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We show that, based on the Bean model for vortex pinning #Rev. Mod. Phys. 36, 31 !1964"$ one can assess
the relaxation of magnetic moment components in hard superconductors, induced by the oscillations of a
perpendicular magnetic field. Our theory follows a recent proposal of using phenomenological two-
dimensional modeling for the description of crossed field dynamics in high-Tc superconductors #Ph. Vander-
bemden et al., Phys. Rev. B 75, 174515 !2007"$. Long thick strips of rectangular cross section, subjected to a
uniform magnetic field, perpendicular to the strip axis are considered. One of the components of the applied
field, Hx, oscillates with a given amplitude, while the other one, Hy, remains constant. By solving a variational
statement of Bean’s model, we obtain stationary regimes with either saturation of the magnetization component
My to metastable configurations or complete decay to the thermodynamic equilibrium. As a common feature,
a steplike dependence in the time relaxation is predicted for both cases. The theory may be applied to long bars
of arbitrary and nonhomogeneous cross section.
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I. INTRODUCTION

A somewhat surprising fact about the magnetic moment
relaxation in superconductors was emphasized by Brandt and
Mikitik.1 Under certain circumstances, relaxation phenomena
can be predicted within the critical-state theory,2 completely
disregarding the influence of thermally activated flux creep.
The surprise comes from the consideration of the widely
used one-dimensional geometries !infinite slabs and cylin-
ders in parallel fields". In such cases, shielding current den-
sities never lead to relaxation whatever the time dependence
of the applied magnetic field is. They only switch between
the values ±Jc. As a consequence, trapped current loops may
not be removed !but just redistributed" unless the sample is
heated up.

The central idea in Ref. 1 is that taking advantage of finite
size effects, one can reconcile the criticality condition J
= ±Jc with the relaxation of magnetic moment components.
In brief, having a higher-dimensional system, one may trans-
fer critical current loops between mutually perpendicular
planes, and thus get rid of particular pinned flux components.
A simple configuration was investigated, allowing quantita-
tive comparison to experiments. To be specific, the authors
showed that when a thin superconducting strip is placed in a
transverse dc field, the application of an ac field perpendicu-
lar to the dc field leads to the decay of critical currents
shielding the latter. At the same time, the current distribu-
tions evolve toward a standard critical profile related to the
oscillating component. It is remarkable that, although two
dimensional in nature, the thin strip model may be solved via
quasi-one-dimensional analysis. Namely, thanks to the small-
ness of the thickness/width ratio, the problem may be split
into two coupled one-dimensional flux pinning statements.

From the physical point of view, it is of note that, within
the above theory, the actual conditions of the magnetic shak-
ing process determine either relaxation toward the true equi-
librium state of the superconductor or eventual freezing into

some metastable configuration. This feature is tightly linked
to the critical-state physics because it depends on the ampli-
tude of the ac field.

As a breakthrough in the above scenario, some recent
research about crossed field effects in high-Tc
superconductors3 has raised doubts about the predictions of
the critical-state model in this area. In particular, the transi-
tion between the complete and incomplete relaxation regimes
is questioned, pointing, in general, toward the eventual sup-
pression of the magnetic moment. Nevertheless, the compari-
son between the two models and the selection of a proper
theoretical background deserve further study. On the one
side, the authors of Ref. 3 have performed a truly two-
dimensional analysis. Their modeling is realized by studying
the influence of a two-component magnetic field perpendicu-
lar to the axis of a thick rectangular strip. On the other side,
the investigations were done in a flux creep framework
#power law E! !J /Jc"n$ and for quite specific initial condi-
tions.

