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Abstract
A theory for the electromagnetic response of type-II superconductors close beyond the critical
state is presented. Our formulation relies on general physical principles applied to the
superconductor as a thermodynamic system. Metastable equilibrium critical states, externally
driven steady solutions, and transient relaxation are all described in terms of free energy and
entropy production. This approach allows a consistent macroscopic statement that
incorporates the intricate vortex dynamic effects, revealed in non-idealized experimental
configurations. Magnetically anisotropic critical currents and flux stirring resistivities are
straightforwardly included in three-dimensional scenarios.

Starting from a variational form of our postulate, a numerical implementation for practical
configurations is shown. In particular, several results are provided for infinite strip geometry:
voltage generation in multicomponent experiments, and magnetic relaxation towards the
critical state under applied field and transport current. Explicitly, we show that for a given set
of external conditions, the well established critical states may be completely obtained as
diffusive final profiles.

(Some figures may appear in colour only in the online journal)

1. Introduction

Over a half century, the critical state model [1] (CSM) has
been an essential interpretative tool for the investigation of the
macroscopic magnetic properties of type-II superconductors.
This accomplishment probably relies on a clear physical back-
ground together with an ostensible mathematical simplicity,
which have enabled a huge number of utilizations both in
material characterization as well as in more fundamental
studies.

In brief, the CSM postulates that the biased magnetic
response of a type-II superconductor is defined in terms
of a series of metastable equilibrium configurations, each
characterized by a current density distribution J(r). In the
simplest cases, J(r) may be obtained by integration of
Ampère’s law given by dH/dx = ±Jc, 0. Jc, the so-called
critical current density is the single material parameter of
the theory, and characterizes the balance equation between
magnetic and intrinsic pinning forces: J ⇥ B = Fp. The

transition between different configurations is assumed to
take place instantaneously, which means that external field
variations occur slowly enough as compared to the scale
established by the material response (⌧ext � ⌧mat). Thus,
although it is well known that magnetic flux penetration in
the presence of pinning forces happens as an avalanching
process [2] when the threshold condition is exceeded (i.e.,
J > Jc), one argues that magnetic diffusion is so fast that the
superconductor settles a negligible time in the intermediate
resistive states.

In many instances, the CSM approximation is justified,
but especially for the case of high-Tc superconductors one
can meet practical situations for which relaxation transients
towards equilibrium configurations have to be considered.
A very relevant case is the fault current limiter that, by
construction, operates driving the superconductor beyond
the resistive transition [3, 4]. The precise knowledge of
the magnetic diffusion processes that occur is obviously
necessary for the design of such devices. In particular,

10953-2048/12/104004+16$33.00 c� 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-2048/25/10/104004
mailto:anabadia@unizar.es
mailto:carlos.lopez@uah.es
http://stacks.iop.org/SUST/25/104004


Supercond. Sci. Technol. 25 (2012) 104004 A Badı́a-Majós and C López

the essential evaluation of energy losses may be seriously
hampered if one neglects the effect of the sample becoming
resistive. On the other hand, and more to the side of basic
physics, one has to recall that, experimentally, the value of
the critical parameter Jc is often obtained from transport
measurements that are based on some threshold value for the
voltage detected when the sample goes resistive (typically
1 µV cm�1). In a recent work about the origin of the
dissipation mechanisms that operate for superconductors in
the vortex state, it has been argued that, although designed for
obtaining the critical parameters, such measurements could
be ineluctably recording properties of the resistive state [5].
This circumstance is relevant for HTS samples that display
more gradual current–voltage transitions as compared to the
sharp behavior for conventional superconductors. Finally, it
should also be mentioned that from the fundamental point of
view, embedding the CSM approximation in a time-dependent
theory that allows one to derive it as a limiting case is by itself
a desirable objective.

In this work we put forward a minimal formulation that
upgrades the critical state theory so as to enable the inclusion
of overcritical behavior. The basic picture of our statement
is as follows. Subject to an external action, the state of the
superconductor will drift until new steady conditions are met.
If allowed, the steady state will be an equilibrium phase,
characterized by a conventional force balance equation, with
critical behavior for the current density. On the other hand,
dissipative steady states and excursions from one critical state
to the other will be described under a first-order (linear)
approximation for the underlying driving forces. Following
the spirit of Bean’s model, although describing phenomena
whose ultimate nature would at least require a mesoscopic
scale, we pursue a theory based on macroscopic variables.
Thus, our basic assumption is that the superconductor behaves
as a thermodynamic system, with the coarse-grained current
density as the state variable, and postulate that dynamic
properties may be predicted on the basis of three factors:

(i) magnetic forces;
(ii) material pinning forces;

(iii) irreversible thermal forces.

The latter group will allow one to introduce the physical
effects related to dissipation induced by overcritical current
flow. In order to avoid microscopical modeling, a power
series expansion argumentation will be used for introducing
such effects. Outstandingly, recalling universal properties
as entropy increase and single valuedness of the physical
observables, one can fairly determine the kind of models
to be used, even in complex scenarios such as flux-cutting
environments or 3D modeling.

It must be clarified that, being interested in the description
of small excursions beyond the critical state, long-term
effects, such as thermal relaxation to true equilibrium,
are not considered here. Thus, our theory describes the
behavior of superconducting material with a characteristic
time very short as compared to thermal creep relaxation,
but non-negligible against external source variations, i.e.,

⌧mat . ⌧ext ⌧ ⌧thermal. Therefore, magnetic diffusion times
are small but not negligible against external source variations,
while thermal creep (of the order of hours or days) is
ignored, determining a well defined metastable equilibrium.
Furthermore, isothermal conditions will be assumed and, thus,
any energy transfer from the electromagnetic sector would be
immediately absorbed by the surrounding thermal bath.

