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The magnetic flux dynamics of type-II superconductors within the critical state regime is posed in a gener-
alized framework by using a variational theory supported by well-established physical principles. The equiva-
lence between the variational statement and more conventional treatments based on the solution of the differ-
ential Maxwell equations together with appropriate conductivity laws is shown. Advantages of the variational
method are emphasized, focusing on its numerical performance that allows us to explore a number of physical
scenarios. In particular, we present the extension of the so-called double critical state model to three-
dimensional !3D" configurations in which only flux transport !T states", cutting !C states", or both mechanisms
!CT states" occur. The theory is applied to several problems. First, we show the features of the transition from
T to CT states. Second, we give a generalized expression for the flux cutting threshold in 3D and show its
relevance in the slab geometry. In addition, several models that allow us to treat flux depinning and cutting
mechanisms are compared. Finally, the longitudinal transport problem !current is applied parallel to the exter-
nal magnetic field" is analyzed both under T and CT conditions. The complex interaction between shielding and
transport is solved.
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I. INTRODUCTION

The investigation of the macroscopic magnetic properties
of type-II superconductors in the mixed state is already a
classical subject. The essential physics behind the collected
vast phenomenology has been well known for decades1,2 and
may be basically analyzed in terms of interactions between
the flux lines themselves !lattice elasticity and line cutting"
and interactions with the underlying crystal structure !flux
pinning".

For many purposes, it happens that the mesoscopic de-
scription may be further simplified by means of appropriate
material laws for the coarse-grained fields, i.e., magnetic in-
duction B#$b%, electric current density J#$j%, and electric
field E#$e%. Averages are supposed to be taken over a vol-
ume containing a big enough number of vortices. Along this
lines, a brilliant proposal, the so-called critical state !CS"
theory, originally introduced by Bean,3 has been widespread
used. Such a model allows us to capture the main features of
the magnetic response of superconductors with pinning at
low frequencies and temperatures through the minimal math-
ematical complication. In its simplest form, the CS theory
involves to solve Ampere’s law dB /dx=!0J with some pre-
scription for the current density !J= "Jc or 0" and under
continuity boundary conditions that incorporate the influence
of the sources. Being a quasistationary approach, the CS is
customarily stated without an explicit role for the transient
electric field and the remaining Maxwell equations. Never-
theless, the recognized prediction power of the theory is not
accidental. Although veiled, the role of E and Faraday’s law
is of great importance for its soundness. Thus, we recall the
above statement may be related to an almost vertical E!J"
law, idealized by the graph E=0 for J#Jc and E→$ for J
%Jc. Here, E stands for the induced electric field owing to
variations of the flux density, and Faraday’s equation !in fact

Lenz’s law" is implicitly used by selecting the actual value
"Jc or 0 that minimizes flux variations when solving
dB /dx=!0J along the process.

In the case of ideally one-dimensional !1D" problems, i.e.,
infinite cylinders and slabs in parallel field configuration, the
previous statements lead to the prediction of the observable
physics without ambiguity. As recalled, one is making a cor-
rect use of the Maxwell equations for a conducting system
that experiments a sharp transition in terms of the current
density. Physically, the material law relates to the vortex pin-
ning phenomenon that is macroscopically described by the
average pinning force constraint &J&B&'Fp. Straightfor-
wardly, this gives place to the depinning threshold limitation
J!'Jc!!B". In addition, one has to consider a high flux flow
dissipation when the limitation is exceeded !as related to the
mathematical condition E→$". We call the readers attention
that for the simplified geometries, the equality J=J! !J is
locally perpendicular to B! " is automatically fulfilled.

The extension of the above ideas to nonidealized systems
is not a closed subject yet; it is of utter importance for the
understanding of the experimental facts and constitutes the
main motivation of this paper. In brief, and following the
spirit of Bean’s model, we consider the question of identify-
ing a theory that allows a general description of the low-
frequency electrodynamics of hard superconductors with the
least conceptual and mathematical load.

From the physical point of view, the allowance of nonpar-
allel flux lines leads to consider another threshold for the
current density, now related to the disorientation of adjacent
vortices. This was already remarked by Clem and
Pérez-González4 who analyzed the relation J' =Hd( /dx, with
( as the angle characterizing the flux lines orientation at a
given depth within a superconducting slab. Thus, stemming
from the fact that a maximum angle gradient is allowed be-
tween vortices so as to avoid cutting and recombination, one
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has to consider J' 'Jc'!B".5,6 Remarkably, the above-
mentioned authors showed that both the flux depinning and
cutting effects may be treated in a generalized CS frame-
work. The upgraded theory !double critical state model or
DCSM" has been applied with high success since the early
1980s for the understanding of many experiments in which
both J' and J! are involved. In addition to the mentioned
static threshold conditions, the DCSM generalizes the one-
dimensional E!J" graph for quasistationary processes in
terms of the natural concepts E'!J'" and E!!J!".

From the mathematical point of view, the DCSM has been
mainly applied to experiments with rotating magnetic field
components, still parallel to the surface of large samples, i.e.,
two-component fields are allowed, but only one independent
variable is considered. However, some aspects that have ap-
peared linked to the investigation of new materials !small
crystallites and high-Tc films" as well as the refinement of
previous studies require more specialized statements so as to
include finite-size effects, sample inhomogeneity, anisotropy,
etc. Along this line, some recent advances have to be quoted.
On the one side, it has been shown that finite-size effects for
thin samples may be treated by composition of quasi-one-
dimensional statements.7 In principle, this idea would allow
us to include both the Jc! and Jc' limitations; but, to the
moment, it has been exploited in the limit Jc!)Jc'. On the
other hand, truly two-dimensional configurations in which
some symmetry property allows us to assume J!B have
also been solved by numerical methods.8,9 More recently, as
a remarkable advance to be mentioned, the mathematical
structure of the DCSM solution in the three-dimensional case
has been described and obtained variationally for some
examples.10

In this work, perspectives on the application of variational
methods11 will be presented. Contrary to some recent claim
about their restricted scope,7 they will be shown to be
equivalent to the more conventional differential equation
statements for solving CS problems. Moreover, in many in-
stances, our solution will be used to extend previous results
toward unexplored physical scenarios. In particular, the in-
fluence of the parameter ratio *#Jc' /Jc! will be quantified
in three-dimensional !3D" systems. Also, allowed by the ca-
pability of the theory, we introduce a critical angle gradient
threshold that generalizes the two dimensional concept
d( /dx=J' /H'Kc. On the other hand, the so-called longitu-
dinal transport problem, i.e., a situation in which a magnetic
field is applied along the direction of the transport current
will be studied in a 3D configuration. As a central physical
result of our paper, it is shown that the variational method
naturally distinguishes between the inductive and potential
parts of the background electric field in the CS problems. It
will be shown that the incorporation of the physical idea of
the direction of the electric field is straightforward by com-
bining Gauss’ law and the variational statement.

The paper is organized as follows. In Sec. II, the physical
background of the general CS concept is introduced. The
underlying approximations !Sec. II A", the validity of the
associated material law !Sec. II B", and the justification of a
variational statement !Sec. II C" are described in detail. In
Sec. III we give a number of explicit examples related to the
application of the general CS theory to three-dimensional

systems. Specifically, we consider various magnetic pro-
cesses for an infinite slab with a penetrating magnetic field of
the form !Hx ,Hy ,Hz" and described by different models
hosted in our theory. It will be shown that our results fully
coincide with alternative formulations when comparison is
allowed. Finally, Sec. IV is devoted to discuss the main re-
sults of this work.

II. GENERAL CRITICAL STATES: THEORY

This section is devoted to introduce the theoretical back-
ground that justifies the critical state concept as a valid con-
stitutive law for superconducting materials. First, recalling
that the CS must be considered an approximation within the
magnetoquasistationary !MQS" regime of the time-
dependent Maxwell equations, we will discuss on the related
limits for the whole set of electromagnetic physical quanti-
ties. Then, we will present a thorough discussion about the
representation of the CS as a J!E" law for a perfect conduc-
tor with restricted currents in the MQS regime. Finally, the
variational statement of the CS is stated. We will show that
the variational principle introduced in previous work11,12 is
fully equivalent to the more usual formulation in terms of
differential equation statements in time-discretized form.
Along this line, some recent claims about the limited scope
of variational formulations7 have to be reconsidered.

A. MQS approximation and its consequences

Let us first concentrate on the physical implications re-
lated to the MQS approximation within the critical state
theory. Recall that, in general, the dynamical behavior of the
macroscopic electromagnetic fields is determined by the
Maxwell equations accompanied by material constitutive
laws, H!B", D!E", and J!E". Thus, Faraday’s and Ampere’s
laws represent a coupled system of time evolution field equa-
tions

!tB = − " & E, !tD = " & H − J . !1"

Taking divergence in both sides of each, and recalling inte-
grability !permutation of space and time derivatives" leads to
the additional conditions

!t!" · B" = 0, !t!" · D" + " · J = 0. !2"

Within this picture of the electromagnetic problem, the re-
maining Maxwell equations can be interpreted as “!spatial"
initial conditions” for Eq. !2" that define the existence of
conserved electric charges, i.e.,

" · B!t = 0" = 0, " · D!t = 0" = +!t = 0" . !3"

Equations !1", upon substitution of H, D, and J through the
constitutive laws and with appropriate initial conditions,
uniquely determines the evolution profiles B!r , t" and E!r , t".