In order to fill the gap between the available studies, in
the present work, we have solved the true critical-state limit
!n→" in the above E-J law" for two-dimensional transverse
flux problems under a wide range of conditions. By using
this ansatz, it will be shown that either complete or incom-
plete flux relaxation may be expected. We have focused on a
long thick strip subjected to a magnetic field perpendicular to
the axis !z axis in what follows". One of its components, Hy,
is fixed, and the other one, Hx, oscillates in a zigzag fashion.
Recall that the actual time dependence Hx!t" is not relevant
to the stationary regime, because the critical-state model
does not add any time constant to the flux dynamics. The
response of the system is instantaneous. Note also that the
currents induced by the field always flow along the strip, and
thus define a classical transverse problem, i.e., described by
the depinning threshold condition %Jz%#Jc!. This is of men-
tion because magnetic relaxation effects related to situations
in which a current component flows parallel to the local
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magnetic field have also been described in the literature.4,5

However, those studies require the incorporation of the intri-
cate flux cutting phenomenon, through the so-called double
critical-state model, introduced by Clem.4 That theory in-
cludes a second parameter, Jc&, related to the maximum angle
between flux lines before undergoing a cutting process. Such
complexity will be avoided here.

The paper is organized as follows. First, in Sec. II, we
describe in detail the magnetic flux configurations under
study and justify the application of a generalized Bean’s
model for the investigation of such phenomena. A numerical
method based on the concept of mutual inductance between
circuits will be introduced. In Sec. III, a set of numerical
results of the actual magnetic flux dynamics in a number of
crossed field configurations is presented. Based on the criti-
cal current distributions, and also related to the structure of
the penetrating field lines, we show the importance of the
partial penetration concept in this problem. In close analogy
to the one-dimensional critical-state problems, increasing the
applied magnetic field progressively leads to the disappear-
ance of the flux-free region. Section. IV is devoted to the
analysis of the relaxation of the magnetic moment, induced
by oscillations of transverse magnetic fields. A systematic
study for different amplitudes of the polarizing dc field as
well as of the oscillating transverse component is presented.
A relation between the decay to the true equilibrium magne-
tization and the disappearance of the flux-free core is estab-
lished for thick samples. The generality of the above proper-
ties is shown by application of the model to samples with
inhomogeneities in the cross section. Thus, in Sec. V, we
illustrate the evolution of the magnetic flux structure for
samples with nonhomogeneous critical current density Jc.

II. CRITICAL-STATE MODEL

The basic configuration considered in the present work is
sketched in Fig. 1. A superconducting bar occupies the re-
gion defined by %x%#w, %y%#d /2, %z%#". The external mag-
netic field will be applied along the x and y axes. Starting
from a zero field configuration, Hy will be ramped to a final
amplitude Hy,a. Then, Hx will be cycled between the values
±Hx,a in a linear fashion. We note that, corresponding to the
hypothesis that the lower critical field of the superconductor

may be neglected as compared to Hx,a and Hy,a, the equality
B! =$0H! will be used in what follows. In other words, the
equilibrium magnetization of the sample is approximated by
zero.

The starting point for the application of the critical-state
theory to the above problem is our variational statement5

within the 'A! ,J!( formulation.6 Such a representation in terms
of the vector potential and current density allows one to in-
clude finite size effects in a simple manner, and has been
well elaborated in previous work. The equivalence to the
more standard differential equation statements based on the
Maxwell equations is rigorously justified in Ref. 7. Thus, the
quasistationary evolution of magnetic processes in a hard
superconductor may be obtained from the constrained mini-
mization of the functional
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Here, J!n stands for the current density at the time layer n't,
% represents the superconducting region, and A! e means the
externally applied vector potential. Minimization is per-
formed iteratively in time with J!n+1!x!" the unknown function
for each step. As regards the constraints, recall that, for the
present work, the minimization of F under the condition
&J!&#Jc will be equivalent to the flux pinning criterion %J!%
#Jc!. Indeed, from symmetry arguments it follows that J!

strictly flows along the bar, i.e., J! = !0,0 ,Jz" and then &J!&
= %J!%.

