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Inverse magnetic force microscopy of superconducting thin films
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The recovery of the London penetration deptlirom magnetic force microscopfMFM) data is described
in the case of finite-thickness superconductors. The thickness of the supercortdcatoeither be treated as
available data or as an additional unknown. Specifically, we show that the problem of recovering thetpair (
from experimental data is well posed and we give proof of the uniqueness. No assumption is made on the
symmetry of the stray field and problems with spatially extended tips of arbitrary magnetization patterns can be
treated. With the inclusion of a complex penetration depth the theory is extendetéogradient detection
modes, in which the MFM tip is oscillated at a drive frequelagy. For such cases, the customary methods of
analysis have been revised, with the inclusion of energy transfer between the sample and the tip. We show that
both the penetration depth and the normal fluid conductivity-; can be recovered.

DOI: 10.1103/PhysRevB.63.094502 PACS nuniber74.20.De, 74.25.Nf, 07.79.Pk, 02.34.

[. INTRODUCTION ticular, recall that one must assumegperconducting half-
spacefor \ to be the only intrinsic property, which can thus
Since the early days of superconductivity, much attentiorbe determined by means of MFM. On the contrary, the avail-
has been paid to the determination of the penetration depthble methods are questionable if other length scales are
\. In particular, the temperature dependence of this quantitpresent in the problem. Along this line we should mention
\(T) gives information on the density of superconductingthat a recent workdeals with the inverse MFM of a super-
electronsg. For instance, recall that in the London theaty  conducting sphere, thus incorporating a finite size of the
may be operationally defined in terms of the carriers effecsample.
tive mass and charge ag\?= mS/nng. On the other hand, From the practical point of view, the very important situ-
in the context of the BCS theory, and based on a two-fluidation of MFM for superconducting thin films still requires
picture, the decrease of the superfluid densitywith tem-  theoretical consideration. This case involves a magnetic tip
perature results from the flow of normal fluid quasiparticles.above a superconducting slab of thicknéssomparable to
In turn, the spectrum of these excitations strongly depends. Naturally, the magnetic force will then depend on both the
on the gap symmetry.Thus, the measurement a{T) al-  scales\ andb. The topics addressed in this work will be the
lows the underlying microscopic theories to be explored. Aforward and inverse problems in such cases. In particular, we
renewed interest on such measurements has arisen with tigll show that one can uniquely determing even in the
discovery of hight, superconductors, for whicld-wave cases in whictb is an additional unknown. Moreover, a pre-
pairing has been strongly suspectemd now seems to be scription on the recoverability df from such measurements
convincingly established from scanning tunneling micros-will also be given, thus allowing a nondestructive evaluation
copy measurements. of the film thickness. Additionally, we shall focus on the
In the last decade, a new promising technique, the maganalysis ofac measurement$or which an additional length
netic force microscogy” (MFM) has been applied to super- scale is involved: thekin depthof normal-fluid excitations.
conductors, which offers the advantage of probingyithin For such measurements, we show that the customary meth-
very small areas of the sample. This overcomes the difficulods offorce gradient detection modesust be revised.
ties associated to surface imperfections and inhomogeneities We also wish to mention that a wealth of phenomena
that can be hardly avoided in these materials. From the exelated to the penetration depth in very thin samplesve
perimental point of view this technique features a more andbeen disregarded in this work. In particular, one should con-
more versatile operatiofsHowever, some open questions sider further restrictions when the thickndsshrinks to val-
still remain concerning the interpretation of measured datajes similar to the other fundamental superconducting length
especially in the realm of quantitative MFidee Refs. 7 and ¢ (coherence lengih This geometrical restriction on the
8 and the references therein that contain a thorough gatheringave-packet size leads to a weakened superconductivity and,
of the state of the artEssentially, it can be affirmed that one thus, to an increased effective penetration depth. Conse-
can seldomly use as a fit parameter for the experiments. quently, the present work extends the previous knowledge to
On the contrary, due to the lack of complimentary informa-the rangeé<b<\, otherwise relevant in important experi-
tion, one must deal with fundamental inversion proceduresmental conditions.
In this sense, the ignorance of the magnetization function of In view of the above exposition, we can define the scope
the tip M(r) or a nonhomogeneous penetration depfh) of the theory developed in this paper. Our results can be
has been already been incorporated into the theory in thexpeditiously applied to MFM experiments on type-ll super-
aforementioned works and appropriate mathematical treasonducting films in the Meissner state. To be specific, we
ments have been devised. Nevertheless, only some simplifieddould like to mention two systems. For the conventional
systems have been theoretically considered at present. In pdtbTi one has the Ginzburg-Landau limits at zero tempera-
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o Bs(r) is the field penetrating inside the superconductor and
L m B,(r) denotes the field beyond the superconductor. Follow-
ﬁ\&( ing thescatteringpicture that can be associated to this prob-
p = . lem, analogous to some wave-function tunneling through a
| 0 potential barrier, these fields will be named aftecident
¢ | field (B,), reflected field(B,), penetrating field(Bs), and

transmitted field B,).