In this paper, as it is customary in hard superconductivity,
we will consider B=!0H as a valid approximation related to
neglecting the equilibrium magnetization of the flux line lat-
tice. On the other side, for slow and uniform sweep rates of
the magnetic sources, the transient variables E, D, and + are
small, and proportional to Ḃ, whereas B̈, Ė, and +̇ are negli-

BADÍA-MAJÓS, LÓPEZ, AND RUIZ PHYSICAL REVIEW B 80, 144509 !2009"

144509-2



gible. Thus, the main hypothesis within the MQS regime is
that the displacement current densities !tD are much smaller
than J in the bulk and vanish in a first-order treatment !see
Fig. 1". This causes a crucial change in the mathematical
structure of the Maxwell equations: Ampere’s law is no
longer a time evolution equation but becomes a purely spa-
tial condition. It reads as

" & B ( !0J , !4"

with approximate integrability condition " ·J(0. In the
MQS limit, Faraday’s law is the unique time evolution equa-
tion. Then, making use of the conductivity law through its
inverse function E!J", one can find the evolution profile
B!r , t" from

!tB = − " & E!!0J ( " & B" . !5"

We want to mention that the B formulation in Eq. !5" is
definitely the most extended one. However, the possibilities
of E formulations13 and J formulations14 in which the depen-
dent variables are the fields E and J have also been exploited
by several authors. Also, a vector potential oriented theory !A
formulation" has been issued recently15 that is a promising
path for the investigation of 3D problems.

Let us point out two relevant consequences of the MQS
limit.

!1" The constitutive law D!E", which is not used in Eq.
!5", plays no role in the evolution of the magnetic variables
B and J; the magnetic “sector” is uncoupled from the charge
density profile because the coupling term !charge recombi-
nation" has disappeared.

!2" Only the inductive component of E !given by
"&Eind=−Ḃ, " ·Eind=0" determines the evolution of B
!Faraday’s law". The conducting law in its inverse formula-
tion E!J" presents some ambiguity, as far as two different
material laws related by E2!J"=E1!J"+",!J" determine the
same magnetic and current-density profiles.

Going into some more detail, whereas for the complete
Maxwell equations statement, the potential component of the
electric field !"&Epot=0, -0" ·Epot=+" is coupled to B and
Eind through the Ḋ term, within the MQS limit it is irrelevant
for the magnetic quantities. In fact, one can include the pres-
ence of charge densities without contradiction with the con-
dition " ·J(0 by means of inhomogeneity or nonlinearity in
the E!J" relation. Then one has " ·J=0⇒” " ·E=0. The
charge density + can be understood as a parametrized charge
of static character as far as +̇ is neglected. As indicated
above, once the magnetic variables are computed, one has
the freedom to modify the electrostatic sector if necessary by
the rule E!J"+", while still maintaining the values of B
and J. This invariance can be of practical interest as far as
the “electrostatic” behavior in the CS is still under discussion
because of the inherent difficulties in the direct measurement
of transient charge densities. Recent advances have to be
quoted,16 but they are still based on the analysis of Eind and
some ansatz on the direction of the electric field. To be spe-
cific, E 'J is assumed in that work.

B. Material law: The critical state

Now, we will be more explicit about the material law
J!E" that dictates the magnetic response of a superconduct-
ing sample in the critical state and for a given external exci-
tation. For simplicity, we start with an overview of the ma-
terial law for 1D systems !infinite slabs or cylinders with the
external field applied along symmetry axis". The physical
concepts will be eventually generalized to 3D.

1. 1D critical states

For our purposes, it is sufficient to recall that the basic
structure of the CS relates to an experimental graph within
the )V , I* plane that basically contains two regions:

!1" −Ic' I' Ic with perfect conducting behavior, i.e., V
=0 and !tI=0.

!2" For I. Ic, the curve is characterized by a high !IV
slope !and antisymmetric for I/−Ic". Further steps, with I
increasing above the critical value Ic, i.e., the eventual tran-
sition to the normal state may be neglected for slow sweep
rates of the external sources, which produce moderate elec-
tric fields.

Within the local description level, different models have
been used for the corresponding E↔J graph, the most popu-
lar being as follows:

!1" The power-law model: E=( sgn!J"!&J& /Jc"n, with ( as
a constant and n as high.

!2" The piecewise continuous linear approximation: E=0
for &J&'Jc and E=0 sgn!J"!&J&−Jc" for &J&%Jc, 0 having a
high value. This model and the previous one present a small
dependence on the sweep rate as far as different values of E
give way to a slightly different J.

t t+dt

B

E

FIG. 1. !Color online" Schematics of the time dependence of the
electromagnetic fields within the MQS approximation. A ramp in
the magnetic field is induced by the external excitation, within the
interval +t , t+dt,. As a consequence of a very fast diffusion !el-
evated flux flow resistivity", the electric field quickly adjusts to a
constant value along the interval. When the magnetic field ramp
stops, E goes back to zero again. The readjusting vertical bands are
considered a second order effect and allow for charge separation
and recombination, according to the specific E!J" model.
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!3" Bean’s model: constant J for E=0 and J=sgn!E"Jc for
E#0 !see Fig. 2".

This is the simplest model without sweep rate dependence
because only the sign of E enters the theory.

Bean’s model captures the main features of the CS and
has been widely used with very good performance since its
proposal in the early sixties.3 On the other hand, we notice
that it may be obtained from the other representations: it
corresponds to the limiting cases n→$ and 0→$, respec-
tively, as the reader can easily check. Considering the above
ideas as the essential hypotheses of the CS theory, the 3D
critical state model will be formulated upon its generaliza-
tion. The well-known experimental evidence of a practical
sweep rate independence for magnetic moment measure-
ments !unless for high frequency ac sources or at elevated
temperatures" reinforces this simple model as a valid tool in
the CS.

In some treatments, the first or second models are imple-
mented in order to transfer a full E!J" law to the Maxwell
equations. On the other hand, being rate independent, Bean’s
model is no longer a time-dependent problem, but a path-
dependent one, i.e., the trajectory of the external sources H0
uniquely determines the magnetic evolution of the sample.17

This makes an important difference when one compares to
more standard treatments as far as Faraday’s law is not com-
pletely determined from the path. Strictly speaking, one has

1B = − " & +E1t, , !6"

with 1t !and therefore &E&" gauged by the evolution of the
external sources. In other words, the absence of an intrinsic
time constant gives way to the arbitrariness in the time scale
of the problem. On the other hand, the magnitude &E& is not
relevant for the B and J profiles. In fact, in the applications
of Beans’s model, Faraday’s law is not strictly solved. It is
just the sign rule !the vectorial part of the material law", that
is used to integrate Ampere’s law. Notice that such sign rule

corresponds to a maximal shielding response against mag-
netic vector variations and, thus, determines the selection of
J= "Jc.

Notice that, by symmetry, in the 1D problems one has
J 'E and both quantities are orthogonal to B. Thus, at a basic
level, the 1D CS concept is grounded on the existence of
pinning forces that act as a barrier against flux flow. The
physical threshold related to a maximum value of the force
balancing the magnetostatic term J&B gives place to the
concept of maximum !critical" current density and thus to the
law

J! = sgn!E!"Jc! for E! # 0. !7"

Here, E! stands for the component of E along the direction
B& !J&B".

2. General (3D) critical states

Let us now see how the above ideas may be translated to
a 3D scenario from the fundamental point of view. The main
issue is that, in general, the parallelism of E and J and their
perpendicularity to B are no longer warranted. Then, a sign
rule does not suffice for determining the solution. A vectorial
rule is needed and attention must be paid to its mathematical
consistency as well as to the physical significance. In previ-
ous work,11,12,18 we introduced a geometrical concept that
may be of much help when discussing the idea of a general
critical state theory. There must be a region 1r within the J
space !possibly oriented according to the local magnetic field
B̂, and/or also depending on &B& and r" such that nondissipa-
tive current flow occurs when the condition J"1r is verified
!see Figs. 3 and 4". This concept, together with a very high
dissipation when J is driven outside 1r by some nonvanish-
ing electric field, suffice to determine the relation between
the directions of J and E. This may be done according to the
following argument:

!i" In the critical state, the forces arising to avoid the flux
flow !or whatever" dissipation mechanism act against the exit
of J from a region 1r with a very high slope. However, the
evolution within 1r is that of a perfect conductor. In the limit
of an infinite barrier, the reaction is perpendicular to the
boundary of 1r !denoted by !1r". Thus, starting from an
initial configuration with J"1r, and under the action of a
transient electric field, the vector J quickly touches and/or
shifts along the boundary until a point is reached where the
condition E!!1r is fulfilled. Owing to the perfect conduc-
tivity condition !tJ2E no further evolution can occur !see
Fig. 3 and Ref. 19". Faraday’s law will be eventually the key
for determining the actual point.

Recall that the above rule can be expressed as the condi-
tion of maximal J · Ê projection for J"1r. Recall also that
the fundamental property already discussed for 1D systems
is verified: still the modulus &E& is irrelevant. On the other
hand, notice that the sign rule is nothing but the 1D particu-
lar case of the general maximum projection rule. The math-
ematical consistency is therefore satisfied. Let us now dis-
cuss on the physical soundness of the theory. This aspect is
apparently related to the selection of the region 1r appropri-
ate for the problem under consideration.