On the technical side, an important advantage of the
above mentioned problem’s symmetry is the simplification of
the numerical algorithm to be used for solving the variational
statement. Thus, one can argue that the current density
streamlines may be replaced by a collection of infinite
straight wires, and the variational statement can be easily
discretized to an algebraic form. The problem is transformed
into the minimization of the quadratic function

F )
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Here, the set of unknowns 'Ii( represents the collection of
current lines flowing across the section of the sample, and
Mij is their mutual inductance matrix. Minimization will be
made under the set of constraints −Ic# Ii# Ic. The parameter
Ic is the critical current for an elementary wire, related to the
flux pinning current density limitation. The mutual induc-
tance coefficients will be evaluated from the formulas !per
unit length"
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8&
,
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FIG. 1. !Color online" Sketch of the experiment simulated in
this work. An infinite bar of cross section 2w(d is subjected to the
magnetic field excitation shown in the plot. Hy is initially increased
to the value Hy,a and then Hx is cycled with periodicity )ac and
amplitude Hx,a.
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Mij =
$0

2&
ln

a2

!xi − xj"2 + !yi − yj"2 , !3"

which can be obtained for a collection of parallel straight
wires of circular cross section !radius a".8 The simplicity of
these expressions for including the inductance effects is re-
markable and has been allowed by the variational statement
of the problem. In fact, when dealing with infinite wires, one
has to tackle with divergences caused by the unboundedness
of the source. One possibility for getting rid of such diffi-
culty is to absorb them in the form of integration constants.
Thus, the vector potential created by an infinite wire carrying
a current I may be written as

Az = .!$0I/4&"!C − r2/a2" , r # a

!$0I/4&"#C − 1 − 2 ln!r/a"$ , r * a ,
/ !4"

with C the above mentioned constant. Then, if one evaluates
the interaction energy 0A! ·J! )-i,jIiMijIj, that serves as the
definition of Mij, the constants from the different wires can-
cel out, and this permits the use of Eq. !3". As a first approxi-
mation, we have assumed that the vector potential created by
a wire over the section of any other one may be estimated by
the value at the center. This should provide a better and
better approximation as the calculation grid is refined.

In summary, the calculation method is as follows. First,
we compute the matrix Mij for a given grid of elements,
describing the problem !most of the examples presented later
correspond to the rectangular case of !(m=46(92 ele-
ments". Second, we solve the minimization of the function in
Eq. !2". Recall that one has !(m variables !'Ii(" constrained
by !(m conditions. This process is done iteratively in time
!n=0,1 ,2 , . . . " and one introduces the desired external bias,
through the position dependent vector potential. In the case
of a uniform field with components !Hx ,Hy ,0", one can use
the z component Ae=Hxy−Hyx.

Finally, we want to mention some additional details that
may be of help from the practical point of view. On the one
hand the further use of symmetry considerations related to
the homogeneity of the applied magnetic field is to be ad-
vised. Thus, if one considers the rectangular cross section in
the inset of Fig. 1, the inversion property I!x ,y"=−I!−x ,
−y" may be recalled. Only one-half of the variables have to
be accounted for, and the computation simplifies noticeably.
On the other hand, an important advantage of the preferred
'A! ,J!( formulation is that the physical quantities of interest
are obtained by integration of the former. Then, discretiza-
tion errors are smoothed. On the contrary, if one uses an 'H! (
formulation, J! is obtained by differentiation and this results
in the magnification of errors.

III. CROSSED FIELD DYNAMICS

Below, we will present the calculated current density dis-
tributions and the corresponding magnetic field configura-
tions induced by external excitations in the form illustrated
in Fig. 1. For further analysis, we have performed calcula-
tions for a variety of values of the parameters Hx,a and Hy,a.

Both have been allowed to range well above and below the
characteristic field Hp, which determines the full penetration
regime for H! along the x axis. Within the geometry consid-
ered in this work !w=d", one has9 Hp10.85wJc /2.

Hereafter, dimensionless units for the magnetic field will
be used, in terms of Hp, i.e., h)H /Hp.

A. Critical currents

As one expects from theoretical considerations,5 the nu-
merical solution of Eq. !2" produces a current density distri-
bution with the unknowns Ii taking the values ±Ic ,0. The
actual structure of critical and subcritical zones within the
bar’s cross section strongly depends on the 'Hx!t" ,Hy!t"(
process. Below, we describe some systematic properties that
have been observed.

