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Theory of vortex force microscopy in superconducting layers
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The interaction between a vortex within a finite-thickness type-Il superconductor and a magnetic force
microscopy tip is studied. By analyzing the expression of the arising lateral force, we show that the supercon-
ducting penetration depth may be recovered from experiment, using the so-called Laplace transform inversion
method. This entails a vertical displacement experiment. The consideration of lateral scanning modes has
allowed us to extend the theory to the more stable Hankel transform inversion method, which eventually
becomes a Fourier analysis application. For the case of vortices in two-layered superconductors, we show that
magnetic particle manipulation is possible by tuning the configuration of the layers.
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I. INTRODUCTION show that inversion techniques may be extended and im-
The interaction between superconducting materials an@roved. Thus, horizontal scanning will be related to Fourier-

magnetic force microscopgMFM) tips has been addressed Bessel transforms, which are quite well behaved as com-
in a number of recent studies. Thus, MFM has become @ared to previous proposals.
high-performance technique for the investigation of Itis of note that lateral force microscopyFM) is already
superconductotsas it offers the advantage of probing the possible by means of a new generation of cantilevers, which
London penetration depth within very small areas of the are sensitive to the force in any direction. To be specific, this
sample. This overcomes the difficulties associated to surfade achieved with the so-called domain wall tips, described in
imperfections and inhomogeneities that can be hardiRefs. 9 and 10.
avoided in these materials. From the experimental point of The existence of a maximum in the lateral force versus
view, the technique features more and more versatil@listance curve has been predicted. This feature, together with
operatior? the consideration of two-layered superconductors, has in-
From the theoretical side, some remarkable advances refgpired the proposal of magnetic particle manipulation by
to the still challenging inverse problem, i.e., recovering su-means of vortex microscopy. In brief, a potential well for
perconducting properties from observable quantities. In parateral displacements is formed upon the vortex. The barrier
ticular, the nondestructive evaluation of inhomogeneous pershape may be tuned by changing the separation between the
etration depth\(),3* and the concomitant difficulties related superconductors. Thus, one can either trap or release nano-
to finite-size effect$,have been dealt with. However, much metric particles settling on the top layer, by vertical displace-
of this work is only focused on Meissner state superconductment of the underlying one. This concept is basically recip-
ors. The influence of vortices has been scarcely tolfched  rocal to recent ideas for obtaining controlled movement of
merely refers to the forward problem, i.e., prediction of thevortices and other entities by means of nanomagnets or mag-
observables assuming the superconducting properties knownetic bubble systenst2 and microcoils:®
Remarkably, the presence of induced vortices may be either Although our investigation was focused on the action of
responsible for uncertainties in the interpretation ofthe vortex field upon the magnetic particle, a number of com-
experimentg, or even a means of attempting the determina-plimentary quantities, such as the full magnetic field distri-
tion of \.8 bution and superconducting current density, are derived.
In this paper, we have developed an inverse method foHere, they have been used for the assessment of the physical
recovering\ from the interaction between superconductingresults, but may also be the basis for further studies.
layers with vortices and MFM tips. The theory is developed The work is organized as follows. In Sec. I, we study the
for the lateral force arising when the tip settles over a fluxforward and inverse problems related to the vortex force mi-
guantumd,. We recall that lateral forces, as well as depen-croscopy(VFM) on a superconducting layer. In Sec. lll, we
dence on the tip’s lateral displacement, were not consideredse the London theory for analyzing the behavior of a vortex
in previous studies. The planar translational invariance fowithin a superconducting bi-layer. The interaction with a
superconducting layers in the Meissner state produces a mafprce microscopy tip is also analyzed. Finally, inspired by the
netostatic interaction which only depends on the vertical disarising physical scenario, Sec. |V is devoted to the proposal
tance. However, with vortices present, the horizontal positiorof a mechanism for manipulating small magnetic particles by
of the tip plays a role. Taking advantage of this, we will the action of vortex fields in layered systems.
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Il. VFM ON A SUPERCONDUCTING LAYER

A. Forward problem

PHYSICAL REVIEW B70, 144512(2004

In order to obtain the coefficienné(k), one must impose
continuity boundary conditions on the planar interfazes