|
| . ,
| A. Incident field

| The starting point will be the expansion Bf(r) in terms

) o of cylinder (Bessel functions in order to make the symmetry
FIG. 1. Sketch of the arrangement considered in this work. Aproperties of the stray field stand out. This can be accom-

"}at?pitic tigbisl plf‘hC.Ed .‘""tta disttham:.at?ove a S“petrcdogd“ai”g Sla? plished by using the customary form for the magnetic induc-
of thicknessb. In this picture, the tip is represented by a magneficjio o\ icide the dipole:

momentm at an angled respective to the normal axis.
ture: N\ pri(0)=300 nm andéy,r(0)=4 nm. For the high- =k w
T. compound YBaCuO one has in-plane values: 4m Ir|3
MvBacuoap(0)=30 NM, &ygacuoan(0)=3 nm; and along
the ¢ axis:\ygacuoc(0)=200 nm, &ygacuoc(0)=0.4 nm.
On the other hand, film thlckness of several tens of hanom-
eters is routinely produced.

The paper is organized as follows. Section Il is devoted to _:f dk e 43,(kp).
the forward problem of obtaining the force between a super- Vp2+z2 Jo
conducting slab and a magnetic tip of arbitrary magnetiza-
tion pattern and shape. Some related topics such as the
sessment of the magnetic field lines for such an arrangemef{der Of the first kind.
are also discussed. In Sec. Il we study the inversion problemy 11€N, accounting for the recurrence refations of Bessel
of the recoverability of (and eventuallyb) from experi-  [UNCtions, one can express
mental data. Section IV includes the extension of the theory

Mo k2e —kla— Z|(E Gljmj)

to force gradient detection modésc regime that provide a By =— dk
higher experimental resolution but involve new physical phe- b4

where Latin indices indicate Cartesian components and the
matrix elementss;; are defined asG;; =G;j;)

@

wheren is a unit vector in the direction of the field point
r'=(x,y,z—a), together with the identify

()

ere and throughout],, denotes the Bessel function oth

4

nomena. Finally, a discussion is present&ac. \j on the
implications of this work and the realm of the previously
developedhalf-space geometrgnodels.

Il. FORWARD PROBLEM Gy=— —Jo(k‘/x +y )+ 2(k\/x +v9),

In this section we will derive expressions for the
magnetic-field inductiorB arising when a magnetic tip is
placed at rest above a superconducting slab of finite thick- Gyo=
ness. Magnetostatic conditions are assumed and, thus, the
spatial dependend®(r) can be determined byi) the rela-
tion B= ugH, valid for empty space and for the supercon- X
ductor in the absence of demagnetizing effeGis Ampere’s Gig=— Ji(kyx2+y?),
law VX H=1J, (iii) the London equationgA= — (uoA?)J in VXEt+y
compact fornj, and (iv) appropriate boundary conditions at

the interfaces. 2

First, we will concentrate on the simplified situation of a - _‘]0(k XEFY) S 2( 24 2(k XEy),
magnetic dipole at point (08) above the superconductor
and componentsnf,,m,,m,) (see Fig. 1 The magnetic-

Jo(kyx2+y?),

field induction will be written in the customary form Gog= — Y J1(KXZFy?),
oy
By(r)+By(r) z=0,
B(r)=14 Ba(r) —b=z=0, (N Gaa=Jo(kyx“+y*). )

Ba(r) z=-b, These elements have actually been obtained under the re-
where By(r) is the direct contribution from the magnetic striction|a—z|=a—z, which holds in the regioa>z where
dipole, B,(r) is the induced field above the superconductor,the boundary conditions will be imposed.
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B. Reflected, penetrating, and transmitted fields of \. It is simple to show that, calling on the mentioned

Next, B,, Bs, andB, can be determined by means of the conditions at the interfacez 0,z= —b), one gets

physical laws mentioned at the beginning of this section.
When combining them with theolenoidalcharacter ofB,
one gets the governing differential equations

Co=—A(Y’~K)(1-e ?"),

C; =2kA(y+k),
V2B,=0 z

_ —2vb
V2B;=(1/\?)B,, =2kA(y—k)e 2",

V2B,=0. (6) Cy,=4kyAe ", (8)

The solutions of these equatiofisaplace’s and Helmholtz)s where we have usefi=1/(y+K)2— (y—k)2e 2]

can be expanded in cylindrical coordinaté®y comparison h fficiont<... wil byd X Y d invoking th

with the symmetry properties of the incident field, we can inuit € g?eth'g'eﬁlld Xér\% thee goenrcri‘:]tnr(])i@lnvz |_n(g: eccon—
use the following forms for the reflected, penetrating, anqI y 2x 27" 4
transmitted fields: =C,, that follow fromV-B=0 when comparm@z and B4

with B;. Then, we obtain

dk Ca, (k)ek(a“)kz(E G”m,) j +_
[ - Cs,,=27A(y+k)