−J c

J c

J

E

FIG. 2. !Color online" Schematic representation of the CS E!J"
model. The electric field arises when some critical condition for the
volume current density is reached !Jc in this 1D representation".
Corresponding to the MQS approximation in Fig. 1, the electric
field instantaneously increases to a certain value determined by the
rate of variation in the magnetic field and then goes back to zero.
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The simplest assumption that translates the CS idea to 3D
situations was already issued by Bean in Ref. 20. It has been
called the isotropic CS model and generalizes 1D Bean’s law
to

J = JcÊ if E # 0, !8"

i.e., the region 1r becomes a sphere. This model has been
used by several authors; in spite of its mathematical simplic-
ity, a remarkable predictive power for reproducing a number
of experiments with rotating and crossed magnetic fields has
been noticed,11,12,21,22 at least qualitatively. It lacks, however,
a solid physical basis. In any case, one could argue that sta-
tistical averaging over a system of entangled flux lines within
a random pinning structure might be responsible for the
isotropization of 1r.

As stated above, to the moment, the most general theory
for CS problems formulated in terms of a well-accepted
physical basis is the so-called4 DCSM. In brief, this theory
assumes two different critical parameters, Jc' and Jc! !see
Fig. 3", acting as the thresholds for the components of J
parallel and perpendicular to B, respectively. As stated
above, Jc! relates to the flux depinning threshold induced by
the Lorentz force on flux tubes, while the additional Jc' is
imposed by a maximum gradient in the angle between adja-

cent vortices before mutual cutting and recombination
occurs.4 The DCSM may be expressed by the statement

- J' = Jc'Ê' if E' # 0

J! = Jc!Ê!
if E! # 0.

. !9"

Within the DCSM, the region 1r is a cylinder with its axis
parallel to B, and a rectangular longitudinal section in the
plane defined by the unit vectors B̂ , Ĵ! !see Fig. 4". The
edges of the region 1r introduce a criterion for classifying
the CS configurations into: !i" T states where the flux depin-
ning threshold has been reached !J belongs to the horizontal
sides of the rectangle", !ii" C states where the cutting thresh-
old has been reached !J belongs to the vertical sides of the
rectangle", and !iii" CT states where both J' and J! have
reached their critical values !corners of the rectangle".

Notice that Jc' and Jc! are determined from different
physical phenomena, and their values may be very different
!in general Jc' %Jc! or even Jc' 3Jc!". Nevertheless, the
coupling of parallel and perpendicular effects is suggested by
experiments23 and, for instance, may be included in the
theory by the condition Jc' =KBJc! with K a material depen-
dent constant. Recalling that the mesoscopic parameters Jc
are related to averages over the flux line lattice, interacting
activation barriers for the mechanisms of flux depinning and
cutting are expected and this may give place to deformations
in the boundary !1r. Then, the theory should be able to host
different regions as the ones depicted in Fig. 4 or the situa-
tion suggested in Ref. 7 !Fig. 1". Regarding that proposal, we
want to emphasize that the statement qualifying our maxi-
mum projection rule !i.e., max J · Ê⇔E!!1r" as physically
incorrect in some cases because the direction of E should be
different must be reconsidered. In fact, as exposed above, in
the CS theory the material law allows some ambiguity de-
scribed by an arbitrary scalar function in the form of an
additional potential term, i.e., the rule E=Ecs+", does not
affect the magnetic variables. Here, Ecs represents the elec-
tric field obtained from the maximal shielding rule and E a
possible modification in order to adjust the electrostatic sec-

E i

J
T

E i

J
CT

J
C

E i

J ||

J

FIG. 4. !Color online" Geometric interpretation of the Critical
State behavior for the DCSM case. J is constrained to the boundary
of a rectangular region. T, C, and CT states are related to the hori-
zontal and vertical sides and to the corners. Two models in which
the corners of the DCSM region have been smoothed are also
shown.
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J
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J

⊥ , 2

⊥ , 1

⊥
H’ H

r∆ 0
J

FIG. 3. !Color online" Top: schematic representation of the rela-
tive orientations of the local magnetic field H and electric current
density J. The current is decomposed into its parallel and perpen-
dicular components, i.e., J=J' +J!. Also sketched is the direction
of the magnetic field at some neighboring point at an angle 4. The
vectors H, H!, and J do not necessarily lie at the same plane.
Bottom: the perfect conducting region within the plane perpendicu-
lar to the local magnetic field. An induced electric field is shown.
Initially !J0", the high dissipation region is touched, but almost
instantaneously J shifts along the boundary, reaching a point where
the condition E!!1r is fulfilled. Anisotropy within the plane is
allowed.
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tor, for instance the scalar condition E ·B=0 !E!B" for the
T states. Thus, the maximal shielding rule can be easily
complemented with an additional equation ", ·B=−Ecs ·B
for the new variable , that allows us to link our theory to
many other models expressed by an E!J" law. Eventually,
not only the magnetic sector but also the electrostatic one
would coincide in both formulations. In physical terms, one
can state the theory as follows. First, the magnetic response
is described by the critical state law that determines the rela-
tive orientation of ECS and J through the maximum projec-
tion rule. If required, the orientation of the full electric field
may be tuned by considering the electrostatic charges.

C. Variational principle: A general treatment

The CS theory has been formulated as a minimization
principle by several groups !see for instance Refs. 11, 12,
and 24–26". In our case,11,12 an optimal control27 variational
statement was introduced for dealing with general CS prob-
lems. In previous work,18 a number of experimental facts
were discussed in terms of different choices for the control
region 1r. Here, we want to emphasize that the variational
principle is not to be associated to any particular model, i.e.,
an arbitrary selection of the region 1r is allowed.

Below, we summarize the main features of the formula-
tion. Its full equivalence to the approach based on the differ-
ential equation statements will be shown. The hypotheses
about constitutive relations and the sweep rate independence
made in the earlier analysis will be obviously maintained.
The principle is based on a discretization of the path fol-
lowed by the external sources, that is, it is an approximation
to the continuous evolution whose accuracy increases as the
step diminishes.

Let us consider a small path step, from some initial profile
of the magnetic field Bn!r" to a final profile Bn+1!r" +define
1B=Bn+1−Bn, and also the corresponding Jn!r" and
Jn+1!r",. Both configurations can be considered to be con-
nected by a stationary process, i.e., we perform a small linear
step 1B, such that Bn+1=Bn+s1B, s" +0,1,. The initial con-
dition fulfills Ampere’s law "&Bn=!0Jn, as well as " ·Bn
=0 and " ·Jn=0. As shown in Ref. 12, maximal shielding
can be implemented by imposing the minimization of the
step variation for the magnetic field profile integral, i.e.,

F+Bn+1! · ", # Min/
R3

1
2

!1B"2d3r . !10"

Recall that minimization must be performed under the
restrictions on the final profile: !i" Ampere’s law "&Bn+1
=!0Jn+1 and !ii" Jn+1!r""1r. This is a minimization prob-
lem within the variational calculus framework !integral func-
tionals of unknown fields and their derivatives" with con-
straints that can be analyzed with the tools of the optimal
control theory.27

Following the usual Lagrange multipliers method, we
build a “Lagrangian”

L #
1
2

!1B"2 + p · !" & Bn+1 − Jn+1" !11"

that enforces Ampere’s law. In fact, the Euler-Lagrange
equations become

" & Bn+1 − Jn+1 = 0 !12"

for arbitrary variations 5p of the multipliers and

" & p = − 1B , !13"

for arbitrary variations 5!Bn+1".
The second condition identifies p with −1A !recall that

"&1A=1B". Then, one gets the critical state electric field
Ecs1t=−1A=p. Concerning the parameter Jn+1 as far as it is
not allowed to take arbitrary values, we cannot impose arbi-
trary variations as it is customary for the typical stationarity
condition of the Euler-Lagrange equations. Instead, an opti-
mal control-like maximum principle must be used.11 The
minimum of the Lagrangian must be sought within the set of
current-density vectors fulfilling J"1r, i.e., Jn+1 is deter-
mined by the condition

Min)L*&J"1r
# Max)J · p*&J"1r

. !14"

Notice that the maximal shielding condition is equivalent to
the maximum projection rule, i.e., the orthogonality condi-
tion of the electric field direction with the surface of 1r
previously discussed !Sec. II B" is recovered. Notice also
that Ampere’s law is imposed +Eq. !12", through the
Lagrange multiplier, while the discretized version of Fara-
day’s law +Eq. !13", is derived as an Euler-Lagrange equa-
tion for the variational problem, so that absolute consistency
with the Maxwell equations is obtained. Moreover, maximal
global !integral" shielding is achieved through a maximal
local shielding rule +Eq. !14", that reproduces the elementary
evolution of !tJ for a perfect conductor with restricted cur-
rents.

In 3D problems, as an advantage of the formulation in Eq.
!10", one can avoid the integration of the equivalent partial
differential equations and straightforwardly minimize the
discretized integral by using a numerical algorithm for con-
strained minimization. It is this numerical minimization, in-
stead of numerical integration of PDEs, that represents a very
important advantage in the performance and power of the
variational method. The Lagrange multiplier p !basically, the
electric field" disappears in the direct minimization process,
while the magnetic field can be expressed in terms of an
external contribution !0H0 and the local sample’s currents.
As a consequence, only the unknown current components
appear in the computation, reducing the number of unknown
variables. Any symmetry of the problem will allow further
simplifications and correspondingly faster numerical conver-
gence.

Being more specific, the integrand 1
2 !1B"2 can be rewrit-

ten as 1
2 !1B" · !"&1A" and manipulated to get 1

2 !1A" · !"
&1B" plus a divergence term fixed by the external sources
at a distant surface. Now, the integral is restricted to the
samples region 6 because "&1B=!01J is only unknown
within the superconductor. In addition, the vector potential
can be expressed as

1A = 1A0 +
!0

47
/

6

1J
&r − r!&

d3r!. !15"
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This transforms F into a double integral over the body of
the sample, i.e.,

F =
87

!0
/

6

1A0 · Jn+1!r"d3r

+/ /
6&6

Jn+1!r!" · +Jn+1!r" − 2Jn!r",
&r − r!&

d3rd3r!