=0,-b. This leads to
ViAK) = yA{y sinh(by) + k[costby) - 1]}, (6@

1. Stray field of the vortex

In this section, we solve the magnetostatic boundary value
problem in a type-Il superconducting thin film with a vortex.
The superconductor is parallel to t& plane, and fills the
space betweem=0 andz=-b. This selection allows to re-
produce previous resuft$* in a somewhat more compact
form, and eases comparison with bilayers. As it is customary,
vorticity is incorporated to the London theory by means of a
two-dimensional impulsédelta function centered at the po-
sition where the vortex settlép,=0) for simplicity. Then, if
one follows the convention for the fields in the domains of

V5,(K) = -k A {k sinh(by) + y{cosiby) + 1]}, (6b)
V5K =-kA{ysinhby) + k[coshby) - 1]}, (6¢)

Va,(K) = y A{y sinh(by) + klcoshby) - 1]},  (6d)

where

2
interest A= ®o/2my\ .
R 2ky coshby) + (k* + y”)sinh(by)
hy(r), z>0 . -
R ~ Finally, one can express the components of the magnetic
h,=1hy(r), —b<z<O0 (1)  field by inverting the Fourier transform, i.e.,
ha(F), 2<-b, 1
s h,(p,2) = — f d?k €%? H,(k,2)
it follows that 2m)g
Vzﬁl = O,

2w
J dep € COW] kH,(k,2)

0

1 o
=— dk|:
21 0

= j dk J(kp)kH,(k,2). (7)

0

- - D
v2h, - (1), = - A—Saz(p)ez,

Here, J, stands for the zeroth-order Bessel function of the

. ~ first kind. Schlafli's integral representation of this function
Now, one can benefit from the prOblem,S Symmetry INhas been recalled. ThUS, we obtain

order to simplify the differential equation statement. Thus,

V2hy=0. ()

using the two-dimensional Fourier transform _ fw s
hi(p,2) = | dk kd(kp)V1(K)e™, (8a)
o . o 17 . 12
H(k,2) = —f d’r e**h(p,2), 3
27T 0 0
- + = ()i
we get the simplified system hop,2) = fo dk kd(kp)[V 2(K)cost(yz) +V 3(k)sinh(yz)]
(957%1—k27?(1=0, q)o (p)
K L.
277)\2 0 )\ ’ (8b)
L.
FHo = ¥Hp= - x—fez, »
hs,(p,2) = f dk kdq(kp) Vs (k) (8¢
0

24 297 —

%Hs~KH3=0, @) with K, the zeroth-order modified Bessel function of the sec-
ond kind. These equations allow the straightforward evalua-
tion of some related physical quantities. In particular, if one
uses the divergenless character of the magnetic field, to-
gether with the cylindrical symmetry of our problem, the
relation

with the well-known solution

H,=Vy(K)e™,

- - P
H2=vz<k>cosnyz)+vg<k>sinrwz>+#§;z, ) "
o
—(ph)=-p—2 9
o ap(p )=~ p P 9
— k(z+b)

Ha=ValeT. ® may be used for determining the field componéntby
Above, we have useg=k?+1/\%. Mathematically valid quadrature. Then, the supercurrent density within the super-
solutions that correspond to unphysically divergent fieldsconductorj,(p,-b<z<0) can be derived from Ampere’s

have been rejected. law,
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el a_heﬂ] 10
JH(PaZ) 47T|: 97 0"p . ( )

This leads to

ip= f dk 3 (kp)[V 5 (K)icost(yz) + V 5,(K)sinh(y2)]

0

[6))
* scﬂszKl(§>' (D

_477)\2

2. Vortex-tip interaction

PHYSICAL REVIEW B 70, 144512(2004)

1 - - 1 - -
F=—] &,-jsdV-—1| jn-AdV. 17
2c£ v ls Zcfmjm (17
Next, we split up the supercurrents ésfme+fv, indicating

the superposition of induced Meissner currents, and the vor-
tex contribution. We have

1( - - - - 1( - - - -
== (@, ], +D, ddV=—| (o At+]n-A)dV.
F 2c£( o Jo TPy jme Zcfm(lm s+ im:An)

(18

Substracting the constant self-interaction enerégs{v and

The physical quantities considered above allow us tdm-An, and using the symmetry of the mutual interaction
evaluate the interaction between the vortex and the MFM tipterms, one gets
In particular, we are interested in the mutual magnetic force.
This may be derived from the appropridtee energyof the

system, which is analyzed below.

