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The interaction between a vortex within a finite-thickness type-II superconductor and a magnetic force
microscopy tip is studied. By analyzing the expression of the arising lateral force, we show that the supercon-
ducting penetration depth may be recovered from experiment, using the so-called Laplace transform inversion
method. This entails a vertical displacement experiment. The consideration of lateral scanning modes has
allowed us to extend the theory to the more stable Hankel transform inversion method, which eventually
becomes a Fourier analysis application. For the case of vortices in two-layered superconductors, we show that
magnetic particle manipulation is possible by tuning the configuration of the layers.
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I. INTRODUCTION

The interaction between superconducting materials and
magnetic force microscopy(MFM) tips has been addressed
in a number of recent studies. Thus, MFM has become a
high-performance technique for the investigation of
superconductors1 as it offers the advantage of probing the
London penetration depthl within very small areas of the
sample. This overcomes the difficulties associated to surface
imperfections and inhomogeneities that can be hardly
avoided in these materials. From the experimental point of
view, the technique features more and more versatile
operation.2

From the theoretical side, some remarkable advances refer
to the still challenging inverse problem, i.e., recovering su-
perconducting properties from observable quantities. In par-
ticular, the nondestructive evaluation of inhomogeneous pen-
etration depthlsrWd,3,4 and the concomitant difficulties related
to finite-size effects,5 have been dealt with. However, much
of this work is only focused on Meissner state superconduct-
ors. The influence of vortices has been scarcely touched6 and
merely refers to the forward problem, i.e., prediction of the
observables assuming the superconducting properties known.
Remarkably, the presence of induced vortices may be either
responsible for uncertainties in the interpretation of
experiments,7 or even a means of attempting the determina-
tion of l.8

In this paper, we have developed an inverse method for
recoveringl from the interaction between superconducting
layers with vortices and MFM tips. The theory is developed
for the lateral force arising when the tip settles over a flux
quantumF0. We recall that lateral forces, as well as depen-
dence on the tip’s lateral displacement, were not considered
in previous studies. The planar translational invariance for
superconducting layers in the Meissner state produces a mag-
netostatic interaction which only depends on the vertical dis-
tance. However, with vortices present, the horizontal position
of the tip plays a role. Taking advantage of this, we will

show that inversion techniques may be extended and im-
proved. Thus, horizontal scanning will be related to Fourier-
Bessel transforms, which are quite well behaved as com-
pared to previous proposals.

It is of note that lateral force microscopy(LFM) is already
possible by means of a new generation of cantilevers, which
are sensitive to the force in any direction. To be specific, this
is achieved with the so-called domain wall tips, described in
Refs. 9 and 10.

The existence of a maximum in the lateral force versus
distance curve has been predicted. This feature, together with
the consideration of two-layered superconductors, has in-
spired the proposal of magnetic particle manipulation by
means of vortex microscopy. In brief, a potential well for
lateral displacements is formed upon the vortex. The barrier
shape may be tuned by changing the separation between the
superconductors. Thus, one can either trap or release nano-
metric particles settling on the top layer, by vertical displace-
ment of the underlying one. This concept is basically recip-
rocal to recent ideas for obtaining controlled movement of
vortices and other entities by means of nanomagnets or mag-
netic bubble systems9–12 and microcoils.13

Although our investigation was focused on the action of
the vortex field upon the magnetic particle, a number of com-
plimentary quantities, such as the full magnetic field distri-
bution and superconducting current density, are derived.
Here, they have been used for the assessment of the physical
results, but may also be the basis for further studies.