(78

Mo
Bzi_ 4ar

Cs, = —27A(y— kye 27

Bzi—f:; dk{C (k)ek<a+2>k2(EG ) ,

These results have been compared with the vector poten-
(7b)  tial oriented predictions of Refs. 12 and 13. Our generaliza-
tion reduces to the particular configurations considered there
Ho V2 in the appropriate limits.
Bs = A dk [Ca (k)e Further confirmation of the orderliness of our issue can be
obtained by inspection of the predicted magnetic induction
pattern under particular conditions. In regard to this, Fig. 2
+Cs, (ke 7le” kakz( > Gy mj) } , (70 displays the effect of a decreasing valuexéb on the mag-

) i=12 netic induction field lines when a magnetic dipole is held in
the vicinity of a superconducting slab at a small angle
=5° with respect to the normal axis. These lines have been
obtained by numerical integration in a polar coordinate sys-
tem and using a Runge-Kutta algorithm. Observe the con-

_ _ _ tinuous deformation of the dipole lobes toward a quadrupole
+C32(k)e e kakz( ; Gijmi)_ ] (7d pattern for small values of/b. Such a final pattern could be
=3 simulated by superimposing an image dipole to the incident

Bs = f—; olk[[c3 (ke

o field lines.
Bs= 4 olk[c4 (k)eK@-z- b>k2(2 Gjjm ) ,
i=1 70 'C. Magnetic force | | |
In the approximation of a magnetic dipole tip
Mo o (my,my,m,) at point (0,08), the self-interaction energy
By = yp dk[ Cq (ke ka-z b)kz(z Gijmj) ; =—(1/2)m-B, allows a straightforward calculation of the
' i=3 ¢ vertical magnetic forcé-,= —d,U. Starting with Eqs(7a)
(7f) and(7b), and observing the limiting values of eleme@s
where we have introduceg= \kZ+ 1/\2. asx,y—0, we have
We note in passing that mathematically valid, but diver-
gent solutions for the reflected and transmitted fields have _@fw CoaKL3, 2 | 2
been excluded. Fa= dk Gy, (k)e" "k (m™+my), ©)

The problem will be eventually closed after a brief dis-
cussion on the boundary conditions, which allow the coeffiwherem?=3; m . This expression is consistent with the re-
cientsC(k) to be determined. Admissible field® are par-  sults obtalned in Ref. 12.
ticular solutions of Laplace’s and Helmholtz’s equations that The generalization to problems with spatially extended
should hold continuous components and continuous normdips of an arbitrary magnetization pattern follows calling on
derivatives at the interfaces. These properties follow fromsuperposition. Then, using(r) for the magnetization func-
the solenoidality of the field and from the finite valuednesstion andV for the volume of the tip, one gets
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I origin of coordinates at the lower end of the magnet, which
5Jb =25 is assumed to rest at a distangebove the surface of the

| ) superconducting film.

|

|

|

Ill. INVERSE PROBLEM

Below we shall describe a method for recoverinrom
the measured force in a magnetic force microscope, which
relies on the Laplace transform inversion of the experimental
data. This method was already applied for the case of half-
space geometr{® In the present paper, special emphasis will
be put on the uniqueness of the recovekedoth for the
cases in which the thickness of the superconductor is avail-
able data or one must treat it as an additional unknown.
Accordingly, we will classify the problem ascalar inver-
sion if N\ is the unknown, owector inversionif one must
solve for the pair(\,b).

Following the ideas of Refs. 7 and 8, the starting point
will be to notice that the zero penetration depth limit of force
Fo(a) can be written as

e el [ e
|
|

P> Mi<r>gi,-<r—r'>Mj<r'>” }<a>,
" K/2

__?_

k/3e—k (z+2")

AMb=0.25 11

| where the subscript/2 indicates that the quantity between
' brackets must be evaluatedidt=k/2, and£ stands for the
Laplace transform operatdi[ f (k) ](a) = J f(k)exp(—ak)dk.
Then, Eq.(10) admits the following expression in terms of
— ‘ the inverse operatof, ~*:

THF@))(k)=C, (k2L {Fo(a)l(k). (12

Recalling thatszy depends om and b, one can use the
conducting slab under various conditions. In all cases, @#l6° prewqus equation in C,)r_der to devise ,an operational relation
of the magnetic moment respective to the axis has been assumdgvolving these quantities and experimental or computable
The three panels show the field linesBfon the symmetry plane data. In fact,

(defined bym and the axis and have been calculated under the

conditiona=h. Notice that the cask/b=0.25 has been scaled to L TFA@)]1(k)

| C, (KI2)= o
50% for clarity. 2xy( ) L HFqa)](k)