- 1 (- - 1( - -
=F-—| &, [, dV-"| jn-AndV
F=F chs o ZCfmeAm

First, we recall that the amount of energy related to the

creation of a current density distributiontis

1( - - 1
uj‘:—fj-AdV:—J BZdV. (12)
2c)g 8mJp

ks

This term accounts for the work done against eIectromotiv%(\/'I
forces, and may be considered apatential energyWhen
dealing with superconductors, one must additionally include
a kinetic energyterm, related to the charge carriers, which

takes the form
2
U= —ZJ N2 dV. (13)
C S
Thus, the magnetic energy=U;+U, becomes

1 > > 1 2 A2
U=—| [ Adv+—| NIV x V x A dV. (14)
2C O 877 S

Now, the suitable free energy, related to virtual displace-

ments of the permanent magnet?is

1( . -
}':Z/I——f i AdV. (15)
C m

1 > s > - - >
zz_f (q)v Jme” I 'Am_]me'Am)dV- (19)
CJs

Eventually, one can use the equality of the first two terms,
hich represent the interaction between the vortex and the
eissner currents, and the interaction between the vortex
and the magné€ The free energy becomes

-~ 1(- - 1( . -
=== -A,dV-—1 j..-A,dV, 20
F CLJU m 2c£ Jme* Am (20)

or, by virtue of symmetry,

1 - - 1 . -
=== jmAdV-—1| jn-AndV. (21
F CfmeAvd ZCfme me d (21)

Eventually, the application of vector analysis formulas leads
to the alternative expression

~ Lo 1 N
fz-f M -h, dV‘Ef M - hye dV=F,(a,p) + Fnda).
m m

(22)

Above, F, stands for the magnet-vortex interaction afg,

Here, we introduce the fact that magnetization current denfor the interaction with the induced Meissner currefisp)
sities remain unchanged. are used for the vertical and lateral coordinates of the mag-

Above, subindices, m have been used, respectively, for netic tip(see below. In the general case, one should account
the superconductor and the magnet. The quantities with nfor both terms in order to evaluate the interaction forces be-
subindex correspond to the superposition of both contributween the magnet and the superconductor. However, as we
tions. will focus on the lateral force, only the first term plays a role,

Equation (15 may be given a practical form by using i.e.,
London’s equation, 5

E dF  IF, 23

(16 LB == =3

In the case of one vortex present in the layer, the vorticity  Thjs expression may be readily evaluated for the case of a
term become®,=(0,d,/27p,0) in cylindrical coordinates. dipole tip m=(0,0,m,), settling at the pointp, #,a) above
Thus, one gets the vortex. The radial force is

A+N2V X V X A=,
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E ness, i.e.,b=0.2 meansb=0.2¢. The coefficientsV are
given in units of the flux quantum, i.e¥=0.5 meansV
0.20 =0.5dy/27. Finally, the force is expressed in units of
. m &, €3, with m the magnetic moment of the tip. Specific
values for a particular experiment may be obtained by choos-
0.10 ing the associated andm.
0.05
B. Inverse problem
0
0 2 4 6 P Below, we present the theory for inverse vortex force mi-

croscopy. It will be shown that both the superconducting
penetration depth and the thickness of the film may be re-
covered by the Laplace transform inversion method, which
was already applied to superconductors in the Meissner state.

FIG. 1. The lateral forcd= (ag,p) curves as a function of the
lateral distancep, using a point dipole approximation for the tip.
Here we have taken=0.2,b=0.1,ap=1. See Sec. Il A 3 for the

units- In addition, the consideration of lateral displacements has

. inspired a novel and intrinsically more stable technique, the

_d(=m-hy) * a so-called Hankel inversion method. Eventually, the combina-
F@p)=- ip m, . dk V1, (Ke™y(kp). tion of both techniques is also suggested.

As concerns the thickness of the superconducting film, we
(24)  want to emphasize that it may be accurately obtained by

Equation (24) may be generalized so as to incorporateother methods, as electron microscopy_ or Ruthe_rfor_d back-
size effects for the tip by means of superposition. Howeverscatte”ng: Thus, our propo;ed magnetic determlnatlpn may
lateral displacements entail a complex vector summation, bd2® Used in combination with them, as a self-consistency
cause the unit vectgy is different for each volume element. check.