1. Partial penetration

In Fig. 2, we depict the critical current distributions in the
initial part of the process illustrated in Fig. 1. In the upper
left, one can find the typical penetration profile for a uniform
external field along one of the symmetry axes of the sample
!y axis". In this case, this has been achieved when the con-
dition hy,a=0.4 is met. The subsequent pictures correspond to
a number of intermediate steps within the first cycle for the
hx component. This has also been ramped to the amplitude
hx,a=0.4. The actual orientation of the applied field is indi-
cated by the central vector, that is proportional to !hx ,hy"
within each picture. Notice the similarity between the
current-free cores within this study and the analytical results
in Ref. 10 for thin samples in oblique fields.

(+) (−)

FIG. 2. !Color online" Critical current distributions within the
cross section of the superconducting bar, subjected to the process in
Fig. 1. The applied magnetic field vector is indicated by the central
arrow. !+" indicates inward current flow, while !," indicates out-
ward current flow. The central core is the subcritical region J=0.
The normalized values hx,a=hy,a=0.4 have been used for this plot.
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Two facts are noticeable in the evolution of the current
density penetration profiles: !i" the introduction of hx induces
upper and lower sheets of current, devoted to the shielding of
the magnetic field variations, and !ii" within the chosen range
of parameters, one gets a central current-free core. The core
is initially distorted by the application of hx, but rapidly ac-
quires a stationary behavior. This property is apparent in the
lower shots of Fig. 2, where we display the evolution within
the first half of the second cycle in hx. Recall that one obtains
a dynamical structure for the ±Ic regions, around a stable
central core with Ic=0.

2. Full penetration

As one could infer from the knowledge of one-
dimensional critical-state problems, the subcritical region
collapses to zero volume when the applied magnetic field
reaches a certain intensity. In the two-dimensional case this
is also true, but one can obtain a full penetration regime by
combining 'hx,a ,hy,a( and the actual excitation process in a
number of ways. In Fig. 3, we show the current density dis-
tributions obtained for the stationary regime in the case hx,a
=1.6, hy,a=0.4. Recall that, together with the disappearance
of the core, any trace of the initial critical state related to the
application of hy,a is lost. The stationary critical current dis-
tribution is only related to the oscillating hx component.

B. Magnetic flux configurations

The magnetic field profiles !applied plus induced" corre-
sponding to the previous current density distributions are
shown in Figs. 4–6. The magnetic field lines have been ob-
tained as the contour plots of the function Az!x ,y", i.e., they
are given by the condition Az=const. This is a straightfor-
ward property in the two-dimensional !2D" geometry of this
work. On the other hand, Eq. !4" has been used in order to
evaluate the vector potential contributed by an infinite wire
of radius a and carrying a current I.

1. Partial penetration

Figure 4 displays the magnetic field structure correspond-
ing to the transient period in which the central core is estab-
lished !upper rows". Recall that the magnetic field is ex-
cluded from the current-free region !compare to Fig. 2" and
also the trend of forming a stationary profile, surrounded by
regions in which significant variations of the flux structure

take place. Thus, in the lower rows, one can already observe
that the inner core is basically unperturbed, while the applied
field oscillates in between ±hx,a.

Figure 4 has been obtained by summation over the current
density profiles presented in the previous section, and thus
corresponds to the crossed field amplitudes hy,a=0.4 and
hx,a=0.4.

2. Flux-free core

In order to have a more systematic information about the
partial penetration regime in 2D problems with crossed mag-
netic fields, we have studied the formation of the flux-free
core in different conditions. Thus, Fig. 5 displays the station-
ary core that is obtained when one uses an oscillating field
amplitude hx,a=0.4, for initial ramps with either hy,a=0.2 or
hy,a=0.4. The behavior for other values has been also stud-
ied, and the results !not shown for brevity" do not display
significant differences.

For the sake of clarity, in the plots, we have only shown
the lowest level magnetic field lines that define the core, and
their evolution as hx is cycled within the stationary regime.
Notice that the boundary of the core remains unchanged,
while the flux lines adapt to the applied field as one moves
away from the center of the sample. The only difference
between the two situations is the actual size of the core. As
one can deduce from the results in the following section, this
is straightforwardly related to the saturation value my ac-
quired by the vertical magnetic moment.

FIG. 3. !Color online" Same as Fig. 2 but using the values
hx,a=1.6 and hy,a=0.4. Only the stationary regime after several
cycles is shown.