The work is organized as follows. In Sec. II, we study the
forward and inverse problems related to the vortex force mi-
croscopy(VFM) on a superconducting layer. In Sec. III, we
use the London theory for analyzing the behavior of a vortex
within a superconducting bi-layer. The interaction with a
force microscopy tip is also analyzed. Finally, inspired by the
arising physical scenario, Sec. IV is devoted to the proposal
of a mechanism for manipulating small magnetic particles by
the action of vortex fields in layered systems.
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II. VFM ON A SUPERCONDUCTING LAYER

A. Forward problem

1. Stray field of the vortex

In this section, we solve the magnetostatic boundary value
problem in a type-II superconducting thin film with a vortex.
The superconductor is parallel to theXY plane, and fills the
space betweenz=0 andz=−b. This selection allows to re-
produce previous results6,14 in a somewhat more compact
form, and eases comparison with bilayers. As it is customary,
vorticity is incorporated to the London theory by means of a
two-dimensional impulse(delta) function centered at the po-
sition where the vortex settlessr0=0d for simplicity. Then, if
one follows the convention for the fields in the domains of
interest

hWv = 5hW1srWd, z. 0

hW2srWd, − b , z, 0

hW3srWd, z, − b,

s1d

it follows that

¹2hW1 = 0,

¹2hW2 − s1/l2dhW2 = −
F0

l2 d2srdez,

¹2hW3 = 0. s2d

Now, one can benefit from the problem’s symmetry in
order to simplify the differential equation statement. Thus,
using the two-dimensional Fourier transform

HW skW,zd =
1

2p
E

∀
d2rW e−ikW·rWhWsr,zd, s3d

we get the simplified system

]z
2HW 1 − k2HW 1 = 0,

]z
2HW 2 − g2HW 2 = −

F0

l2 ez,

]z
2HW 3 − k2HW 3 = 0, s4d

with the well-known solution

HW 1 = VW 1skde−kz,

HW 2 = VW 2
+skdcoshsg zd + VW 2

−skdsinhsg zd +
F0ez

2pg2l2 ,

HW 3 = VW 3skdeksz+bd. s5d

Above, we have usedg;Îk2+1/l2. Mathematically valid
solutions that correspond to unphysically divergent fields
have been rejected.

In order to obtain the coefficientsVW skd, one must impose
continuity boundary conditions on the planar interfacesz
=0,−b. This leads to

V1zskd = g D hg sinhsbgd + kfcoshsbgd − 1gj, s6ad

V 2z
+ skd = − k D hk sinhsbgd + gfcoshsbgd + 1gj, s6bd

V 2z
− skd = − k D hg sinhsbgd + kfcoshsbgd − 1gj, s6cd

V3zskd = g D hg sinhsbgd + kfcoshsbgd − 1gj, s6dd

where

D ;
F0/2pg2l2

2kg coshsbgd + sk2 + g2dsinhsbgd
.

Finally, one can express the components of the magnetic
field by inverting the Fourier transform, i.e.,

hzsr,zd =
1

2p
E

∀
d2kW eikW·rW Hzsk,zd

=
1

2p
E

0

`

dkFE
0

2p

df eikr cossfdGkHzsk,zd

=E
0

`

dk J0skrdkHzsk,zd. s7d

Here, J0 stands for the zeroth-order Bessel function of the
first kind. Schläfli’s integral representation of this function
has been recalled. Thus, we obtain

h1zsr,zd =E
0

`

dk kJ0skrdV1zskde−kz, s8ad

h2zsr,zd =E
0

`

dk kJ0skrdfV 2z
+ skdcoshsgzd + V 2z

− skdsinhsgzdg

+
F0

2pl2K0S r

l
D , s8bd

h3zsr,zd =E
0

`

dk kJ0skrdV3zskdeksz+bd, s8cd

with K0 the zeroth-order modified Bessel function of the sec-
ond kind. These equations allow the straightforward evalua-
tion of some related physical quantities. In particular, if one
uses the divergenless character of the magnetic field, to-
gether with the cylindrical symmetry of our problem, the
relation

]

] r
srhrd = − r

] hz

] z
s9d

may be used for determining the field componenthr by
quadrature. Then, the supercurrent density within the super-
conductor jusr ,−bøzø0d can be derived from Ampere’s
law,
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jusr,zd =
c

4p
F ] hr

] z
−

] hz

] r
G . s10d

This leads to

ju = −
c

4p l2E
0

`

dk J1skrdfV 2z
+ skdcoshsgzd + V 2z

− skdsinhsgzdg

+
c F0

8p2l3K1S r

l
D . s11d

2. Vortex-tip interaction

The physical quantities considered above allow us to
evaluate the interaction between the vortex and the MFM tip.
In particular, we are interested in the mutual magnetic force.
This may be derived from the appropriatefree energyof the
system, which is analyzed below.