FIG. 2. Magnetic field lines for a point dipole above a super-

=Le (K, (13

and this quantity is the ratio between the actual and the lim-
Z(a)—— dkf d3r fd?’ {k?’C (k)e~2akg~k(z+Z') iting force inverse Laplace transforms. Next, and for further
development, we rewrité:zxy(k) in a manner that will expe-
dite the evaluation of the superconductor finite-thickness in-
] (10 fluence. First, we defin€..=(y—k)/(y+k), which is the
limiting value ofC2Xy for b/x—cc. Then, we get

x| 2 Mingi(r=rIMy(r")
where the matrix elementy; are defined as

Gy i#3
g”_ _Gll |:3,

1— e2bk(Cx+ 1)/(C—1)

Cy, (K)=C. : (14)

— C2ehKC T 1)/(C. 1)

At this point, it is instructive to inspect the properties of
andg;;(r—r') indicates that the elements must be evaluatedhe inverse Laplace transforms of simulated force measure-
according to Eq(5) by replacingx—x—x' andy—y—y’.  ments. This is done in Fig. 3, which displays the functions
Notice that volume integration must be performed with theZ ~[F,(a)](k) and Egjo(k) for increasing values of the
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FIG. 4. Result of a vector inversion for the case of a simulated

FIG. 3. Inverse Laplace transforms for simulated force versu€XPeriment with §,b)=(0.2,0.1).Ar andbg stand for the recov-
distance measurements in the case of a cylindrical magnetic tifr€d values of the penetration depth and thickness, and are plotted
(radiusR, lengthL, and R=L=D) and A=0.1D. The different aS & function of the wave-number.rane ky/kq. In thls case, we
lines correspond to various values of the rdtia as shown in the ~Nave chosel; =1 (see text for details The same cylindrical tip as
inset. The dotted continuous line holds the zero penetration depti Fi9- 3 was considered for the simulation.
limit £ ~Y[Fy(a)](k) for the present geometry. In order to avoid
distracting powers of 10, the normalizatignypM2=1 has been function evaluations or less are enough to solveGorg,
used. The inset shows the corresponding ratio functibn&F (k) ~ which provides a low-cost method for computirgwith a
under the same plot conventions. high precision.

Observe that the wave numbkrhas been treated as a

ratiob/\ in the case of a cylindrical tip. It is remarkable that, parameter in the previous paragraph. In fact, a ploto¥s
for a given value of\, a universal profile is reached as soonk is recommended in order to check for consistency.

asb/\=2. This is an assessment of the validity of taf- As a concluding remark of this subsection we must men-
space geometrynodels, which remain useful even far from tion that existence and uniqueness are guaranteed for scalar
the limit in which they were obtained. inversion. On the one hand, existence is obvious by defini-

The question now is how to extraat (and perhapgp)  tion of the problem, provided the physical system is de-
from the available information. For this purpose, it is conve-scribed by our set of equations. On the other hand, consid-
nient to start with the expression ering A as implicitly defined by the equation

f(k;\,b)=0,

the issue of uniqueness relies on the condition
Then, one must distinguish between the cases in which either

\ or the pair {,b) is the unknown. K;eo V(k>0;A>0b>0),

f(kik,b)=L ) (k)= Cy (k/2)=0. (15

A. Scalar inversion which one can easily verify to hold.

Assume, at first, that the thickness of the superconductor Notice that, for the previous statement, we have implicitly
b can be measured by other means and therefore)omyo considered that the inverse Laplace transform rﬁt@o is
be recovered from the MFM data. One can proceed as folunique. In fact, this can be assumed from the physical point
lows. (i) Consider the associated coefficieDf, as an un-  of view, following Lerch’s theorerft that £ ~* is specified
known and solve for itC.. g) by means of the experimental except for a null functiomN(t), i.e., f[N(t)dt=0 when inte-
data and Eq(15) [upon substitution 0(32Xy by means of Eq. grated overany domain within the real positive axis.

(14)], and(ii) compute the recovered penetration depth as
B. Vector inversion

~11-C, r(k/2) Here, we study the inversion process for the case of un-
Ar(K)= E_Cwyg(k/Z) ' (18 known penetration depth and sample thickness. As before,

we assume thaf ngo(k) is known for a collection of values
For this purpose, a numerical scheme has been tested theftthe wave numbek. On choosing any couple of nontrivial
allows a very efficient computation @..  in terms ofL ';zlol valuesk;#k,, one can pose the following nonlinear system
The algorithm relies on linear and quadratic interpolation®f €quations:
and bisectiolf for finding the zeroes of a real functidgin Lok ) —Co (Ke/2)=0
our casef (k;\,b), wherek andb are given. Typically, five Fz/o( Y 2xy( 1/2)=0,
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L',;l(kz)—Cz (k,/2)=0, (17) nally, the correlation between the measured signal and the