!16"

!terms independent of Jn+1 have been omitted".
Finally, in addition to the incorporation of the external

sources !A0" and the constraints for the allowed J region 1r
one must also ensure the charge conservation condition by
searching the minimum for the allowed set of current densi-
ties fulfilling " ·J=0 as an additional constraint.

III. GENERAL CRITICAL STATES: APPLICATIONS

In this section, we will show that the variational statement
may be used to predict the magnetic structure for the T states
in a three-dimensional slab geometry, i.e., both in-plane and
perpendicular magnetic field components are applied to an
infinite slab and varied in a given fashion. A wide range of
applied fields will be considered, and our results compared to
those available in the literature. Moreover, we will study the
corrections that appear when a more general CT-state frame-
work is introduced.

First, we will give the details related to the mathematical
statement of the general critical state in the slab geometry.
Then, the theory will be applied for establishing the capabili-
ties of several versions of the DCSM within different physi-
cal scenarios.

A. Infinite slab: General double critical state

Within the infinite slab geometry, the variational formula-
tion of the general DCSM allows an algebraic statement that
is rather convenient for the eventual numerical application.
To be specific, we will consider an infinite slab, that is fully
penetrated by a perpendicular uniform field Hz0 and then
subjected to a certain process for the applied parallel field,
i.e., +Hx0!t" ,Hy0!t", as indicated in Fig. 5. Recalling the sym-
metry properties of the electromagnetic quantities, one can
describe the problem as a stack of current layers parallel to
the sample’s surface. Assuming that the slab occupies the
space &z&'d /2, it suffices to discretize the upper half, i.e.,
0'z'd /2 as symmetry !or antisymmetry" conditions may
be applied. Thus, in what follows, a collection of N layers
!zi=5i , 5#d /2N" will be considered. Within this approxi-
mation, one has to include two components of J within each
layer, i.e., +Jx!zi" ,Jy!zi",. Notice that position independence
for a given value of z ensures a divergenceless J. Further-
more, a sheet current may be introduced. Thus, the problem
will be stated in terms of 8i#Jx!zi"5 and 4i#Jy!zi"5 !5 de-
noting the width of the layers". Now, a straightforward ap-
plication of Ampere’s law allows to express the penetrating
magnetic field as the sums over the layers

Hx!zi" # Hx,i = − 0
j%i

4 j − 4i/2,

Hy!zi" # Hy,i = 0
j%i

8 j + 8i/2. !17"

Next, we recall that in the slab geometry Eq. !10" be-
comes a discretized principle restricted to the volume of the
slab. Following the concept introduced in the previous sec-
tion +see Eq. !16",, the problem may be transformed into the
minimization over the current densities

min F =
1
20

i,j
8i,n+1Mij

x 8 j,n+1 − 0
i,j

8i,nMij
x 8 j,n+1

+
1
20

i,j
4i,n+1Mij

y 4 j,n+1 − 0
i,j

4i,nMij
y 4 j,n+1

− 0
i

4i,n+1!i − 1/2"!Hx0,n+1 − Hx0,n"

+ 0
i

8i,n+1!i − 1/2"!Hy0,n+1 − Hy0,n" . !18"

We stress that minimization has to be performed under the
restrictions J' 'Jc' and J!'Jc!, i.e., the DCSM hypotheses.
Specifically, one has to invoke the conditions

FIG. 5. !Color online" The magnetic moment !Mx ,My" of the
slab defined by Eq. !21" as a function of Hy0. Shown are the dia-
magnetic and paramagnetic cases for Hx0=1.1 and Hz0=1.5 !top"
and Hz0=10 !bottom". The experimental processes for the applied
magnetic fields are shown as insets in the bottom panel. Units are
jc!d /2 for H and jc!d2 /4 for M. Our results !lines" are compared
to those by Brandt and Mikitik in Ref. 7 !symbols". In all these
cases, we have taken Jc' =$ and Jc!=1 !T states".
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!1 − hx,i
2 "8i

2 + !1 − hy,i
2 "4i

2 − 2hx,ihy,i8i4i ' jc!
2

hx,i
2 8i

2 + hy,i
2 4i

2 + 2hx,ihy,i8i4i ' jc'
2 . !19"

!Here, the normalization h#H /H has been used."
Recall that the subindex n is introduced to indicate time

discretization, i.e., 4i!t+1t"−4i!t"#4i,n+1−4i,n. When this
index is omitted, it will be meant that the equation is time
independent !it is valid ∀n actually".

Finally, the reader can check that a straightforward sub-
stitution of the squared components of the magnetic field
entering the expression in Eq. !10" in terms of Eq. !17" leads
to the following formulas for the mutual inductance coupling
between layers:

Mij
x = Mij

y # 1 + 2+min)i, j*, ∀ i # j .

Mii
x = Mii

y # 211
4

+ i − 12 . !20"

Below, we present a number of results obtained by appli-
cation of the previous equations for the slab. First, an infinite
band model !J' )Jc' or the so-called T states" will be consid-
ered. Afterward, the corrections related to the flux cutting
limitation !Jc'" will be studied. When possible, our results
will be compared with available literature.

1. T states in 3D configurations

Here, we show the theoretical predictions for the T states
along the magnetization process indicated in the insets of
Fig. 5. Starting from a fully penetrated state, with a field
applied perpendicular to the slab surface !Hz0", one config-
ures either a diamagnetic or a paramagnetic critical state by
sweeping the applied parallel component Hx0 !thus inducing
Jy". Eventually, an increasing ramp in the other field compo-
nent, Hy0 !thus inducing Jx" is applied. The response of the
superconductor is obtained as a collection of values for the
sheet currents )8i ,4i* at the forward time layers n
=1,2 ,3 , . . .. The magnetic field profiles and magnetic mo-
ments are eventually obtained by numerical integration. In
particular, the expression of the magnetic moment per unit
area

M =
1

2L2/
Vol

z & Jd3r = /
−d/2

d/2
z & Jdz !21"

has been used, with L representing the length of the sample.
Recall that we have invoked the property that for long loops,
the contribution coming from the U turn at the ends, exactly
equals the contribution of the long sides. This may be shown
starting from the condition " ·J=0 !no sources" that allows
us to consider the current-density distribution as a collection
of loops and ensures the equality of the integrals over zJy and
zJx !see Ref. 28".

Owing to the rich phenomenology encountered, the re-
sults will be given separately for moderate and low perpen-
dicular fields. Recalling that H is measured in units of the
physically relevant penetration field Jc!d /2, then Hz0=0.1,
1.5, 10 will cover the range of interest.

!a" Moderate fields Fig. 5 shows our results for Hz0=1.5
and Hz0=10 compared to those of Ref. 7 obtained under the

same conditions. A remarkable agreement is to be noticed,
thus validating our theory against the differential equation
approach of that paper. The same degree of coincidence was
also checked for the magnetic field and current densities !not
shown for brevity" as expected. In fact, the equivalence of
our maximum projection rule and the E!J" law based
analysis7 may be proofed as follows. The material law in that
work was applied in two steps: !i" the transient electric field
was chosen along the direction B& !J&B" as dictated by the
flux flow condition and !ii" the magnitude of E was found
from the condition J!=Jc! through the Ampere and Fara-
day’s laws and appropriate boundary conditions. We recall
that J!=Jc! is equivalent to the selection of our horizontal
band for 1r that the direction of Ê is straightforwardly the
same and finally that the remaining component J' is also
coincident as it is obtained from the Maxwell equations also
contained in the variational formulation.

!b" Low fields In Fig. 6 we display the effect of extending
the previous results to the low field region !Hz0=0.1" by
comparison to the values Hz0=1.5 and Hz0=10. The plots
indicate the following features. !i" In general, a saturation is
reached for My!Hy0", as compared to the eventual linear in-
crease in Mx!Hy0" for the highest values of Hy0, !ii" the
higher Hz0, the sooner the saturation is reached, !iii" increas-
ing Hz0 rapidly diminishes the slope of Mx!Hy0", !iv" in the
paramagnetic case, a minimum is observed !more evidently
for Mx and more visible in Fig. 5 for moderate Hz0" that is
smoothed either for the higher or lower values of this field
component.

As indicated above, the underlying flux penetration pro-
files for the moderate field region were already presented in
Ref. 7 and fully coincide with our calculations. However, the
low field region was uncovered. Here, we will show the pe-

FIG. 6. !Color online" The magnetic moment Mx !solid lines"
and My !dashed lines" for the T states, as a function of Hy0. Shown
are the diamagnetic !top" and paramagnetic !bottom" cases for
Hz0=0.1, Hz0=1.5 , and Hz0=10.0. Units are jc!d /2 for H and
jc!d2 /4 for M.
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culiar behavior of the field and current-density profiles for
this regime. Thus, Fig. 7 displays the behavior of the projec-
tion of the current density onto the direction of the magnetic
field !J'" under the ansatz of a T-state structure for Hz0
=0.1. Recall that, hereafter, z is given in units of d /2. Then,
z=0 corresponds to the center of the sample and z=1 to the
surface.