First, we recall that the amount of energy related to the
creation of a current density distribution is15

U jW =
1

2c
E

∀
jW ·AW dV=

1

8p
E

∀
B2 dV. s12d

This term accounts for the work done against electromotive
forces, and may be considered as apotential energy. When
dealing with superconductors, one must additionally include
a kinetic energyterm, related to the charge carriers, which
takes the form

Uk =
2p

c2 E
s

l2js
2 dV. s13d

Thus, the magnetic energyU=U jW+Uk becomes

U =
1

2c
E

∀
jW ·AW dV+

1

8p
E

s

l2i¹ 3 ¹ 3 AW i2 dV. s14d

Now, the suitable free energy, related to virtual displace-
ments of the permanent magnet, is15

F = U −
1

c
E

m

jWm ·AW dV. s15d

Here, we introduce the fact that magnetization current den-
sities remain unchanged.

Above, subindicess,m have been used, respectively, for
the superconductor and the magnet. The quantities with no
subindex correspond to the superposition of both contribu-
tions.

Equation (15) may be given a practical form by using
London’s equation,

AW + l2 ¹ 3 ¹ 3 AW = FW v. s16d

In the case of one vortex present in the layer, the vorticity

term becomesFW v=s0,F0/2pr ,0d in cylindrical coordinates.
Thus, one gets

F =
1

2c
E

s

FW v · jWs dV−
1

2c
E

m

jWm ·AW dV. s17d

Next, we split up the supercurrents asjWs= jWme+ jWv, indicating
the superposition of induced Meissner currents, and the vor-
tex contribution. We have

F =
1

2c
E

s

sFW v · jWv + FW v · jWmeddV−
1

2c
E

m

s jWm ·AW s + jWm ·AW mddV.

s18d

Substracting the constant self-interaction energiesFW v · jWv and

jWm·AW m, and using the symmetry of the mutual interaction
terms, one gets

F̃ ; F −
1

2c
E

s

FW v · jWv dV−
1

2c
E

m

jWm ·AW m dV

=
1

2c
E

s

sFW v · jWme− jWv ·AW m − jWme·AW mddV. s19d

Eventually, one can use the equality of the first two terms,
which represent the interaction between the vortex and the
Meissner currents, and the interaction between the vortex
and the magnet.16 The free energy becomes

F̃ = −
1

c
E

s

jWv ·AW m dV−
1

2c
E

s

jWme·AW m dV, s20d

or, by virtue of symmetry,

F̃ = −
1

c
E

m

jWm ·AW v dV−
1

2c
E

m

jWm ·AW me dV. s21d

Eventually, the application of vector analysis formulas leads
to the alternative expression

F̃ = −E
m

MW ·hWv dV−
1

2
E

m

MW ·hWme dV;Fvsa,rWd + Fmesad.

s22d

Above,Fv stands for the magnet-vortex interaction andFme
for the interaction with the induced Meissner currents.sa,rWd
are used for the vertical and lateral coordinates of the mag-
netic tip (see below). In the general case, one should account
for both terms in order to evaluate the interaction forces be-
tween the magnet and the superconductor. However, as we
will focus on the lateral force, only the first term plays a role,
i.e.,

FW Lsa,rWd = −
] F̃
] rW

= −
] Fv

] rW
. s23d

This expression may be readily evaluated for the case of a
dipole tip mW =s0,0,mzd, settling at the pointsr ,u ,ad above
the vortex. The radial force is
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FLsa,rd = −
] s− mW ·hW1d

