,2l should be tried. On the contrary, if one finds consta
and equal values oflR by means of theasymptoticand
Laplace inversionapproximations, these can be trusted, b
the knowledge ofb is limited to the conditionb.2lR.

Even for the simplest case of scalar inversion, intric
transcendental equations must be solved in order to rec
l from the experimental data. Thus, several numeri
schemes have been explored, which produce efficient ca
lations. In order to assess the convergence to the right ph
cal solution, we give proof of the uniqueness for the involv
inversion problem.

Section IV has been dedicated to theac regime. First, we
have shown that the standard interpretation ofac modes in
MFM must be revised. In particular, we show that ener
losses can be incorporated to the theory. These losses
naturally included as a phase lag between the tip-sample
pulsion force and the displacement of the tip. Then, besid
modified resonance frequency, we predict a quality fac
shift, which can be experimentally solved andl anddnf can
be obtained from the measurements. In fact, several sim
tions have been included in which we show that the corr
values may be recovered under the assumptionl,dnf , typi-
cally valid unless for temperatures extremely close toTc .

Finally, we want to emphasize that all these advance
the theory of inverse MFM are straightforwardly imple
mented regardless of the symmetry of the stray field, i.e.
arbitrary magnetization patternM (r ) over any tip geometry
is allowed, though one must not know the details of th
function for the inversion procedure. In fact, the zero pe
etration depth limit of the repulsion forceF0(a) may be used
as a calibration function, which can be obtained by comp
mentary experiments.
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