It is apparent that the full penetration of the T state re-
quires a high-field component !Hy0318 and Hy0330 for the
diamagnetic and paramagnetic cases, respectively" and a
very high ratio J' /Jc! !3180 for the diamagnetic case and
3340 for the paramagnetic one". Notice that until these val-
ues are reached, one has J' =0,J!=1 for the inner part of the
sample and a certain distribution J'!z" for the outer region.
We also recall a somehow complex structure with one or two
minima in between the surface of the sample and the point
reached by the perturbation. Interestingly, when Hy0 grows,
the minima become very flat, corresponding to a nearly con-
stant value of J'. From the physical point of view, the
minima basically represent the region where H rotates so as

to accommodate the penetration profile H!z" to the previous
state of magnetization !Hx ,0 ,Hz0". From the point of view of
Faraday’s law, this takes place as quickly as possible so as to
minimize flux variations. The obtained magnetic field pro-
files are shown in Fig. 8. Their interpretation, in terms of the
critical current restrictions !T states", is simplified by the
increasing value of Hy0. Thus, a steep variation in Hy occurs
for the inner region of the sample, corresponding to the large
values of J' !essentially Jx because of the increasing Hx in
that region". On the other hand, Hx displays a small slope,
which relates to the condition J!=1 !essentially, J!3Jy in
the inner region".

2. CT states in 3D configurations

In this section, we concentrate on the effect of considering
a flux cutting limitation !Jc'". Magnetization curves, current
density, and field penetration profiles will be shown, corre-
sponding to the same magnetic processes indicated in Fig. 5,
but now for the rectangular DCSM regions with a number of
values for *=Jc' /Jc!. In order to obtain continuity with the
T-state results !recall that, ideally this corresponds to the
limit *→$" a range of increasing values for the parameter *
will be analyzed. On the other hand, owing to the rich phe-
nomenology encountered, the results will be given separately
for moderate and low perpendicular fields, i.e., Hz0=1.5 and
Hz0=0.1.

!a" Moderate fields. The main facts for Hz0=1.5 are
shown in Figs. 9–11. First, we plot the corrections to Mx and
My both for the diamagnetic and paramagnetic cases, when
the DCSM region corresponds to the aspect ratio values *2

=1.0, 1.3, 1.7. 2.0, 2.3, 2.7, and 3.0 !Fig. 9". It is noticeable
that the limitation in Jc' produces a corner in the magnetic
moment dependencies Mx,y!Hy0", which establishes the de-
parture from the master curve defined by the T state. The

FIG. 7. !Color online" Profiles of the component J' for the limit
Jc'

→$ !T state" with Hz0=0.1. In all cases the perpendicular cur-
rent profiles satisfy J!=Jc!

=1.0. The diamagnetic !top" and para-
magnetic !bottom" cases are shown. Top: inset !a" shows a zoom of
J' for the first profiles of Hy0

. Inset !b" schematically shows the
evolution of the vector J as function of its parallel and perpendicu-
lar components. Bottom: inset !a" shows a zoom of J' for the first
profiles of increasing Hy0. Inset !b" shows the magnetic moment
components !Mx ,My" per unit area as a function of Hy0.

FIG. 8. !Color online" Magnetic field components Hx!z" !top"
and Hy!z" !bottom" corresponding to the current-density profiles for
the T-state limit with Hz0

=0.1 !Fig. 7". The diamagnetic !left" and
paramagnetic !right" cases are shown. The insets shown a zoom of
the corresponding pictures.
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corner in Mx and My appears at some characteristic field Hy0
"

that increases with *, eventually disappearing within the re-
gion of interest. The value *" for which the corner is not
observed defines the range of application for the T-state limit
!*2.3 in the conditions of Fig. 9". On the other hand, the
fine structure of the corner is shown in the insets of Fig. 9.
Notice that, in fact, the deviation from the master curve takes
place in two steps, being the second one that really defines
the corner.

In order to allow a physical interpretation on how the T
states break down for the 3D configurations studied in this
section, in Fig. 10 we plot the profiles of J'!z" within the
slab, as Hy0 is increased. The upper panels show the evolu-
tion of this quantity for the T states, whereas the lower pan-
els show the process of saturation in which J' reaches the
value Jc' both for the diamagnetic and paramagnetic initial
conditions. Just for convenience, we have introduced the fol-
lowing notation. cT denotes that J' has reached the limit Jc'

only partially within the sample, while CT means that J'

equals Jc' for the whole range 0'z'd /2. For the partial
penetration cT states, we additionally distinguish between

the so-called cT!1" and cT!2" phases. As one can see in the
plot, cT!1" means that J' penetrates linearly from the surface
until the limitation is reached somewhere within the sample.
For the diamagnetic case, the profile stops at the actual value
Jc'. However, for the paramagnetic case, the structure is more
complex. Thus, J' penetrates linearly until a linear increase
!toward the center" curve is reached. This structure is fol-
lowed until the contact between both lines reaches the sur-
face. Then, the so-called cT!2" region appears. J' has reached
Jc' at the surface, and the whole J' curve “pivots” around this
point until the full CT state is reached. We call the readers’
attention that the initial separations of the magnetic moment
from the T-state master curves take place as soon as a cT!1"

state is obtained. On the other hand, the corners can be
clearly assigned to the instant at which such a state disap-
pears.

Just for completeness, the magnetic field penetration pro-
files, corresponding to the *2→$ and *2=2 cases are shown
in Fig. 11. Notice the change in curvature and slope reduc-
tion in the penetration of Hx for the CT states. Notice also
that the Hy profiles are only shown for the T states because a
very similar behavior takes place !just differing in a small
compression for the higher values of Hy0".

!b" Low fields. Although the general trends in the
CT-state corrections for low Hz0 do not very much differ
from those at moderate field values, some distinctive features
are worth to be mentioned for the Mx,y!Hy0" curves. To start
with, we recall that the corner structure that defines the sepa-
ration of the CT curves from the master T-state behavior is
different. Thus, as one can notice in Fig. 12, it is only for the
higher values of *2 that the separations take place abruptly.
In particular, a smooth variation occurs for *2#6 in all
cases. Also noticeable is the change in the behavior of the
initial part of the Mx!Hy0" curves for the paramagnetic case.
Recall that the minimum observed for the moderate field
region !Hz0=1.5" has now disappeared !this can be already
detected for the T states". Significantly, what one can see as
*2 decreases is that Mx develops a nearly flat region at the
low values of Hy0. Physically, this means that the initial
Hx!z" profile is basically unchanged. For the lowest values of
*2 this can take place over a noticeable range of applied
fields Hy0. A detail about the origin of this behavior can be
seen in Fig. 13 that corresponds to *2=2. Notice the insig-
nificant variation in Hx as compared to the changes in Hy
along the process.

Also remarkable are the peculiarities of the current-
density penetration profiles for low values of Hz0. They can
be observed in Figs. 14 and 15 that reveal physical mecha-
nisms that did not appear for the moderate perpendicular
field values. Again, the first observation is that the appear-
ance of the corner in the magnetic moment straightforwardly
relates to the current-density profiles. Thus, for the lower
values of * !no corner present", the profile J' displays a
rather simple structure, basically jumping from 0 to Jc' at
some point within the sample !Fig. 14". On the contrary, for
the higher values of * +those displaying a corner in M!Hy0",
the evolution of the J'!z" profiles is much more complex
!Fig. 15". Let us go into detail about these topics part by part.

Figure 14 shows the profiles J'!z" both for the diamag-
netic and paramagnetic cases for *2=2. Recall that the evo-

FIG. 9. !Color online" The magnetic moment !Mx ,My" of the
slab per unit area as a function of Hy0. Shown are the diamagnetic
!top" and paramagnetic !bottom" cases for Hx0=1.1 and Hz0=1.5.
The experimental conditions and units are those defined in Fig. 5.
The T-state curves !Jc' 31" are shown for comparison with several
rectangular cases: Jc'

2 =3.0,2.7,2.3,2.0,1 ,7 ,1.3,1.0. The insets
show the particular case Jc'

2 =2.0 in the region where the transition
T→CT is visible.
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lution of the profiles with the increase in Hy0 is very similar.
The above-mentioned steplike structure with J' =0 in the in-
ner part and J' =Jc' in the periphery evolves until the full
penetration state J' =Jc' ∀z is reached. On the other hand, a
very interesting feature is to be recalled for the paramagnetic
case !lower pane of Fig. 14". We have met a set of conditions
that produce an excursion of J!, i.e., J!=Jc! is violated
during the process of increasing Hy0. To be specific, J! starts
from the condition J!=Jc!, given by the initial process in
Hx0. Then, a basically linear decrease from some inner point
toward the surface occurs, with an eventual reduction to a
nearly null value at some regions within the sample !C states
are basically provoked". Further increase in Hy0 produces a
new CT state. This behavior is shown in a pictorial form
within the insets of Fig. 14. Recall that the average current
density sharply transits from a T state !J!=Jc! , J' =0" to
the CT state !J!=Jc! , J' =Jc'" for the diamagnetic case,
while a T→C→CT evolution happens for the initial para-
magnetic conditions. This behavior allows a physical inter-
pretation in terms of the evolution of the magnetic field pro-
files. Thus, as stated before, the cases with small * are
characterized by a nearly frozen profile in Hx, as shown in
Fig. 13. Then the structure of Hx!z" and Hy!z" is basically a
cross between two straight lines. The crossing point coin-

cides with the minimum in J!!z". Recalling the interpretation
of the perpendicular component of the current density J!

=dH /dz, the minima should be expected as Hx
2+Hy

2 has a
very small variation around the crossing point of the two
families of nearly parallel lines.