] r
=− mzE

0

`

dk k2V1zskde−kaJ1skrd.

s24d

Equation (24) may be generalized so as to incorporate
size effects for the tip by means of superposition. However,
lateral displacements entail a complex vector summation, be-
cause the unit vectorr̂ is different for each volume element.
This is not a shortcoming for numerical evaluations, but in
order to bring out the physics with the least mathematical
complication we confine to analytical evaluations in what
follows. On the other hand, these calculations fit the possi-
bility of investigating the superconducting properties by us-
ing the dipole of microsquids or domain-wall tips.

Based on the previous equations, Fig. 1 displays the de-
pendence of the lateral forceFLsa0,rd as a function of the
lateral distancer for a point dipole. Notice the maximum at
some distance from the center of the vortex. Figure 2 shows
the graph of the lateral force versus the vertical distance
FLsa,r0d for a given lateral distance. We recall that the ob-
served behavior is the same as that reported in Ref. 17,
where the assumptionb!l was used.

3. Quantitative evaluation: Physical units

The following convention will be used throughout the pa-
per for quantitative evaluations. First, we determine the
length units by selecting a definite value for the film thick-

ness, i.e.,b=0.2 meansb=0.2 ,. The coefficientsV are
given in units of the flux quantum, i.e.,V=0.5 meansV
=0.5 F0/2p. Finally, the force is expressed in units of
m F0 ,3, with m the magnetic moment of the tip. Specific
values for a particular experiment may be obtained by choos-
ing the associated, andm.

B. Inverse problem

Below, we present the theory for inverse vortex force mi-
croscopy. It will be shown that both the superconducting
penetration depth and the thickness of the film may be re-
covered by the Laplace transform inversion method, which
was already applied to superconductors in the Meissner state.
In addition, the consideration of lateral displacements has
inspired a novel and intrinsically more stable technique, the
so-called Hankel inversion method. Eventually, the combina-
tion of both techniques is also suggested.

As concerns the thickness of the superconducting film, we
want to emphasize that it may be accurately obtained by
other methods, as electron microscopy or Rutherford back-
scattering. Thus, our proposed magnetic determination may
be used in combination with them, as a self-consistency
check.

1. Laplace transform inversion method

Laplace transformation inspired methods were initially
suggested in half-space geometry for recovering the penetra-
tion depthl in superconductors with no vortices present.4

Further generalization5 allowed us to consider thin supercon-
ductors, even with unknown thicknessb. Here, we show that
VFM also allows us to recover the pairsl ,bd by the same
algorithm. The method will be implemented for the lateral
forces.

Recall the definition of the Laplace transform operator
Lffskdgsad=eexps−akdfskddk. Then, Eqs.(24) may be writ-
ten as

FLsa,r0d = − mzLfk2V1zskdJ1skr0dgsad. s25d

Notice that above,r is to be considered as a parameter, while
the distancea is the Laplace transformedvariable. This
mathematical concept has a clear physical counterpart. The
associated experiment consists of a vertical scanning, while
lateral displacements are not allowed. Subsequent data
analysis will be made for the pairsfai ,FLsaidg and a given
value forr0.

Eventually, one can formally apply the inverse operator
L−1 and obtain

V1zskd = −
1

mzk
2J1skr0d

L−1fFLsa,r0dgskd

; −
Ssk,r0d

k2 L−1fFLsa,r0dgskd. s26d

Recalling thatV1zskd depends onl andb, one can use the
previous equation in order to devise an operational relation
involving these quantities and experimental or computable
data. Suppose that we need to determine the pairsl ,bd from

FIG. 1. The lateral forceFLsa0,rd curves as a function of the
lateral distancer, using a point dipole approximation for the tip.
Here we have takenl=0.2,b=0.1,a0=1. See Sec. II A 3 for the
units.