This is not a shortcoming for numerical evaluations, but in _ _

order to bring out the physics with the least mathematical 1. Laplace transform inversion method

complication we confine to analytical evaluations in what | aplace transformation inspired methods were initially
follows. On the other hand, these calculations fit the pOSSisuggested in half-space geometry for recovering the penetra-
bility of investigating the superconducting properties by us-tion depth\ in superconductors with no vortices presént.
ing the dipole of microsquids or domain-wall tips. Further generalizatidrallowed us to consider thin supercon-

Based on the previous equations, Fig. 1 displays the dejuctors, even with unknown thicknessHere, we show that
pendence of the lateral fordg (a,p) as a function of the VFM also allows us to recover the pdix,b) by the same
lateral distance for a point dipole. Notice the maximum at algorithm. The method will be implemented for the lateral
some distance from the center of the vortex. Figure 2 showfrces.
the graph of the lateral force versus the vertical distance Recall the definition of the Laplace transform operator

FL(a,po) for a given lateral distance. We recall that the ob- £[f(k)](a)=fexp(-ak)f(k)dk. Then, Eqs(24) may be writ-
served behavior is the same as that reported in Ref. 1%en as

where the assumption<<\ was used. 5

FL(@ po) = = mLIKV1,(K)J1(kpg)](@) . (25
. . . Notice that abovey is to be considered as a parameter, while
The following convention will be used throughout the pa- the distancea is the Laplace transformedvariable. This

lper fr?r q_uar;)ntatl\lle _evalua(;ﬂofns_. Flrslt, v¥e dhetefrlmlnﬁ_ tl?emathematical concept has a clear physical counterpart. The
ength units by selecting a definite value for the film thick- ;s ciated experiment consists of a vertical scanning, while
lateral displacements are not allowed. Subsequent data

3. Quantitative evaluation: Physical units

- analysis will be made for the paifs;,F (a)] and a given
. value for p,.
0.4 Eventually, one can formally apply the inverse operator
£7* and obtain
0.3
0.2 Vi,(K) = = —5———L4F,(a,po) (K
o T mien ke T
Skpo) .-
0 S LN CAY () (26)
0 0.5 1 1.5 2 2.5 a

FIG. 2. The lateral forcd,(a,p,) curves as a function of the Recalling thatV;,(k) depends o andb, one can use the
vertical distancen, using a point dipole approximation for the tip. Previous equation in order to devise an operational relation
Here we have taken=0.2 b=0.1,00=1. See Sec. Il A3 for the involving these quantities and experimental or computable
units. data. Suppose that we need to determine the(paly) from
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FIG. 3. Recovery of the London penetration depthy VFM, FIG. 4. Recovery of the superconducting slab thickriedsy

using F (a) for the case of simulated experiment with,b) ~ VFM, using F (a) for the case of simulated experiment with
=(0.2,0.2. A magnetic dipole approximation was used for the tip. (\,b)=(0.2,0.2. A magnetic dipole approximation was used for the
\ is plotted as a function of the wave-number ratidk,/k;. tip. b is plotted as a function of the wave-number rettiky/k;.

the available informationﬂ'l[FL(a,po)](k), for a collection variable-based algorithms cannot be used. Although real-

of values of the wave numbér Equation(26) may be writ-  value-based methods are at hand, application is not trivial
ten as and no single method gives optimum results for all purposes.

™ For instance, the commonly used Gaver-Stehfest métlied
k:\b) = =L £7YE (a, K+V(K=0. (27 based on a series expansion, whose accuracy does not in-
gkix.b) K2 £7TR@ (k) + V20 @ crease with the number of tern¥, owing to numerical
rounding errors. Thus, one must choose an optimum value of

Considering the wave numbekras a parameter, we can take N which depends on the machine precision.

any couple of nontrivial valuek, # k, and pose the follow-
ing nonlinear system of equations:

Stky)
I

2. Hankel transform inversion method

L7YF (a,pp)](ky) + Vik)) =0, In this subsection, we show that the consideration of lat-
eral displacements for the VFM tip allows us to introduce an
Sky) interesting concept, which allows us to skip the mathematical
AR 1 _ difficulties explained above. Thus, if one performs a horizon-
k§ LR po) (ko) + Vidlko) =0, (28) tal scanning for a given distance between the tip and the
. superconducting film, data inversion relates to a more simple
or in a compact form and well-behaved mathematical operation, i.e., the so-called

01(k;A,b) =0, Hankel transform inversion. Furthermore, the close relation
between Hankel and Fourier transforms allows us to use the
go(k:\,b) =0, (29) latter, which is a widespread mathematical application.