The details about the behavior of J' for the larger values
of * are presented in Fig. 15 that corresponds to the case
*2=7.5. Again, owing to the complexity of the structure, we
introduce the notation cT!1", cT!2", and cT!3" that is explained
below. Let us first recall that the corner appears when the
partial penetration regime cT!3" extinguishes and the full
sample !0#z#d /2" satisfies J!=Jc! and J' =Jc' !i.e., CT".
This property is clearly seen in the lower panel of the figure.
Thus, the cT!1" regime is characterized by a T region in the
inner part of the sample !J!=Jc! and J' =0", that abruptly
becomes CT at a point that progressively penetrates toward
the center !T-CT structure". At a certain instant, the profile
becomes T-CT-T because the outermost layers develop a
subcritical J'. This is called cT!2". Then, the central CT band
grows toward both ends. In first instance, the inner T region
becomes CT, giving a global CT-T structure, that we call
cT!3". In a final step, the surface T layer shrinks again to a
null width and the full profile is a CT region. This moment
establishes the appearance of the corner in the magnetization
curves.

FIG. 10. !Color online" Profiles of the parallel currents J' for the T-state hypothesis “Jc'
→$ and Jc!

=1.0” !top" and for a rectangular
DCSM with “Jc'

2 =2.0 and Jc!
=1.0” !bottom". The diamagnetic !left" and paramagnetic !right" cases are shown. In the paramagnetic case, the

profiles of J' for Hy0=1.35,1.7,2.0,2.3,2.6,3.0 are shown as an inset and correspond to the sign change in the slope of the magnetic moment
Mx. See the text for the definitions of the states cT!1", cT!2", and CT.
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B. Infinite slab: Other CS models

As stated before, our theory will be used to investigate the
properties related to several modifications of the conven-
tional DCSM considered in the previous section. Such modi-
fications can be justified as corrections to the simplifying
ideas that flux depinning is only related to J! and that flux
cutting is only related to J'. As indicated in Ref. 7, in a
general scenario, one should consider the dependencies Jc!

=Jc!!J'" and Jc' =Jc'!J!". In this work, we do not attempt a
microscopic justification on how the DCSM hypotheses
should be corrected. However, on the basis of minimum
complexity, we will analyze two facts: !i" the flux cutting
criterion will be revised so as to account for the 3D nature of
the problem. In fact, we will show that if one considers a
critical angle threshold, the cutting barrier depends both on J'

and J!. !ii" Also, we will investigate a smooth version of the
DCSM in which the corners of the rectangular region have
been rounded !see Fig. 4". Physically, the idea behind this
property is that the mechanisms of flux depinning and cutting
are not fully independent after all, as one could expect in a
continuum theory. Along this line, we recall that an elliptic
model was introduced in Ref. 29 that produces a rather good
description of experimental data for situations in which J!

and J' occur.

1. Critical angle gradient in 3D configurations

In this part, we present some results related to the concept
of critical angle gradient in 3D systems. It is well known

that, in fact, the limitation on J' appears as related to the
energy reduction by the cutting of neighboring flux lines
when they are at an angle beyond some critical value.5,6 This
concept has been largely exploited in the 2D slab geometry
for fields applied parallel to the surface4 and is introduced by
the local relation

4d(

dz
4 = 4 J'

H
4 ' Kc !22"

that establishes a critical angle gradient. Here, ( stands for
the angle between the flux lines and a given reference within
the XY plane !i.e., an azimuthal angle". However, for the 3D
cases under consideration, the relative disorientation between
flux lines may also have a polar angle contribution, i.e., H
does not necessarily lie within the XY or any other given
plane. As sketched in Fig. 3, one has to introduce the angle 4
within the plane defined by the pair of flux lines under con-
sideration. After some vector algebra, it can be shown that,
for the infinite slab geometry, with a 3D magnetic field one
has

d4

dz
=5 J'

2

H2 +
Hz

2J2

H4 =
1
H
5J'

2 +
Hz

2

H2 !J'
2 + J!

2 " , !23"

where the third component is also introduced.
The above result is just a particular case of the relation

FIG. 11. !Color online" The magnetic field components Hx!z" !top" and Hy!z" !bottom" in the same critical states of Fig. 10. The
diamagnetic !left" and paramagnetic !right" cases are shown for the T states and the indicated rectangular regions of J. The profiles Hy!z"
show the same behavior for Jc'

2 →$ !displayed" and Jc'

2 =2 !not shown".

BADÍA-MAJÓS, LÓPEZ, AND RUIZ PHYSICAL REVIEW B 80, 144509 !2009"

144509-12



" & !BB̂" = +!"B" & B̂, + +B!" & B̂", # +J!,1, + +J!,2 + J', ,

!24"

showing that, in general, both J' and J! can contribute to the
spatial variation in the direction B̂.

Below, we display the effects of using the cutting limita-
tion

4d4

dz
4 ' 9c !25"

instead of assuming a constant value for the parallel critical
current. Figure 16 contains the main results. The calculations
have been performed for the same magnetic processes !dia-
magnetic and paramagnetic" considered in the previous sec-
tion.

In general, !compare Figs. 9 and 16" one can see that the
smaller values for the cutting threshold in whatever form

produce the smaller magnetic moments. However, some im-
portant differences are to be quoted. On the one side, the
critical angle criterion &4!&'9c produces a smooth variation
by contrast to the corner structure induced by the critical

FIG. 12. !Color online" Magnetic moment components !Mx ,My"
of the slab as a function of Hy0. Shown are the diamagnetic !top"
and paramagnetic !bottom" cases for Hx0=1.1 and Hz0=0.1. The
infinite band T-state model !Jc'

→$" is shown for comparison with
several rectangular cases: Jc'

2 =11.0, 9.0, 7.5, 6.0, 4.5, 3.0, 2.0, and
1.0.

FIG. 13. !Color online" Magnetic field components Hx!z" !solid
lines" and Hy!z" !dashed lines" corresponding to the rectangular
region Jc'

2 =2.0, Jc!
2 =1.0 and initial paramagnetic conditions. The

curves follow the color scale convention in Fig. 10. For clarity, the
Hy!z" profile corresponding to Hy0=1.40 has been labeled accord-
ingly. The analogous plot for the diamagnetic case strongly re-
sembles that of Fig. 11.

FIG. 14. !Color online" Profiles of the parallel !J'" and perpen-
dicular !J!" current densities for rectangular region “Jc'

2 =2.0, Jc!

=1.0” with Hz0=0.1. The diamagnetic !top" and paramagnetic !bot-
tom" cases are shown. Inset !a" schematically shows the CT struc-
ture of the full penetration regime in the diamagnetic case. The
CT-C structure behavior of J for the paramagnetic case is shown in
inset !b".
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current one J' 'Jc'. On the other hand, the effect of changing
the value of 9c is much less noticeable, especially for the
diamagnetic case, in which the full range of physically
meaningful values of 9c produce a negligible variation.

We call the readers’ attention that the above-mentioned
range for 9c is established by the application of Eq. !23" to
the initial state of the sample. Thus, if one takes J' =0, Hz0
=1.5, and Hx0=1.1, the squared angle gradient takes the
value 4!2=0.19 and one has to use 92%0.19 in order to be
consistent with the initial critical state assumed.

2. Smooth CS models

Here, we develop the concept of smooth double critical
state model introduced before. Mathematically, the effect of

rounding the corners for the rectangular DCSM region may
be represented by a one-parameter family of functions with
the generic form

1 J'

Jc'
22n

+ 1 J!

Jc!
22n

' 1. !26"

Such kind of curves is known as a superellipses and covers
the range of interest just by allowing n to take values over
the positive integers. As the reader can easily verify, n=1
corresponds to the standard ellipse and n.5 is already a
rectangle with faintly rounded corners.

In order to illustrate the effect of smoothing the allowed
region of current-density components !J' ,J!", below we will
show the magnetization curves that are obtained for the dia-
magnetic and paramagnetic cases considered before. We
compare the predictions for n→$, n=4 and n=1. For sim-
plicity, they will be named after rectangular, superelliptic,
and elliptic. The main results are plotted in Figs. 17–19.

FIG. 15. !Color online" Top: profiles of J' for the diamagnetic
case within the rectangular DCSM with *2=7.5 and Hz0=0.1. In all
cases, one gets J!=Jc!=1.0. Bottom: the corresponding magnetic
moment components !Mx ,My" as a function of Hy0 are shown. The
evolution from the initial full penetration T state to the final full
penetration CT state takes place in three steps that are classified
according to the structure along the sample width by: cT!1"

#T-CT, cT!2"#T-CT-T, cT!3"#CT-T and eventually CT.

FIG. 16. !Color online" The magnetic moments Mx !solid lines"
and My !dotted lines" of the slab as a function of Hy0

for the critical
angle gradient model +Eq. !25",. The unrestricted case !9c

2→$" is
shown for comparison with several cases with restricted angle gra-
dient: 9c

2=0.20, 0.30, and 0.40 !dimensionless units are defined by
9c#Kcd /2". Shown are the diamagnetic !top" an paramagnetic
!bottom" cases for Hx0

=1.1 and Hz0
=1.5. The insets detail the evo-

lution of the angle gradient profiles for 9c
2→$.
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Figure 17 shows the behavior of Mx and My for an exter-
nal perpendicular field at the moderate intensity region Hz0
=1.5. The first observation is that the overall effect of reduc-
ing the value of *#Jc' /Jc! is the same for the three models.
The smaller the value of *, the higher reduction respect to
the T-state !*→$" master curve for the magnetic moment
components. On the other hand, as the particular details for
each model, we recall !i" the smooth models lead to smooth
variations, i.e., the corner is not present, !ii" the breakdown
of the T-state behavior occurs before !at higher values of *
or lower values of Hy0" for the smoother models. Strictly
speaking, the concept of T state is only valid for the rectan-
gular region, but it is asymptotically generated as the super-
ellipse parameter n grows. Finally, !iii" the isotropic CS limit
given by the circular region n=1 and *=1 produces the ex-
pected results:11: Mx collapses to zero, and My develops a
one-dimensional critical state behavior.