FIG. 2. The lateral forceFLsa,r0d curves as a function of the
vertical distancea, using a point dipole approximation for the tip.
Here we have takenl=0.2,b=0.1,r0=1. See Sec. II A 3 for the
units.
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the available information,L−1fFLsa,r0dgskd, for a collection
of values of the wave numberk. Equation(26) may be writ-
ten as

gsk;l,bd =
Sskd
k2 L−1fFLsa,r0dgskd + V1zskd = 0. s27d

Considering the wave numberk as a parameter, we can take
any couple of nontrivial valuesk1Þk2 and pose the follow-
ing nonlinear system of equations:

Ssk1d
k1

2 L−1fFLsa,r0dgsk1d + V1zsk1d = 0,

Ssk2d
k2

2 L−1fFLsa,r0dgsk2d + V1zsk2d = 0, s28d

or in a compact form

g1sk;l,bd = 0,

g2sk;l,bd = 0, s29d

wherek;k1 andg2sk;l ,bd=g1stk;l ,bd providedt=k2/k1.
This kind of nonlinear equation system is analogous to the

one that appears in the resolution of the inverse MFM prob-
lem for superconductors without vortices, and magnetic ma-
terials in Refs. 5 and 18. We have applied the previous pro-
cedure for simulated noise corrupted data. A random noise,
corresponding to 0.1% resolution of the measured force, has
been added(see Ref. 19 for further details). Figures 3 and 4
show the recovered quantitiesl and b from our artificial
data. The graphs were obtained for the lateral force on a
VFM dipole tip.

It is of note that the above kind of inverse problem is
ill-posed, with difficulties of nonuniqueness and instability
of the solution. This stems from the fact that Laplace trans-
form inversion is intrinsically unstable and small variations
in the initial conditions may cause large variations in the
solutions. On the other hand, our simulation was performed
under the assumption that the VFM data are available for all
distances between the tip and the vortex position. It is appar-
ent that this would be restricted by the experimental condi-
tions. As a final technical remark, we recall that Laplace
transform inversion of real data is an even more delicate
task, because, contrary to the case of faked data, complex-

variable-based algorithms cannot be used. Although real-
value-based methods are at hand, application is not trivial
and no single method gives optimum results for all purposes.
For instance, the commonly used Gaver-Stehfest method20 is
based on a series expansion, whose accuracy does not in-
crease with the number of termsN, owing to numerical
rounding errors. Thus, one must choose an optimum value of
N which depends on the machine precision.

2. Hankel transform inversion method

In this subsection, we show that the consideration of lat-
eral displacements for the VFM tip allows us to introduce an
interesting concept, which allows us to skip the mathematical
difficulties explained above. Thus, if one performs a horizon-
tal scanning for a given distance between the tip and the
superconducting film, data inversion relates to a more simple
and well-behaved mathematical operation, i.e., the so-called
Hankel transform inversion. Furthermore, the close relation
between Hankel and Fourier transforms allows us to use the
latter, which is a widespread mathematical application.
Again, we start with Eqs.(24). Now, we recall the definition
of the Hankel transform operator H1ffskdgsrd
=ekJ1skrdfskddk. This allows us to write

FLsa0,rd = − mzH1fkV1zskde−ka0gsrd. s30d

Here, our point of view is complimentary to the previous
paragraph. The distancea0 is to be considered as a param-
eter, andr is theHankel transformedvariable. The proposed
experiment would consist of a horizontal scanning, while
keeping a constant vertical distance between the tip and the
superconducting layer. Mathematical inversion should be
performed for the pairsfri ,FLsridg. To be specific, one can
apply the inverse operator H1

−1 and obtain

V1zskd = −
eka0

mzk
H1

−1fFLsa0,rdgskd

; −
Tsk,a0d

k2 H1
−1fFLsa0,rdgskd. s31d

It is apparent that the method for recoveringsl ,bd, which
was described in the framework of Laplace inversion for
vertical displacement modes, may be literally translated to
this case. One gets the system

FIG. 3. Recovery of the London penetration depthl by VFM,
using FLsad for the case of simulated experiment withsl ,bd
=s0.2,0.1d. A magnetic dipole approximation was used for the tip.
l is plotted as a function of the wave-number ratiot=k2/k1.