FIG. 4. !Color online" Magnetic flux lines for the process in Fig.
2. The flux-free core is defined by the two lines with the lowest
magnetic field modulus within our numerical resolution.
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3. Full penetration

As it was shown above !Sec. III A 2", the current-free
core disappears when one uses the external conditions hy,a
=0.4 and hx,a=1.6. Here, we show the flux line structure
corresponding to the oscillations of hx in such a range. As
one can see in Fig. 6, magnetic flux has fully penetrated the
sample. However, the overdamped character of flux motion
in the critical state is evident in that plot. Although the flux
lines close to the periphery of the sample tend to follow the
external excitation, the inner regions always present a delay.

IV. MAGNETIC MOMENT RELAXATION

The connection between the magnetic field profiles ob-
tained in the previous section, and direct experimental obser-

vations is established below. As a figure of merit, we have
chosen the sample’s magnetic moment !per unit length" both
along the x and y axes. The definitions

mx = *
−w

w

dx*
−d/2

d/2

dy#yJz!x,y"$

my = *
−w

w

dx*
−d/2

d/2

dy#xJz!x,y"$ !5"

have been used. These quantities are straightforwardly calcu-
lated from the current distributions 'Ii( obtained by the
method in Sec. II. In practice, mx and my can be measured by
flux detecting coils, conveniently oriented around the
sample.

Next, we discuss the influence of hx,a and hy,a on mx and
my, so as to provide testing criteria for our theory and also to
allow comparison with the available literature on the subject.

A. Influence of the oscillation amplitude „hx,a…
First, we concentrate on the effect of changing hx,a with

hy,a fixed, i.e., one polarizes the sample by means of a given
value of the vertical field and performs ac cycles of the hori-
zontal component for different amplitudes. According to our
critical-state theory, the results of such experiment would be
as shown in Fig. 7. Recall that on taking hy,a=0.4 and
cycling hx,a between the values ±hx,a= ±0.1, ±0.2, ±0.4,
±0.8, ±1.2, ±1.6, mx and my display a behavior which is
clearly different if one probes either above or below hx,a
=0.8.

In relation to mx, the behavior for low amplitudes is char-
acterized by a nonsaturated oscillation that essentially fol-
lows the applied field hx. When plotted against this quantity,
mx reaches a stationary Bean-like loop after an initial tran-
sient in which the loop does not close. This behavior was
already reported in both experimental11 and theoretical5

works. In the latter, in contrast to the present case, the flux
cutting mechanism was considered. The response to higher
amplitudes of the oscillating field !hx,a*0.8" is characterized
by a saturation of mx, which relates to a stationary mx!hx"
loop, in the typical form of one-dimensional problems, when
the full penetration regime is reached.

The properties of my are of special mention, since we
have found less common features. Firstly, we outline the
steplike behavior in the plot my!t". Note that the descent of
this quantity, induced by the oscillation of hx, presents a
series of plateaus that are precisely triggered by the return
points in ±hx,a. This fact is also apparent within the my!hx"
plot, and was mentioned before in Ref. 3, where a power law
E-J model and the high field region !full penetration" were
considered. Recall that here, we also obtain the steps for the
low field region. Nevertheless, the early saturation of my
makes the effect less visible in such cases.

We want to stress the high similarity of our plot my!t" and
Fig. 2. in Ref. 1. Thus, the main feature of both graphs is the

h
x,a

h
x,a

−h
x,a

−h
x,a

FIG. 5. !Color online" Evolution of the magnetic field lines that
define the stationary flux-free core along the -hx,a cycle. The upper
plot corresponds to the vertical amplitude hy,a=0.2, while the lower
one was obtained for hy,a=0.4. Dashed, dot-dashed, dotted and,
continuous styles are used for the consecutive central line pair dur-
ing the cycle.

FIG. 6. !Color online" Magnetic flux lines corresponding to the
full penetration profiles depicted in Fig. 3. As before, the central
vector is proportional to the applied magnetic field.
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separation of complete and incomplete relaxations when the
value of hx,a approaches 1 in units of Hp. On the other side,
recall that the steplike behavior in our plot would be smeared
out over a time scale comparable to the one used by the
authors in Ref. 1. In fact, if one takes the time unit as t0
))acw /2d, the approximation for very thin samples used by
Brandt and Mikitik leads to t0.)ac /2, while in our case
!w=d" we have t0=)ac /2.