20 g physical parameters will be establish@dverse problem
with unknowns\ and b, which become explicit when un- Just for simplicity, this section is developed in the point di-
folding szy by means of Eq(14). For brevity, we will re-  pole approximation for the magnetic tip. However, the gen-
write it in the form eralization to finite-size tips in the manner of E4O) is

straightforward.
f1(x;N,b)=0,
A. ac magnetic force microscopy with losses

fo(k;N,b)=0, (19 o . ) .
The vibrational properties of force microscopy cantilevers

where «=k; and fy(«;\,b)=f;(t x;\,b), provided t  are customary described according to the behavior of a
=ka/ky. This nonlinear system has been solved numericallfjamped harmonic oscillator. In particular, when such a sys-
for faked MFM data by means of a secant algoritttithe  tem is driven by an oscillating force= F,cos(gt), the tip

method has been tested for a variety of values for the quantisplacement may be written as= A cosgt— &), with the
tities involved. As an example, Fig. 4 displays the recon-ysual Lorentzian form of the amplitude

struction of A andb for a simulated experiment. Therk,

has been fixed ankl, is increased by means of the parameter wol wg
t (see above It is apparent that the plot of the recovered A=Aq = >
quantities versus is convenient to check for consistency, V1+Q¥(wo/ wy— wal wo)

although a single pairkg ,k,) would be enough. and the phase shift given by
Finally, we want to mention that farector inversionex-
istence is also trivial, whereas one can give proof of the 1/Q
uniqueness by a somewhat elaborate argurfent. tano= —p————.
wol wyg— wql wg

IV. ac REGIME Here, we have introduced thesonance frequencyf the
systemw, and thequality factor Q Recall the relation to the
It is well known that a significantly better sensitivity to damping constant @ w,/T.

|0ng-range forces can be achieved by OSCi”ating the flexible Now, if one assumes that the System is driven under a
cantilever to which the MFM tip is attached. Specifically, simultaneous external actiaf, the compliance of the canti-
one measures changes in the resonant frequency, associagger will be changed, yielding modified values for the am-
to the background magnetic forcéThereforeac operation  pjitude A’ and phase shifs’. Under certain conditions, one
modesshould be taken into consideration for superconductzan reconstruciF in terms of A’ and &’. Here, we will as-
ing samples. However, as we shall see below, the topic d&syme small vibrations of the tip and, thus, approximétas
serves an especial discussion because a number of new phgiinear function. However, as we shall see later, the inclu-

nomena will occur. This was previously discussed bysjon of losses requiresratardedexpression of the kind
Coffey'® with the coupling of all electromagnetic fields, in-

cluding a normal-fluid conductivityo¢ in the supercon- F(t)y=Kz(t—t,), (19

ductor, and supposing thmlf-spacegeometry. Additionally, L i )
this was done in the linear regime, with all fields varying asWWherez stands for the tip’s displacement in respect to equi-

explot) and assuming as known, constant. Here, we librium, t, indicates the time delay, ari{Iplays the role of a
will perform a somewhat extensive analysis, with the inclu-SP"'NY constant. Then, if one defines the phase ¢ag
sion of phase lags for the fields. Such formalism will permit=@dt» the equation of motion becomes

a further link to the experimental quantities. In particular, we

show that both\ and o+ may be recovered if one fully sl T+ K sine 2+<w§— ﬁcow)z

exploits the measurements, either tialf-spaceor finite- Me @q Me

thicknessconfigurations. = (Fo/my)cod wt) (20)
- 0 e ’

It will be shown that the complete treatmentad MFM
of superconductors requires a restatement of conventionatherem, is the effective mass of the cantilever. It is appar-
methods. In particular, the appearance of losses, which amnt that a steady-state vibration will occur, but with shifted
usually d|sregz_irded in thiorce gradient _detecfuon mod@s resonance frequenay; and damping constait’ (or quality
may strongly influence the recorded signal in the case ofactorQ’). Notice that, for the case=0 (external action in
superconductors. This topic has been fully covered for othephase with the tip’s displacementve getI'’ =T and w(?
Ej’?aQ”EI!C mzfatenals and is the bash|§ ﬁf the Zo-cgﬂagnetlhc = wj(1—3,FImw?). These expressions correspond to the

Issipation force microscopyn which a reduction in the  yhica| assumption ifiorce gradient detection modésat the

quality factor of the cantilever is Qetect_&j. o tip-sample interaction does not induce an energy transfer.
For the sake of clarity, we divide this section into three

parts. First, we shall describe the relevant experimental de-
tails of ac modesand the inclusion of lossy phenomena.

Then, we will concentrate on the electromagnetic field equa- Thermodynamically consistent field equations for #te
tions under steady-state conditiofferward problem. Fi-  problem can be derived by means of ttweo-fluid model

B. Forward ac problem
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which assumes that the full current density flowing in thethe physical quantityg?°=RgB* |=Bycoswt+®). In our
superconducting state], incorporates the normal current case, the displacement of the tip will set the time scale ref-
density J, maintained by unpaired electrons and the supererence and, thus, any phase shift will be referred to this
current densityls, so thatd=J,+Js." Recall that this is a quantity. On the other handy will take the valueswy and
good approximation well below the energy gap frequencie®w,, corresponding to the mentioned Fourier components.
(=1 THz). Recall also that, below such frequencies theThen, it is simple to verify that, on using the time-
normal-fluid conduction may be modeled by a nondispersivendependent solutions of Sec. Il B fa,glcsglc and Bdic, one
ohmic relationd,,= o,(T) E, where the normal-fluid conduc- Lo e

tivity has been introduced. On the other hand, the combinagets the following field equations:
tion of London equations [E=d;(uoh?)Js and V

X (uoh?)Js= — B] with Faraday’s law ¥ X E=—4,B) and V?By=0,
Ampere’s law (VX B= uqJ) produces the following govern-
ing equation for the magnetic field within the superconductor V2§§’= [1A2+i wMoUnf]Eéﬁ),
V2B=(1\?)B+ uoonB, (21 -
( ) MO nf ) VZBZ’=0, 23)

where the notatio8=4,B has been introduced for brevity.