FIG. 4. Recovery of the superconducting slab thicknessb by
VFM, using FLsad for the case of simulated experiment with
sl ,bd=s0.2,0.1d. A magnetic dipole approximation was used for the
tip. b is plotted as a function of the wave-number ratiot=k2/k1.
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Tsk1d
k1

2 H1
−1fFLsa0,rdgsk1d + V1zsk1d = 0,

Tsk2d
k2

2 H1
−1fFLsa0,rdgsk2d + V1zsk2d = 0, s32d

which allows us to obtain the superconducting properties
from experimental data. Again, we have applied the previous
procedure for simulated noise corrupted data. Figure 5 dis-
plays the results. It is of note that even for moderate noise
levels (10% in this case), l can be recovered in a nonsmall
range of wave-number valuesk.

We want to stress that Hankel transform inversion over-
comes the technical difficulties related to the Laplace trans-
form. The fundamental mathematical issue is the celebrated
inversion theorem Hm

−1=Hm, i.e., the forward and inverse
transformations have the same operational form(in our case
m=1). This is customarily expressed in terms of thed func-
tion as

E
0

`

dr rJmsrkdJmsrk8d =
dsk − k8d

k8

m
Hm

−1 = Hm.

In conclusion, the inversion algorithm is more stable and
allows us to introduce real-valued data without complication.

As a final remark, and tracing back to Eq.(7), the one-
dimensional Hankel transform stated above may be cast as a
two-dimensional Fourier transform. In fact,

H1
−1fFLsa0,rdgskd = F2

−1fFLsa0,rdC1sx,ydgskd. s33d

Here, we have used

r ; Îx2 + y2,

C1sx,yd ; −
ix + y

Îx2 + y2
. s34d

This equivalence may be of interest because a variety of
optimal and robust fast Fourier transform algorithms are at
hand.

3. Hybrid Laplace-Hankel inversion method

We want to emphasize that vertical and lateral dispace-
ment modes could be used in combination. In practice, a
vertical scanning for a given valuer1, as well as a lateral
scanning for a given heighta1, are suggested. The selection
of a1 andr1 relies on experimental resolution considerations.
For example, inspired by Figs. 1 and 2, one could settle close
to the maxima. Eventually, the inversion equations are

Sskd
k2 L−1fFLsa,r1dgskd + V1zskd = 0,

Tskd
k2 H1

−1fFLsa1,rdgskd + V1zskd = 0. s35d

III. VFM ON SUPERCONDUCTING BILAYERS

A. Forward problem

Here, we develop the theory for the magnetostatic inter-
action between a magnetic tip and the vortex field, when a
second superconducting layer is introduced. To be specific,
the vortex settles within the upper layer, of thicknessb and
penetration depthl1. A half-space with penetration depthl2
lies below, which will modify the flux structure spreading out
from the vortex. The governing London equations of the
problem read

¹2hW1 = 0,

¹2hW2 − s1/l1
2dhW2 = −

F0

l1
2 d2srdez,

¹2hW3 − s1/l2
2d¹2hW3 = 0. s36d

Notice that vorticity has been limited to the upper medium.
Proceeding as in the case of a single superconducting layer
[Eqs.(3)–(6)], we have the Fourier components

FIG. 5. Recovery of the superconducting penetration depth from
the Hankel transform technique. The upper panel shows the theo-
retical lateral force(continuous line) as well as a simulated mea-
surement(symbols). The lower panel displays the theoretical value
of the coefficientV1z as well as its recovery from experiment(sym-
bols). The stars are used for the recoveredl. sl ,bd=s0.2,0.1d and
a0=0.5 was used for our faked data. See Sec. II A 3 for the units.
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HW 1sk,zd = DW 1skde−kz,

HW 2sk,zd = DW 2
+skdcoshsg1zd + DW 2

−skdsinhsg1zd +
F0ez

2pg1
2 l1

2 ,

HW 3sk,zd = DW 3skdeg2sz+bd, s37d

wheregi ;Îk2+1/li
2 and i =1,2.