B _ _ _ ) B Again, we start with Eqs(24). Now, we recall the definition
wherek=k; andgy(k;\,b)=g,(tk;\,b) providedt=ko/k;. of the Hankel transform operator H(K)](p)
This kind of nor_llmear equation system is analogous to the—'kal(kp)f(k)dk. This allows us to write
one that appears in the resolution of the inverse MFM prob-
lem for superconductors without vortices, and magnetic ma- FL(ag,p) = — mH4[kV,(K1e ™ ®](p). (30
terials in Refs. 5 and 18. We have applied the previous pro- . . ) ) )
cedure for simulated noise corrupted data. A random noisd, €€ ur point of view is complimentary to the previous
corresponding to 0.1% resolution of the measured force, haaragraph. The distang is to be considered as a param-
been addedsee Ref. 19 for further detajlsFigures 3 and 4 eter, a_mdp is the Hankel t_ransformed/quable. The proposed_
show the recovered quantities and b from our artificial ~€XPeriment would consist of a horizontal scanning, while
data. The graphs were obtained for the lateral force on keeping a constant vertical distance between the tip and the
VFM dipole tip. superconducting layer. Mathematical inversion should be
It is of note that the above kind of inverse problem is Performed for the pairgpi,F, (p))]. To be specific, one can

il-posed, with difficulties of nonuniqueness and instability 2PPlY the inverse operator;Hand obtain

of the solution. This stems from the fact that Laplace trans- ekao

form inversion is intrinsically unstable and small variations Vik) = - —HIl[FL(aO,p)](k)

in the initial conditions may cause large variations in the mK

solutions. On the other hand, our simulation was performed T(k,ap)

under the assumption that the VFM data are available for all =TT Hi TFL(a0,p)](K). (31

distances between the tip and the vortex position. It is appar-

ent that this would be restricted by the experimental condi- It is apparent that the method for recoveriiagb), which
tions. As a final technical remark, we recall that Laplacewas described in the framework of Laplace inversion for
transform inversion of real data is an even more delicatevertical displacement modes, may be literally translated to
task, because, contrary to the case of faked data, compleihis case. One gets the system
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In conclusion, the inversion algorithm is more stable and
allows us to introduce real-valued data without complication.

As a final remark, and tracing back to K@), the one-
dimensional Hankel transform stated above may be cast as a
two-dimensional Fourier transform. In fact,

H'[FL(a0,p)(K) = F5[FL(ag,0)Wa(x,)](K). (33

Here, we have used

J—
p=\C+y2,

iX+y

Wi(xy) = - (34)

——F
\”XZ + y2

This equivalence may be of interest because a variety of
optimal and robust fast Fourier transform algorithms are at
hand.

3. Hybrid Laplace-Hankel inversion method

We want to emphasize that vertical and lateral dispace-
ment modes could be used in combination. In practice, a
vertical scanning for a given value,, as well as a lateral

FIG. 5. Recovery of the superconducting penetration depth fronpc2NNINg for a given helgh.ﬁl’ are suggested. The_selec_tlon
the Hankel transform technique. The upper panel shows the the(S)-f a, andp; rel,'es on eXpe”_memal resolution considerations.
retical lateral force(continuous ling as well as a simulated mea- FOF @xample, inspired by Figs. 1 and 2, one could settle close
suremen{symbolg. The lower panel displays the theoretical value 0 the maxima. Eventually, the inversion equations are
of the coefficientVy, as well as its recovery from experimesym-
bols). The stars are used for the recoveded\,b)=(0.2,0.2 and S(k)

DS T —
a,=0.5 was used for our faked data. See Sec. Il A 3 for the units. K2 L7TF(@,p)](K) + VoK) =0,
T(ky) 2 _ T(K)
% H1TF(a0,p)1(ky) + V1 (ky) =0, FHil[FL(al,P)](k) + V1K) =0. (35
) e k kp) =0 32
& [Fi(ag,p)](k) +Vy,(ky) =0, (32) IIl. VFM ON SUPERCONDUCTING BILAYERS