We are thus ready to solve the time-dependent problerfor the complex amplitudes associated to the reflected, pen-
that arises when the magnetic tip is harmonically driveneétrating, and transmitted fields. This system takes the form of
Consider a vertical vibration of the tip that can be describedEd. (6) upon defining a&complex penetration depthrough
as a small ripple around a given tip-sample distaackee.,

a’'=a+A’'cosgt), with A’<a. In such a case, and upon 7\;2=)\’2+2i6,}2w,
replacinga—a’ in Eq. (4), the time-dependent incident field '
components may be approximated as where we have used the standard normal-fiskih depth
. Onto=\2lwueoy. Again  can take the valuesy and
Bl-: ﬂ dk kze_k(a_z) 2 G”m] de' . L .
i 4w o j Next, one can impose the boundary conditions in the same
manner as befor@ecall that they must hold for all values of
Mo * —k(a— t) and solve for the field components. In particular, the re-
———A'codwqt) | dk ke k@-2 Giim; P P ,
4 g )Jo 2 S flected magnetic field may be written as
L INT ik Lda—k@-2) . oo
+ 87-rA cosz(wdt)fo dk k*e 2 Gijm; ||, Bgic::‘_i ) dk[CZXyKZek(aJrz)(; Gijmj”
(22)
. Mo o 7 4. —k(a+2)
which we shall reexpress as AT fo dk[czxyk e 2 Gijm;
By, (1) =B{*+B;(t) + B (1), (24)

indicating that thedc and ac parts of the applied field have and
been detached and the latter grouped in terms of their Fourier
components. Notice that we must keep a second-order ap- _ “o o, (7 = 3 —k(at2)
proximation because, eventually, a linear approximation to Bz"'=—7—A f dk sz"y(k)k e (E Gijmj) :
the force is desired. 0 .
Next, we write the reflected, penetrating, and transmitted

fields as B2oo_ ﬂA’ZJ dK B2%(kke <@+ S G m.
de o 204 2 167 0 2xy i )
Bzi(t):B2i +B2i (t)+B2i (1), 25
B, (1)= Bg_c+ BLY(t)+ B;_wd(t)’ fori=1,2. Here,ﬁg’Xy must be obtained from thdc counter-
' ' part by replacing\—>7\w. On the other hand, notice that, in
B, (t)=BJ+ BLY(t)+ Bi‘”d(t). general, a phase lag betweB@iC and Bi‘iC will appear.
_ ' ' ' _ . Eventually, one can derive the time-dependent force that
Hereafter, we will take advantage of the sinusoidal steadyarises when the tip is oscillated. In fact, in the dipole limit,

state conditions and use the customary notation of complethe instantaneous value of this quantity may be calculated as
numbers. Thus, we can represent the fields in the f8fm  F(t)=—4,.{— (1/2)m-B,[a’(t)]}. However, it will prove

=Bexp(wt). The complex amplitude3 allows a possible to be convenient to write it in the for,(t) =F°+Fa(t).
phase offset to be absorbed, which arises when one recove@n using the linear approximation we get

094502-7
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de_ Mo [~ 3g-2Ka m24 m2 Al 198,
F; 167Tf0 dk[C2ka e (m°+mj)] [ | m
Ho [ 1 30d [13a—2Kar m2 1 m2 I |
+o=— | dk[|C;?[k’e”**(m*+mj)]cose?d 0.10 - 0.52
167 0 Xy r
(26) I 1
and 0.09 [--f------ B = 0.50
Mo [~ -
Fa=— 2 | dKC, k'e 2(m?+m2)]A’cos wgt) ,
16mJo " 0.08 0.48
o [ mu , 0 1 2 3 4 5
- dk[|C5¢ ke~ 2a(m?+mZ) JA’ cod wt a
0 Xy
FIG. 5. Recovered penetration depthand skin depths,; for a
Mo [~ =20 _ simulated force versus distance experimentam operation. A
oqy -~ ~ d| 14— 2kay 2 2 ’
Tt 167 Jo dk[|C2Xy|k € (m”+m3)JA point-dipole tip and half-space geometry were assumed and the
5 complex penetration depthwas derived by means of E(2). The
X coq wgt+ ¢=9), (27)  simulation was made for\(&,)=(0.1,0.5) under the normaliza-