Again, recalling continuity boundary conditions at the in-
terfacesz=0 andz=−b, we obtain

D1zskd = g1D2hg1 sinhsbg1d + kfcoshsbg1d − 1gj,

s38ad

D2z
+ skd = − kD2Hg2 sinhsbg1d + g1 Fcoshsbg1d +

g2

k
GJ ,

s38bd

D2z
− skd = − kD2hg1 sinhsbg1d + g2fcoshsbg1d − 1gj,

s38cd

D3zskd = g1D2hg1 sinhsbg1d + kfcoshsbg1d − 1gj,

s38dd

where

D2 ;
F0/2pg1

2l1
2

sg1g2 + g1kdcoshsbg1d + sg1
2 + g2kdsinhsbg1d

.

We want to notice that all the results in Sec. II can be ob-
tained from the limitg2→k, which is nothing but consider-
ing a large penetration depth in the second mediuml2→`.
Eventually, Fourier transform inversion leads to

h1zsr,zd =E
0

`

dk kJ0skrdD1zskde−kz, s39ad

h2zsr,zd =E
0

`

dk kJ0skrdfD2z
+ skdcoshsg1zd

+ D2z
− skdsinhsg1zdg +

F0

2pl1
2K0S r

l1
D , s39bd

h3zsr,zd =E
0

`

dk kJ0skrdD3zskdeg2sb+zd. s39cd

Now, using the same technique presented in Sec. II[Eqs.(9)
and (10)], one may obtain the supercurrent density distribu-
tion in both media,

j1,u = −
c

4p l1
2E

0

`

dk J1skrdfD2z
+ skdcoshsg1zd

+ D2z
− skdsinhsg1zdg +

c F0

8p2 l1
3K1S r

l1
D , s40d

j2,u = −
c

4p l2
2E

0

`

dk J1skrdD3zskdeg2sb+zd. s41d

Vortex-tip interaction
The interaction between a magnetic point dipole tipmW

=s0,0,mzd located atsr ,u ,ad and the vortex at the origin of
the cylindrical coordinate system may be evaluated in the
same manner as in Sec. II. One gets

FLsa,rd = −
mzF0

2p
E

0

`

dk k2D1zskde−kaJ1skrd. s42d

B. Inverse problem

In principle, one can perform an analysis completetely
parallel to the one discussed in Sec. II B for the case of
single-layer superconductors. However, in this case, a new
equation must be included for solving the triplesl1,l2,bd.
To be specific, one should either solve the system

Ssk1d
k1

2 L−1fFLsa,r0dgsk1d + D1zsk1d = 0,

Ssk2d
k2

2 L−1fFLsa,r0dgsk2d + D1zsk2d = 0,

Ssk3d
k3

2 L−1fFLsa,r0dgsk3d + D1zsk3d = 0 s43d

for vertical displacement modes, or

Tsk1d
k1

2 H1
−1fFLsa0,rdgsk1d + D1zsk1d = 0,

Tsk2d
k2

2 H1
−1fFLsa0,rdgsk2d + D1zsk2d = 0,

Tsk3d
k3

2 H1
−1fFLsa0,rdgsk3d + D1zsk3d = 0 s44d

for lateral dispacement modes.

IV. MICROMAGNETIC PARTICLE MANIPULATION

In this section, we report on how one could manipulate
the position of magnetic particles by tuning the vortex-
particle interaction lateral force. Here, we will focus our at-
tention on a single particle and a single vortex, but the idea is
valid for an assembly of particles, settling above an Abriko-
sov lattice of vortices as well. In this latter case, one could
even produce a forth and back creep of particles.