B. Influence of the dc field amplitude „hy,a…
Next, we analyze the relevance of the initial hy ramp on

the subsequent complete or incomplete relaxation of my dur-
ing the hx cycles. The main results for this study are plotted
in Fig. 8. There, we show the evolution of my for the oscil-
lation amplitudes hx,a=0.2,0.4,0.8,1.6 and three different
values of the dc field reached in the initial stage of the pro-
cess: hy,a=0.2,0.4,0.8. We emphasize two aspects: !i" On the
one side, the higher hy,a, the lower value of the relaxed com-
ponent my," when relaxation is incomplete. However, the
separation between the values of my," first increases, and

then decreases, going to zero when the complete relaxation is
reached. !ii" On the other side, crossings between the values
of the normalized magnetization are observed during the ini-
tial transient evolution. The importance of these crossings
increases as the value of hy,a does.

V. EXTENSIONS OF THE THEORY

As an advantage of the mathematical modeling proposed
in this work, one can deal with fully arbitrary 2D problems,
including nonuniform magnetic fields and nonhomogeneous
properties in the cross section of the sample. The 'A! ,J!( for-
mulation stated in Eqs. !1" and !2" allows us to introduce
irregular cross sections just by defining the positions of the
appropriate elementary wires, and calculating the corre-
sponding Mij matrix.

In this section, we show the modifications introduced by a
nonhomogeneous current carrying capacity. First, we calcu-
late the evolution of the magnetic field profiles for a sample
with a central hole, when subjected to the process in Fig. 1.
Second, we consider the influence of having a central region
with Jc noticeably above the corresponding value at the pe-
riphery of the sample.

A. Samples with holes

A sample with a hole is straightforwardly treated within
the formulation in Eq. !2", just by skipping the variables
related to the elementary wires within the empty region. Re-
sults are shown in Fig. 9. This plot has been obtained for the
values of the applied field hx,a=hy,a=0.4. Several stages at
the first ac cycle are shown, which already suggest the for-
mation of a stationary regime, as in the case of Fig. 4. Nev-
ertheless, in the present situation, the transverse field shaking
process cannot induce penetration of current within the
empty region. On the other side, the magnetic field lines
progressively enter. Then, as a topological effect, the current-
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FIG. 7. !Color online" Evolu-
tion of the magnetic moment com-
ponents for several excitation pro-
cesses in the form sketched in Fig.
1. mx and my are obtained through
Eq. !5" and normalized to the val-
ues of my at the beginning of the
ac cycle. Time !t" is given in units
of t0))acw /2d. hx is given in
units of the penetration field Hp.
The different lines !some are la-
beled for clarity" correspond to
hx,a=0.1,0.2,0.4,0.8,1.2,1.6. All
have been obtained for hy,a=0.4.
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FIG. 8. !Color online" Time dependence of the normalized mag-
netic moment my at various amplitudes of the ac magnetic field
hx,a=0.2,0.4,0.8,1.6. For each value of hx,a, we compare the decay
of my at three values of hy,a: hy,a=0.2 !continuous line", hy,a=0.4
!dashed line", and hy,a=0.8 !dot-dashed line".
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free and the flux-free regions are no longer coincident, sub-
sequent to the contact between the penetrating flux and the
hole.

Just for the sake of brevity, we do not show the stationary
oscillations which follow after the last stage in Fig. 9 !one
can easily guess the result". As for the case of homogeneous
samples !Fig. 4", they are characterized by a frozen core and
swinging flux lines in the peripheral region.

B. Nonhomogeneous critical current

Figure 10 shows the evolution of the flux penetration pro-
files for a sample with a higher pinning force in the central
region. To be specific, we have used the ratio Jc,in
=5Jc,around in the simulation, i.e., the constraint for the cor-
responding elements is −5Ic# Ii#5Ic. In dimensionless
units, the applied field amplitudes are again hx,a=hy,a=0.4.