) ) ) ) A. Forward problem
which allows us to obtain the superconducting properties

from experimental data. Again, we have applied the previous Here, we develop the theory for the magnetostatic inter-
procedure for simulated noise corrupted data. Figure 5 disaction between a magnetic tip and the vortex field, when a
plays the results. It is of note that even for moderate noiséecond superconduptlng layer is introduced. TO be specific,
levels (10% in this casg A can be recovered in a nonsmall the vortex settles within the upper layer, of thicknésand
range of wave-number valuds penetration depth,. A half-space with penetration depih

We want to stress that Hankel transform inversion overdies below, which will modify the flux structure spreading out
comes the technical difficulties related to the Laplace transfrom the vortex. The governing London equations of the
form. The fundamental mathematical issue is the celebrateroblem read

inversion theorem Fi‘:HM, i.e., the forward and inverse Vzﬁl=o,
transformations have the same operational f@mour case @
u=1). This is customarily expressed in terms of #Héunc- VZHZ_ (1/)\§)ﬁzz - —552(/))82,
tion as A1

* . ok-k') R -

. dp pJ,u(PK)J,(pK') = === V2hy - (1A2)V?hy = 0. (36)

3 Notice that vorticity has been limited to the upper medium.
i Proceeding as in the case of a single superconducting layer
H,=H,. [Egs.(3)«6)], we have the Fourier components

144512-6
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Ha(k,2) =Dy (ke ™,

Doe,

2wy N2’

Ha(k,2) = Di(K)cosH(y12) + Dy(K)sinh(y12) +

Ha(k,2) = Da(k)e722D) (37)

wherey,=\Vk?>+1/\? andi=1,2.

Again, recalling continuity boundary conditions at the in-

terfacesz=0 andz=-b, we obtain

D1K) = y1A.{y; sinh(by,) + k[coshby,) - 1]},
(383

Dy (k) = - kAz{ v, sinh(byy) + v; {COSI‘(b'yl) + %} },

(38b)
D5, (K) = —kA,{y; sinh(by;) + y)[coshby,) — 1]},
(380
D3,(K) = y14,{y, sinh(by,) + k[costby,) - 1]},
(380
where
A= Dy/2myiNs

(y172+ v1K)cosHbyy) + (¥2 + yoK)sinhby;)

We want to notice that all the results in Sec. Il can be ob-
tained from the limity,— Kk, which is nothing but consider-

ing a large penetration depth in the second mediym .
Eventually, Fourier transform inversion leads to

hi(p,2) = J dk kd(kp)Dy,(Kie™, (393
0

os(,2) = f dk k(kp)[D(K)cost( 7,2
0

e S
* Dy0sinty2]+ 5 Lko| ). (@9b

hap,2) = f dk kd(kp) D (k2. (390
0

Now, using the same technique presented in Sd&ds.(9)

PHYSICAL REVIEW B 70, 144512(2004)

J26= - Lz J dk J(kp) D, (k€722 (41)
' 477 )\2 0

Vortex-tip interaction
The interaction between a magnetic point dipole rip
=(0,0,m,) located at(p, #,a) and the vortex at the origin of

the cylindrical coordinate system may be evaluated in the
same manner as in Sec. Il. One gets

Fuap)=- mZZ:IT)O fo dk KD, (KIe™y(kp).  (42)

B. Inverse problem

In principle, one can perform an analysis completetely
parallel to the one discussed in Sec. Il B for the case of
single-layer superconductors. However, in this case, a new
equation must be included for solving the trige;,\,,b).

To be specific, one should either solve the system

k
%ﬁ_l[ﬁ(aypo)](kl) +Dy,(ky) =0,
1
k
%ﬁ_l“:l_(aypo)](kz) +Dyky) =0,
2
k.
S(kzs) L7F(a,p0)1(ks) + Dy,(ks) = 0 (43)
3

for vertical displacement modes, or

T(k)

H1'[FL(a0,0)](ky) + Dy,(ky) = 0,

K
T(k
LZZ) H1'[FL(a0,p)1(ky) + Dy,(ko) =0,
5
Tk
f@a) H:'[FL(a0,p)](ks) + D1,(ks) = 0 (44)
3

for lateral dispacement modes.