Let us suppose that a vortex is pinned within a supercon-
ducting layer of penetration depthl1. Let the magnetic par-
ticle settle in equilibrium above the vortex as a result of the
balance between some external force and the lateral interac-
tion FLsa,rd described in this work. Just by adding a second
superconducting material whose separation to the first is
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made smaller and smaller, the lateral force is reduced and the
particle may be released. As an alternative which avoids the
intrinsic difficulties of cryogenic mechanical operation, we
also suggest to use temperature control. Thus, one could ther-
mally isolate both layers and take advantage of the variation
l2sTd.

The phenomenon is illustrated by Figs. 6 and 7. We recall
that the action of the lower superconducting layer is to push
the vortex field lines from below. Such compression reduces
the lateral variation]h1,z/]r and the forceFL diminishes. As
is apparent from both figures, the effect is more and more
pronounced asl2 diminishes.

As a final remark, we want to comment on the effect of
the upper superconducting layer thickness. Figure 8 shows
the results for the lateral force in the cases of a single and
double layer. Notice that for a single layer, the force in-
creases withb because the stray field is confined to a smaller
region and]h1,z/]r increases. However, the effect of adding
a second superconducting layer is more prominent when the
thicknessb diminishes.

V. CONCLUSION

Along this work, we have developed the theoretical back-
ground for the recovery of the penetration depthl in super-
conductors with vortices, by force microscopy experiments.
Namely, we present the concept of vortex force microscopy,
i.e., the physical interaction between the flux quantum and a
tiny magnetic particle. It is shown thatl may be recovered
from lateral force detection. In addition, this quantity may be
recorded either as a function of the tip-sample vertical dis-
tancea, or horizontally scanning above the vortex. The latter
mode was not described in previous studies, owing to theXY
translational invariance of the vertical force in Meissner state
layers. Outstandingly, the horizontal scanning mode relates
to a quite well-behaved inverse problem, as compared to the

FIG. 6. Vortex field lines for a single-layer(top) and a double-
layer superconductor with decreasing values of the penetration
depth in the second mediuml2, as labeled to the bottom of the
plots. sl1,bd=s0.9,1.0d was used for the upper layer.

FIG. 7. The lateral forceFLsa0,rd for several values ofl2

(0.7, 0.5, and 0.01 in descending order of the curves). The upper
curve(continuous line) represents the limitl2→`. l1 was taken to
be 0.9, the slab thicknessb=1, and the vertical distancea0=1. See
Sec. II A 3 for the details about units.

FIG. 8. The lateral forceFLsa0,rd as a function of the lateral
distancer for a system composed of one or two superconductors.
The behavior for two values of the superconducting layer thickness
b is included. The dipole approximation has been used for the tip.
l1=l2 was taken to be 0.2, and the vertical distancea0=1. See
Sec. II A 3 for the details about units.
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ill-posed vertical case. In brief, lateral displacement data
must be treated by a Hankel transform, instead of the un-
stable inverse Laplace transform for vertical scanning. Fur-
thermore, a close relation exists between Hankel and Fourier
transforms. This allows the numerical implementation of a
widespread collection of robust Fourier transform algo-
rithms.

By analyzing the vortex field in two-layered supercon-
ductors, one is led to the proposal of a simple means of
manipulating magnetic particles. It has been shown that add-
ing a superconducting layer beneath the one which holds the
vortex stretches out the stray field above the superconduct-
ors. Then, the lateral forceFL exerted on a magnetic particle
that stays in equilibrium in that region diminishes and, even-
tually, it may be released.

As a final potential application of vortex force micros-
copy, we want to mention the study of magnetic films and
nanostructures21,22 by scanning the interaction with the vor-
tex field. The sharp variation of the field intensity, as well as
the fluxoid quantization condition, encourage the proposed
experiments as the basis for quantitative magnetic force mi-
croscopy.
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