= ~ tion pwom?=1
where the deflnltloanxyE|C§’xy| exple®) has been used.
The approximation involved corresponds to considering theye call the reader’s attention to the fact that, owing to the
lowest-order correction for the incorporation of losses to thegissipative component of the current, the recorded force ex-
theory, i.e., takingp® as a small parameter. Physically, this hibits a phase lag respective to the tip’s movement. Accord-
is attained ifn/5,<1. ingly, the interpretation ofic modes as a measurement of the
Notice thaﬂ:;jc incorporates both the superconducting andforce gradient in terms of the resonant frequency shift is no
skin depth diamagnetic terms and that one recovers(#q. longer valid. In general, one should also regard the change of
when the normal fluid is not present, i.ep”d=0 and the oscillator quality factor for the problem to be specified.

|(~3;’d |=C, y Notice also that, in such case, thepart of the Several manipulations of the measufedmay be done in
Xy X

force may be used as a linear function with effective Springorder to obtain the complex penetration depth. Essentially,

constantk = 4,F9%(a). On the other hand, Eq27) may be they are extensions of the dc algorithms to complex vari-
written in thei‘o?m ' ' ables. In order to see how it works, we include the following

examples.
- MoA'
E__ Mo

, e Jo dk@xy(k)e‘ 224 (m2+m2), (29 1. Asymptotic ac method
First, we assume half-space geometrgroblem and ap-
ply the asymptotic theory developed in Ref. 8. In fact, the
method relies on power-series reversion, which is properly
~ 1 1. 1., . ;
C, =-C, + _C;"d + _Czwd_ defined on the complex plane. Thus, one can just follow the
W4Ty 205y 4%y steps taken there. For the sake of simplicity, suppose a point
Eventually, the experimental quantity would be recovered aélipole tip along the normal axis, i.en=(0,0m). Then, Eq.

Fac= R F,explwgt)], which fits the form described by Eq. (28 leads to
(19

where we have defined

. F m? (=
fZEA_f:_”“O fodk[cw(k)k4e*2a"], (29)

C. Inverse ac problem 2

We shall now address the topic of recoveringand o ~ o
from MFM measurements iac modes. First, recall that the Where we have used.. for the half-space approximation of
complex amplitude of theac force F,=RdF,]+iIm[F,] szy. Actually, this factor is the superposition of three terms

may be experimentally solved by means of the resonancémzcw/4+é;‘jd/2+6i‘“d/4, Associated to each term, one

frequency and quality factor changes: can develop an asymptotic series approach as in the men-
RAE] tioned reference. On gathering them we obtain the series
2 _ K cosp=my(wl— o) expansion
- 1 < 1\" d"F} - -
~ = - n n n
Im[F,] . , fz—Fo+4 nEl< 2) *n o (N"H2NG T3,
=K sing=mywy(I'' —T).
A’ (30
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}" nf
0.10 0.52
/
e 0.50
1' l—)
|
' j
0.08 = ' ' ' ' 0.48
0 5 10 15 20 25
k

FIG. 6. Recovered penetration depthand skin depthd; in a
simulatedac MFM experiment with an oscillating dipole tip over a
finite-thickness superconductdo <€ 0.3). The simulation was made
for (X, 8,7 =(0.1,0.5) under the normalizatigpom?=1. \ and
are plotted versus the wave numbeand have been obtained by
means of Eq(35).

Here,F((a) stands for the derivative of the perfect screening
limit of the dc force anda,, is a numerical coefficierftNext,

we introduce the complex penetration depth

N=N[1—i(M 8020,

n

It is apparent that one can getfrom the inverse series

in terms of which

1\ d"Fy

n
dan)\.

31

8

X:

n

lEn(?z_ F(I))na (32)

where the coefficients, may be obtained from theidc
counterpaft just by replacing={V—F{"* 1)
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0.20
0.18
0.16
0.14 :

0.12

0.10

0.08 -
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0.20 |
0.18
0.16 |
0.14

0.12 |

0.10 —

0.08 -
20

FIG. 7. Recovered penetration depth by means ohalf-space
geometrymodels for simulated force versus distance experiments in
the case of a cylindrical tip above superconducting slabs of various
relative thicknes®/\. The upper panel displays the results for the
asymptoticheory as a function of the recording distance for a trun-
cated inverse series of three terfsse text The lower panel cor-
responds to théaplace inversiormethod and\ is plotted against
the wave numbek (see texk

The asymptotic nature of the method for complex values

\ is illustrated in Fig. 5. We display the recovered penetra-

tion depthA and skin depths,; from a simulated experiment

in which synthetic values of (a) were obtained by means
of Eqg. (29). The inverse series was approximated with five

terms. Notice that the approximatiod+2X], +X3,, =\"

produces a tiny reduction in the recovered values for the case

N 8.,=0.2.

2. Laplace inversion ac method: finite-thickness superconductors

To close this section, we address the problem of finite
thickness superconductors in taeregime. It will be shown
that a straightforward extension of thecalar inversion
method to complex variables can be established.