IV. MICROMAGNETIC PARTICLE MANIPULATION

In this section, we report on how one could manipulate
the position of magnetic particles by tuning the vortex-
particle interaction lateral force. Here, we will focus our at-
tention on a single particle and a single vortex, but the idea is
valid for an assembly of particles, settling above an Abriko-

and(10)], one may obtain the supercurrent density distribu-goy |attice of vortices as well. In this latter case, one could

tion in both media,

e}

i1p=- ﬁ f dk 3, (kp)[ D%, (K cost{7,2)
TN Jo

— . C (DO (ﬁ)
+D2Z(k)smf(712)] + 8772 )\iKl N ) (40)

even produce a forth and back creep of particles.

Let us suppose that a vortex is pinned within a supercon-
ducting layer of penetration depiy. Let the magnetic par-
ticle settle in equilibrium above the vortex as a result of the
balance between some external force and the lateral interac-
tion F (a,p) described in this work. Just by adding a second
superconducting material whose separation to the first is

144512-7
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N/ §
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y

FIG. 7. The lateral force= (ag,p) for several values oh,
(0.7, 0.5, and 0.01 in descending order of the curv&ke upper
curve(continuous lingrepresents the limit,— . \; was taken to
be 0.9, the slab thickne&s=1, and the vertical distanag=1. See

:i/d)__)._))))J [(L&g: Sec. Il A 3 for the details about units.

As a final remark, we want to comment on the effect of
0.7 the upper superconducting layer thickness. Figure 8 shows
the results for the lateral force in the cases of a single and
double layer. Notice that for a single layer, the force in-
creases withb because the stray field is confined to a smaller
region andsh, ,/dp increases. However, the effect of adding
a second superconducting layer is more prominent when the
thicknessb diminishes.

) ((—

V. CONCLUSION

Along this work, we have developed the theoretical back-
0.5 ground for the recovery of the penetration deptin super-
conductors with vortices, by force microscopy experiments.
Namely, we present the concept of vortex force microscopy,
i.e., the physical interaction between the flux quantum and a
tiny magnetic particle. It is shown that may be recovered
from lateral force detection. In addition, this quantity may be
\ recorded either as a function of the tip-sample vertical dis-
) | (—— tancea, or horizontally scanning above the vortex. The latter
mode was not described in previous studies, owing toXt¥ie
translational invariance of the vertical force in Meissner state
layers. Outstandingly, the horizontal scanning mode relates
0.01 to a quite well-behaved inverse problem, as compared to the

F
FIG. 6. Vortex field lines for a single-layétop) and a double- v

layer superconductor with decreasing values of the penetration 0.3
depth in the second mediuix,, as labeled to the bottom of the
plots. (\1,b)=(0.9,1.0 was used for the upper layer.

made smaller and smaller, the lateral force is reduced and the

particle may be released. As an alternative which avoids the 0.1
intrinsic difficulties of cryogenic mechanical operation, we
also suggest to use temperature control. Thus, one could ther-
mally isolate both layers and take advantage of the variation 0 0.5 1 15 > 2.5 P

\o(T).

The phenomenon is illustrated by Figs. 6 and 7. We recall FIG. 8. The lateral forcd= (ay,p) as a function of the lateral
that the action of the lower superconducting layer is to pushiistancep for a system composed of one or two superconductors.
the vortex field lines from below. Such compression reduce3he behavior for two values of the superconducting layer thickness
the lateral variatiowh, ,/ dp and the forceé=_ diminishes. As b is included. The dipole approximation has been used for the tip.
is apparent from both figures, the effect is more and more;=\, was taken to be 0.2, and the vertical distamge 1. See
pronounced a&, diminishes. Sec. Il A 3 for the details about units.

144512-8



THEORY OF VORTEX FORCE MICROSCOPY IN. PHYSICAL REVIEW B 70, 144512(2004)

ill-posed vertical case. In brief, lateral displacement data As a final potential application of vortex force micros-
must be treated by a Hankel transform, instead of the uneopy, we want to mention the study of magnetic films and
stable inverse Laplace transform for vertical scanning. Furnanostructured-?? by scanning the interaction with the vor-
thermore, a close relation exists between Hankel and Fourigex field. The sharp variation of the field intensity, as well as
transforms. This allows the numerical implementation of athe fluxoid quantization condition, encourage the proposed
widespread collection of robust Fourier transform algo-experiments as the basis for quantitative magnetic force mi-
rithms. croscopy.

By analyzing the vortex field in two-layered supercon-
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