Figure 18 shows the comparison of Mx and My for the
same models considered above but now for a low perpen-
dicular field !Hz0=0.1". Here, one can notice !i" the rectan-
gular and superelliptical models produce very similar results
for the diamagnetic case, both for Mx and for My, noticeably
differing from the elliptical region predictions that still show

a practical collapse of Mx and a saturation in My as stated
before. !ii" The paramagnetic case involves a higher com-
plexity. Thus, we recall that the already mentioned “flat”
behavior of Mx for small values of * within the rectangular
region model. This feature is no longer observed upon
smoothing of the restriction region. On the contrary, the
smooth models involve an initial negative slope and a mini-
mum, resembling the behavior of Mx for the rectangular
model, but in moderate Hz0. As concerns My, important dif-
ferences among the three models are also to be recalled.

In order to provide a physical interpretation of the behav-
iors reported in the above paragraphs, a comparative plot of
the current-density vectors for each case is given in Fig. 19.
For clarity, we restrict to the representation of the vector J at
the surface of the sample !z=d /2" for a selected number of
values of Hy0. Just at a first glance, one can relate the best
coincidence in predicted magnetization to the more similar
critical current-density structures !superelliptical and rectan-
gular regions for the diamagnetic case with Hz0=0.1". Recall
that, in this case, the rectangular region produces a CT-state
structure !J' =Jc' and J!=Jc!" that is represented by a J vec-
tor pinned in the corner. On the other hand, the vector J
related to the superelliptic model does not pin at any point
because such a singular point does not exist. However, it is
basically oriented in the same fashion and this relates to the
good agreement in M. We finally emphasize that the cases in
which strong differences occur for the magnetic moment are

FIG. 17. !Color online" The magnetic moments Mx and My of
the slab per unit area as a function of Hy0

in the diamagnetic !top"
and paramagnetic !bottom" cases with Hx0

=1.1 and Hz0
=1.5. The

“infinite band” !external solid lines", rectangular !solid lines", su-
perelliptical !dashed lines", and elliptical !dotted lines" models are
shown for several values of the ratio Jc' /Jc!.

FIG. 18. !Color online" Same as Fig. 17, but now for
Hz0=0.1.
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also related to important changes in the behavior of J. Thus,
if one considers the paramagnetic case at small values of Hz0
and Hy0, the significant differences in magnetization relate to
an opposite behavior in J. Moreover !see left bottom panel of
Fig. 19", the rectangular model predicts a transition toward a
C state !J' =Jc' and J!30", while the smooth versions pro-
duce a tendency toward the T state.

C. Longitudinal problem with transport currents

In this section, we still investigate the infinite slab geom-
etry, now under the assumption of a longitudinal transport
current. Such configuration has been a long-standing prob-
lem related to the design of superconducting devices and is
still frequently focused30 and described in terms of the criti-
cal state regime. Here, we will consider the slab geometry

FIG. 19. !Color online" Current-density vector in the J! vs J' representation for the rectangular, superelliptical, and elliptical models. The
diamagnetic and paramagnetic cases with Hz0=1.5 and Hz=0.1 are shown for several values of the ratio Jc' /Jc! and at several values of the
field Hy0 as labeled on each arrow. Recall the scales on the horizontal axes that have been resized for visual purposes.
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subjected to a uniform field normal to the surface !Hz0", then
a transport current applied along the y axis and, eventually, a
magnetic field !Hy0" along the same direction. This situation
matches the second example in Ref. 7, but here, no restric-
tions will be required for the ratios *−1#Jc! /Jc' and :
#Jc!d /Hz0, that are small parameters in that case. Notice
that the smallness of *−1 means that the arising critical state
is approximated by the unbounded band region &J!&=Jc! ,0
# &J'&#$ described before !T states". The smallness of : was
meant to indicate a small deviation of the full magnetic field
respect to the z axis. Then, moderate values of J' are ex-
pected. Remarkably, these hypotheses allowed to obtain a set
of approximate analytic formulas for the electromagnetic
quantities that allow to bypass the numerical solution of the
differential equations. However, as it will be shown below,
the range of application is narrower than expected. By using
our numerical method, that allows to calculate the sample’s
response for any value of the parameters * and :, the range
of application of such approximation will be discussed.

In brief, our results are not limited to the weak longitudi-
nal current conditions. By contrast, the calculations are per-
formed numerically, allowing to display the corrections
needed in the general critical states.

1. Mathematical statement

Technically, the application of a transport current relates
to the consideration of specific boundary conditions for the
electromagnetic fields. Within our mutual inductance formu-
lation +Eqs. !17"–!20",, the above described longitudinal
problem takes the following form within the DCSM frame-
work. One has to minimize

F =
1
20

i,j
8i,n+1Mij

x 8 j,n+1 − 0
i,j

8i,nMij
x 8 j,n+1

+
1
20

i,j
4i,n+1Mij

y 4 j,n+1 − 0
i,j

4i,nMij
y 4 j,n+1

+ 0
i

8i,n+1!i − 1/2"!Hy0,n+1 − Hy0,n" !27"

for

!1 − hx,i
2 "8i

2 + !1 − hy,i
2 "4i

2 − 2hx,ihy,i8i4i ' jc!
2

hx,i
2 8i

2 + hy,i
2 4i

2 + 2hx,ihy,i8i4i ' jc'
2 !28"

and

0
i

4i = Itransport. !29"

This last condition indicates that a certain transport current is
being applied to the sample.

On the other hand, as related to the symmetry properties
for the transport configuration +4i!z"=4i!−z" as opposed to
the antisymmetry for the case of shielding currents,, here one
has to use the mutual inductance expressions

Mij
x # 1 + 2+min)i, j*, ,

Mij
y # 1 + 2+N − max)i, j*, ,

Mii
x # 211

4
+ i − 12 ,

Mii
y # 211

4
+ N − i2 , !30"

with N the full number of layers in the discretized slab. As a
final detail, the evaluation of the magnetic fields has to be
made according to

Hx,i = 0
j#i

4 j + 4i/2,

Hy,i = 0
j%i

8 j + 8i/2. !31"

The results obtained by application of Eqs. !27"–!31" are
displayed in Figs. 20 and 21. They are described below.
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FIG. 20. !Color online" Profiles of the magnetic field compo-
nents Hx!z" and Hy!z" for the longitudinal problem corresponding to
a transport current along the y axis of value Itransport=Jc!d /2 and at
several increasing values of the magnetic field Hy0 as labeled in the
curves. A slab geometry with uniform perpendicular field !Hz0=20
and then Hz0=200" was assumed. The plot shows the comparison of
the full range numerical solution !continuous lines" to the analytical
approximation in Eq. !32" !dashed". The insets show the initial flux
penetration profiles for both components of the magnetic field. The
infinite band !T-state" model has been assumed.
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2. T-state solutions

First, we analyze the case in which the critical current
ratio Jc! /Jc' is small, i.e., T states are warranted. Neverthe-
less, here, the existence of moderate or even high values for
the parallel component of J will be allowed.

Figure 20 shows the main features of our investigation.
This includes the comparison of the penetration profiles for
Hx and Hy obtained from our theory and from the analytic
expressions in Ref. 7, i.e.,

Hx =
(

cos ;
arcsinh1 z

(
2 ,

Hy = Hy0 − (151 +
1
(2 −51 +

z2

(22 ,

cos ; = 2( arcsinh1 1
(
2 . !32"

Here, ( has to be obtained for each value of the applied field
from the condition cos ;=Hz0 /5Hz0

2 +Hy0
2 .

One can notice that the agreement is rather good for the
higher value of Hz0 !200 in our dimensionless units",
whereas remarkable differences appear for Hz0=20 as Hy0
increases. Our interpretation of the facts is as follows.

As regards the establishment of the full penetration pro-
file, we have straightforwardly obtained this condition
through the step-by-step integration starting from the state

Hy0=0 !the evolution is shown in the insets of the figure".
Whereas the value 0.796 is estimated for the penetration field
Hy0

p within the analytical limit, by the straightforward
method described above we get Hy0

p =0.845. In spite of some
small differences for the low field profiles, at moderate val-
ues !Hy0/Hz0" the curves always coincide. On the other
hand, the failure of the analytical approximation for the
higher values of Hy0 is readily explained by the observation
of the plot. Thus, increasing Hy0 can compress the transport
current toward the center of the sample +as indicated by the
slope of Hx!z",. For the case of Hz0=20, one gets Jy,max35
when Hy 3100 and Jy,max350 when Hy 31000, then a con-
siderable value of J' is obtained. This leads to a not so good
approximation from the analytic condition in the approxima-
tion of Ref. 7, which one is only valid for small values of this
quantity. However, when comparison is made for Hz0=200,
one gets Jy,max31 when Hy 3100 and Jy,max35 when Hy
31000. Then, a much better performance is obtained for the
analytical limit even for very high applied fields Hy0.

3. CT state solutions

This part will be devoted to unveil the features of longi-
tudinal transport problems under general critical state condi-
tions. To be specific, we will compare the transport current
profiles obtained either by assuming a T state !flux cutting
may be neglected" or a general critical state in which flux
cutting and transport are at the same level, i.e., *=Jc' /Jc!