Assume a situation in which the sample thicknbssan-

not be neglected but is available. Let us also restrict this

(without loss of generalifyto the case of a point-dipole tip
(0,0m). Then, from Eq.(28) one gets

~ ,LLOm2 ~
f,=— 6l E[k“szy( ki2)](a), (33
whence
C, (kl2)=— Bdm LT (a)](k) (34)
2><y - M0m2k4 z .

This equation may be used to solve foand ;. The quan-

tity T, is supposed to be available from experimental data.
Next, one can calculate the associated vaug¢k/2) from

1 — ebk(C+1)/(C.~1) 64

2k4£*1[~fz]<k>=o,
(35

- = +
1— C2ehkC.r1)/(C.-1) oM

094502-9



A. BADIA PHYSICAL REVIEW B 63 094502

which is analogous to Eq15) for the dc counterpart. If we made above. If one faces the problem of full ignorance about

assume again that/ §,,< 1, the complex functior€., is re-  the pair &,b), the application ohalf-space geometrgnod-

lated toC., by the substitution, —X. els can be used as a first test on the relative valug of A
Eventually, we are led to the problem of finding the se-nonconstant value of the recovered penetration deptas a

roes of a transcendental complex equation. This process hidction of the recording distanae(even when augmenting

b lored f imulated . ts in whi the number of terms in the series expangiand as a func-
een explored for simulated experiments in w ichwas tion of the wave numbek indicates an inconsistent hypoth-
obtained by means of Eq28). We have implemented

L 50 - esis, and a vector inversion with initial guess according to
nMourLlnieezlz ?ﬁt?;i]sgzg dV\:%? g;'g;g;lgofﬁézlfgz(:;g; %(f)lg-nab< 2\ should be tried. On the contrary, if one finds constant
lytic functions. To assess the method we include Fig. 6, i and equal values okg by means of theasymptoticand
which the recovered values af and §,; are plotted versus
the wave numbek. As in the previous subsection, the use of
the approximate complex penetration depth dependence Pro

duces a small reduction in the recovered values.

r]_aplace inversiorapproximations, these can be trusted, but
the knowledge ob is limited to the conditiorb>2\R.
Even for the simplest case of scalar inversion, intricate
nscendental equations must be solved in order to recover
N from the experimental data. Thus, several numerical
schemes have been explored, which produce efficient calcu-
lations. In order to assess the convergence to the right physi-
Throughout this work we have described the progres§al solution, we give proof of the uniqueness for the involved
made in the theory for recovering fundamental lengths ofnversion problem. _ . _
superconductivity by means of magnetic force microscopy. Section IV has been dedicated to @eregime. First, we
The main issues have beéiy the inclusion of the thickness have shown that the standard interpretatioracimodes in
of the sampleb in the problem of the recovery of the pen- MFM must be revised. In particular, we show that energy
etration depthy and (ii) the revision of the standaribrce  10SS€s can be incorporated to the theory. These losses are
gradient detectionmodes so as to recovarand the normal- haturally included as a phase lag between the tip-sample re-
fluid skin depthd,; in ac measurements. puIS|_0_n force and the displacement of the tip. Then, _be5|des a
Regarding the topic of the finite thickness influence, wemedified resonance frequency, we predict a quality factor

have introduced the so-callestalar and vector inversion  Shift, which can be experimentally solved andnd & can
methods, in which eithex or the pair {,b) are unknown, D€ obtained from the measurements. In fact, several simula-

However, this problem deserves some further discussioﬁi,ons have been included in which we show -that the c-orrect
which can be stated as the following question: How muchvalués may be recovered under the assumptiady,, typi-
information can one extract from MFM measurements aboug@lly valid unless for temperatures extremely closdfo
the pair (\,b)? Finally, we want to emphasize that .aII these advances in
As it was previously discussed, the quantitative behavioh€ theory of inverse MFM are straightforwardly imple-
of force dataland the associated Laplace transforisscon- ~ Mented regardiess of the symmetry of the stray field, i.e., an
trolled by the parameteb/\. In fact, force data merge as arbitrary magnetization patteid (r) over any tip geometry
soon asb/A=2 provided the remaining length scales arelS allowed, though one must not know the details of this
fixed. Thus, one should expect that the recovered penetratidHnction for the inversion procedure. In fact, the zero pen-
depth by means ohalf-space geometrynodels can be etration _dept_h limit of_the rep_LlISlon fordgy(a) may be used _
trusted if this condition is satisfied, while any information @S @ calibration function, which can be obtained by compli-
about the film thickness is simultaneously lost. In order toMentary experiments.
verify this statement, we have performed the inversion of
simulated data by blindly using tresymptoti€ andLaplace
inversior techniques, despite a finite value lf\. Typical
results are shown in Fig. 7 for both approximate methods. The author acknowledges financial support from Spanish
This figure permits an answer to be given to the questiorCICYT under Project No. MAT99-1028.
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