As one could expect, both flux and current penetration
into the central region are hindered by the higher pinning
force. Note that when the initial flux-free core is distorted by
the oscillation of hx, its boundary slips along the separation
between the two regions. On the other hand, the establish-
ment of the stationary regime basically consists of a vertical
critical-state profile within the high Jc region and the sur-
rounding swing of flux lines described in the previous ex-
amples.

VI. CONCLUDING REMARKS

Although the majority of theoretical and experimental
studies about flux pinning in superconductors have focused
on the dynamics induced by single-component applied mag-
netic fields, increasing interest in multicomponent situations
is arising. Along this line, some recent papers1,3–5,11,12 have
considered the importance of transverse flux effects. Of par-
ticular interest is the magnetization decay induced by the
oscillations of a perpendicular magnetic field. In this work,
we have tried to clarify some questions about the ability of
phenomenological flux pinning models for describing the ex-
perimental observations. In particular, we have addressed the
debate about the existence of complete and incomplete relax-
ation regimes !full decay or not into the equilibrium magne-
tization" in terms of the actual transverse shaking process.
We have shown that within the critical-state model for flux
pinning, the kind of relaxation that occurs in thick samples is
related to the existence of a flux-free core within the sample.
Thus, under certain conditions !small enough amplitudes of
the applied field components", one finds a transient regime in
which the central flux-free core changes its shape until a
stationary profile is reached. Afterward, the transverse field
shaking produces the swing of the flux lines around the fro-
zen core structure, and the magnetic moment becomes con-
stant !but not zero". If the amplitude of the applied magnetic
field increases enough, the flux-free core shrinks to null vol-
ume, and the stationary magnetic moment becomes zero.

The existence of incomplete and/or complete relaxation
can be observed in experimental works12 and is also pre-
dicted by the vortex-shaking model for thin samples in Ref.
1. Although there are some differences between the state-
ment of that model and ours, the essential implications are
easily reconciled. To start with, the model in Ref. 1 is a good
approximation for thin strips, which are nothing but a limit-
ing case of the 2D problem. On the other hand, it is of men-
tion that a fundamental ingredient of Ref. 1 is the idea that
flux lines walk toward the center of the sample !x=0", piv-
oting around the so-called swivel points. Switching from one
swivel point to the next is done every half-cycle. In the
present work, such ideas have not been recalled. Notwith-
standing, we have merely used the concept of a maximum
pinning force !introduced by the phenomenological param-
eter Jc!, through the restriction %J!%#Jc! in the variational
solution of Maxwell equations". Remarkably, the evolution
of flux lines in our model follows the walking pattern intro-
duced by Brandt and Mikitik. This is shown in Fig. 11. Start-
ing from the magnetic field profiles related to the process in
Fig. 6, we have plotted a sequence of pictures, corresponding

FIG. 9. !Color online" Magnetic flux lines corresponding to the
excitation process in Fig. 1 for a superconducting bar with a hole
!indicated by the dashed line". We show several steps at the tran-
sient process within the first cycle.

FIG. 10. !Color online" Same as Fig. 9 but for a full supercon-
ducting bar with inhomogeneous pinning properties. Jc within the
dashed region is five times larger than around.
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to a specific flux line, along the first cycle. It is apparent that
two swivel points are formed !labeled + and ,", which es-
tablish the shift from position 1 to 6, by two rotations. The

switch from the pivot + to , is clearly established by the
return point −Hx,a !step 3 to 4". We want to note that the
vertical position of the swivel points has changed.

Another question to consider is the role of the aspect ratio
parameter w /d. Thus, the main difference between the pre-
dicted magnetization decays, that is, the steplike structure in
our Figs. 7 and 8, disappears when the physical time unit
t0))acw /2d is taken into account. The steps are smeared out
by the time scale of the plot, and the two models coincide
again.

Finally, a comparison between our proposal and the
method introduced in Ref. 3 #E! !J /Jc"n$ also seems to be of
interest. In principle, the results of this paper should be ob-
tained as the limit of the former, when higher and higher
values of n are used. This would allow us to quantify the
importance of flux creep effects, intrinsically included in
phenomenological E-J models.
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