=1. Pictorially, !see Fig. 21", we solve the CS problem either
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FIG. 21. !Color online" Profiles of the transport current density Jy!z" for the longitudinal transport problem in the slab for the same
conditions of Fig. 20 !here Hz0=20". The upper panel shows the initial partial penetration process induced by application of increasing values
of Hy0 as labeled in the successive curves. The transport current profile fully penetrates at Hy0

p =0.845. The lower panels show the evolution
of Jy!z" from the fully penetrated state Hy0%1.0 both for the T-state model !left" and for a superelliptical model with n=4 and *=1 !right".
The induced magnetic field profiles Hx are shown as insets.
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for a horizontal band or for a smoothed square region. All the
results shown correspond to the case Hz0=20.

First, let us recall that the initial transport profile +Jy!z"
=0 for z#0.5 and Jy!z"=1 for z<0.5, is spread out by the
action of Hy0. Thus, as illustrated in the upper panel of Fig.
21, the free current core is reduced step-by-step until the
eventual full penetration occurs for an applied field Hy0

p

=0.845. We remark that no significant difference is observed
when this plot is generated either for the T or CT critical
state models. On the other hand, the full penetration regime
displays clear differences, at least for the high-field region.
Thus, for the case under consideration !Hz0=20" one can
notice that the transport current profiles are very similar for
Hy0'20 but display even qualitative differences for Hy0
%20. This property relates to the appearance of the limita-
tion for J'. In fact, the value J' =0.9Jc' =0.9Jc! is obtained at
z=0 when Hy0 equals 20. Subsequently, J' !which one can
basically identify with the transport current Jy for large val-
ues of Hy" increases more and more at the central region of
the sample for the T-state model. For the CT state, the situ-
ation at high fields is rather different. Initially, Jy reaches the
limit Jc' !=Jc! in the case under study" at the center and
rapidly decreases toward the value Jc! /2 that is roughly
maintained for all z%0.

The behavior of J is obviously inherited by the flux pro-
files. One can see it in the plot of Hx !see the insets of Fig.
21". For the T states, Hx saturates at the periphery, where a
practically flat profile is reached. Then, one has Jy /0 in that
region, and the full transport profile is shifted toward the
center of the sample. At the same time, the shielding part of
the critical current Jx3J! is maximum within the region of
negligible transport and goes to zero where transport pre-
dominates. Such a behavior !compression of transport by
penetrating shielding currents" is straightforwardly deduced
from the slopes of the magnetic field profiles in Fig. 20 and
has been already suggested as a possible explanation the
magnetic field dependence of the transport critical current in
longitudinal geometry.22 Direct measurements of the trans-
port current-density profile31 have also been used to conclude
that a longitudinal field compresses the transport current to-
ward the center of the sample. On the other side, for the
CT-state case, in which the limitation on the parallel current
density is active, Hx displays a turn back until a nearly linear
penetration is reached, basically characterized by the slope
Jc! /2. Thus, the transport profile eventually stretches instead
of concentrating toward the center.

IV. CONCLUSIONS

In this paper, we have shown that the critical state theory
for the magnetic response of type-II superconductors may be
built in a very general framework. The basic concepts under-
lying the phenomenological approach issued by Bean in the
early 1960s have been identified as follow:

!1" The CS theory bears a Magneto Quasi Stationary ap-
proximation for the Maxwell equations in which Ė and +̇ are
second order quantities. This means that the magnetic flux
dynamics is described by

1" & B = !0J
1B = " & !E1t" !implicit" 2

i.e., the inductive part of E may be introduced through Fara-
day’s law, whereas the role of electrostatic quantities is irrel-
evant. E may be modified by a gradient !E→E+"=" with
no effect on the magnetic response.

!2" The law that characterizes the conducting behavior of
the material may be written in the form

1If E = 0 ⇒ J̇ = 0

If E # 0 ⇒ max J · Ê&J"1r

2 .

In physical terms, the material “reacts” with a maximal
shielding rule when electric fields are induced. A perfect con-
ducting behavior characterizes the magnetostatic equilibrium
when external variations cease. In all cases, J is constrained
within some region 1r.

We stress that the importance of E is sometimes veiled by
the actual application of the above rules as it plays an im-
plicit role usually. On the other hand, the above representa-
tion may be understood as the macroscopic counterpart of
the underlying vortex physics. Thus, the physical barriers for
flux depinning and cutting are represented by the condition
J"1r, i.e., the current density is confined within some re-
gion 1r !J'Jc in 1D". The evolution from one magnetostatic
configuration to another occurs through the local violation of
this condition, i.e., J#1r !J%Jc in 1D problems". However,
owing to the high dissipation, an almost instantaneous re-
sponse may be assumed, represented by a maximum shield-
ing rule in the form max J · Ê &J"1r

!J= "Jc in 1D".
The general CS theory exposed above may be solved in

different forms. In our work, we emphasize the performance
of variational methods for solving the problem. In particular,
the mutual inductance representation with J!r" as the un-
known offers two important advantages: !i" intricate bound-
ary conditions and infinite domains are avoided and !ii" the
transparency of the numerical statement and its performance
!stability" are outlined. Thus, the quantities of interest !flux
penetration profiles and magnetic moment" are obtained by
integration and additional smoothing is ensured. To be spe-
cific, upon discretization, the CS problem bears the algebraic
expression

min F =
1
20i,j

Ii,n+1MijIj,n+1 − 0i,j
Ii,nMijIj,n+1

+ 0i
Ii,n+11Hi,

with )Ii,n+1* as the set of unknown current values at the spe-
cific circuits for the problem of interest, Mij as their mutual
inductance coupling coefficients, and 1Hi as the applied
magnetic field increment. Corresponding to the CS rule J
"1r, each value Ii must be constrained. Also, we have found
that a number of constraints related to physically meaningful
CS models may be expressed in the algebraic form
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F(!> jIiCij
(Ij" ' f0( ∀ i ,

with f0 as some constant representing the physical threshold,
F( as an algebraic function representing the physical model,
and Cij

( as a coupling matrix, that also depends on the model.
For example, the isotropic model corresponds to F!x"=x,
Cij =5ij, f0=ȷc

2. On the other hand, the double critical state
model is given by

F1!x" = x, F2!x" = x ,

f01 = ȷc!
2 , f02 = ȷc'

2 ,

and the coupling coefficients Cij
1,2 that project the local cur-

rent density onto the local magnetic field or its normal plane,
are obtained from Eqs. !17" and !19".

General critical state problems have been solved for a
number of examples, within the infinite slab geometry. All of
them share a 3D configuration for the magnetic field, i.e.,
H= !Hx ,Hy ,Hz" under various magnetic processes and mod-
els for the critical current restriction. Thus, we have consid-
ered several physical scenarios classified by the ansatz for
the flux depinning and cutting processes !basically affecting
the critical current thresholds Jc! and Jc'" and their relative
importance !given by *#Jc' /Jc!". In summary, the follow-
ing cases have been analyzed:

!1" T-state solutions, in which the approximation *31
produces the result J!=Jc! and J' may be arbitrarily high.
Our predictions show an excellent agreement with previous
results in the literature and extend the theory to the full range
of applied magnetic fields.

!2" CT-state solutions in which *.1 for several cases
within the rectangular region given by J!'Jc! and J' 'Jc'

are predicted by the theory. Outstandingly, the appearance of
the flux cutting limitation takes place as a sudden corner in
the magnetic moment curves in many cases. The corner es-
tablishes a criterion for the range of application of T-state
models.

!3" The critical angle !between vortices" criterion that es-
tablishes the limitation on J' has been modified for 3D prob-
lems. It is shown that, in general, the concept may involve
both J' and J! as one can see in Eqs. !23" and !25".

!4" The possible coupling between the flux depinning and
cutting limitations has been studied through the solution of
smoothed DCSM cases. In particular, we consider the effect
of rounding the corners of the rectangular region J!'Jc!

and J' 'Jc', by the superelliptic region criterion !J' /Jc'"2n

+ !J! /Jc!"2n'1 with 1'n#$. It is shown that, under spe-

cific conditions !paramagnetic initial state and low perpen-
dicular fields", important differences in the predictions of the
magnetic moment behavior are to be expected. The differ-
ences in M have been related to the behavior of the critical
current vector Jc around the corner of the rectangular region.

!5" The longitudinal transport problem, i.e., a magnetic
field is applied parallel to the transport current, has been
studied for several 3D configurations. It is shown that the
transport current is essentially compressed toward the center
of the sample by the effect of shielding currents when no
limitation on J' is active !T states". However, increasing the
parallel field when the constraint Jc' is reached produces a
flattening on the transport current density that becomes
nearly uniform across the sample.

We emphasize that the scope of our theory is rather be-
yond the actual examples treated in this paper. On the one
side, we have shown that the CS concept allows arbitrariness
in the presence of electrostatic charge and potential, and one
could simply upgrade the models by the rule E→E+"= if
necessary. For instance, a scalar function = may be intro-
duced if the direction of E has to be modified respect to the
maximum shielding rule in the MQS limit.

On the other side, the extension of the theory to arbitrary
sample geometries is intrinsically allowed by the mutual in-
ductance representation. This paper has laid necessary
groundwork for attacking general critical state problems in
3D geometry. Experimental studies that could reproduce the
situations considered in the different examples, as a means of
testing the double critical state model predictions are sug-
gested.

From the theoretical point of view, a relevant technical
issue to be considered is that the divergenceless character of
the current density is not always ensured. In this work, the
problem’s symmetry has allowed to identify the elementary
current circuits that fulfill such condition !infinite horizontal
layers", and the corresponding geometrical problem of find-
ing their coupling matrix coefficients has been solved. In
general, this is not a trivial issue and one will have to incor-
porate the additional restriction " ·J=0 or use a representa-
tion with appropriate basis functions for J.32
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