The paper is organized as follows. Section 2 is devoted
to delivering the formal details of our theory. First, in
section 2.1, we recall some mechanical concepts (fields,
forces, Drude’s model) that allow a rudimentary approach
to the problem of dissipation in normal conducting systems.
Then, in section 2.2, some basic thermodynamic background
is introduced, with the aim of paving the way for the
generalization to superconductors. As a central result of our
work, in section 2.2.2, we introduce the idea of dissipation
function and entropy generation for type-II superconductors
driven out of equilibrium. We will show that, concomitant
with a complex structure for the metastable equilibrium states,
an acceptable theory of resistive losses has to fulfil some
consistency requirements that will be used to put restrictions
on the possible material laws to be used (E(J) in particular). In
order to ease the practical implementation, a variational form
of our theory is issued. The second part of our paper, section 3,
illustrates the application of the above concepts to practical
situations. Mainly focused on the infinite strip geometry
(quasi-1D configuration), we show that our basic equation
allows one to obtain the electromagnetic quantities either in
equilibrium, steady states or during transient processes. It is
explicitly shown that, for a given set of external conditions,
relaxation eventually leads to the well-known corresponding
critical states. Excellent comparison with analytical results,
when available, is displayed. The final section, section 4,
summarizes our results and contains a brief discussion of
possible applications and extensions of our work in the area
of type-II superconductivity.

2. Resistive losses in hard superconductors

2.1. Coarse-grained modeling: fields, forces and the E(J) law

Let us start by recalling some details about the classical
description of electrical conduction in normal metals, namely,
the Drude model. As we will see, this simple scheme may be
illuminating for the issue of a minimal model of the resistive
behavior of hard superconductors.

2.1.1. Normal metals. The simplest description of electric
current in normal conductors (Drude model) is built from the
classical dynamical equation of the charge carriers subject to
both an external electric field and a phenomenological drag
force Fdrag standing for the interaction with the molecular
environment and other charges, i.e.,

me
dve

dt
= �eE + Fdrag(ve). (1)

Customarily, Fdrag is taken to first order, i.e., Fdrag ⇡
�(meve/⌧tr) and it is a characteristic of the material through
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the time constant ⌧tr. It is important to recall that all the
quantities in the above formulas have to be interpreted
as mesoscopic averages both in spatial regions and time
intervals. This entails smoothing (by randomizing) the
macroscopically irrelevant fluctuations of the microscopic
level. In a thermodynamic language, one speaks about a
thermalized electron–lattice system. In spite of its simplicity,
the model catches the basic behavior observed in an
overwhelming number of experiments.

It is of particular interest to observe that, unless for very
high excitation frequencies (in the range of 1 THz for typical
metals), further simplification is possible. First, a quasisteady
state approximation may be used, which implies neglecting
the time derivative (electron inertia) to the left hand side of
equation (1). Then, the non-dispersive form of Ohm’s law
results, i.e., J = (ne2⌧tr/meE) ⌘ �0E with n the number of
conduction electrons per unit volume. Also, related to the use
of good conductors, as is customary in conventional electric
machines, charge accumulation within the sample may be
neglected (i.e., @⇢q/@t ⇡ 0) and one may use Ampère’s
law in its magnetoquasistatic form r · J = 0. In practice,
when studying the evolution induced by some process of the
external excitation, this means that one starts by calculating
the dominant magnetic fields from the diffusion equation [6],
which for latter convenience will be expressed in terms of the
material resistivity ⇢0 ⌘ 1/�0

✓
µ0

@

@t
� ⇢0r2

◆
H = 0. (2)

Eventually, E is obtained from Faraday’s law. Note that
stationary solutions of this equation verify the condition r ⇥
J = 0, that is to say: persistent current loops within the sample
are excluded for a normal metal.

2.1.2. Hard superconductors. Microscopically, the nature
of resistive losses in flux penetrated type-II superconductors
is more complex than the scattering of normal electrons,
which is behind the above summarized Drude’s model.
Nevertheless, one can take advantage of the conceptual
aspects introduced, which may be straightforwardly applied at
the phenomenological level. Thus, it is well known that under
the action of a transport current and a perpendicular magnetic
field, these materials experience a resistive transition, also
characterized by a linear E(J) relation, now in terms of
the so-called flux flow resistivity ⇢ff. This behavior is well
understood at the mesoscopic level. Abrikosov vortices are
driven by the Lorentz-like force J ⇥ B and their normal cores
contribute to the transport current as a normal channel. Then,
in the absence of additional effects, one could formulate the
behavior of the superconductor in the same terms described
above for a normal metal, just replacing ⇢0 by ⇢ff.

However, the detrimental flux flow behavior has been
customarily attacked by a number of pinning strategies.
Basically, they rely on the idea of introducing a restoring force
on the vortices, so as to keep them in equilibrium positions
while a transport current flows along the system (J⇥B = Fp).
As pinning forces are bounded (Fp  Fp,max), there will be a
threshold value for the current density that can flow lossless,

the so-called critical current density Jc. As was said before,
in this framework, the calculations leading to the evaluation
of magnetostatic equilibrium properties may be rather simple.
Thus, Bean’s postulate states that flux penetrated regions
will be characterized by the threshold (critical) conditions,
i.e., |J| = Jc. Following this, in 1D problems one just has
to integrate Ampère’s law in the form dH/dx = ±Jc, 0
supplied by specific boundary conditions for the magnetic
field. Nevertheless, the investigation of the transient processes
involving the appearance of resistivity may be quite complex,
even for the simplest geometries. The reason is that, now,
effective drag forces only occur for currents circulating with
a density beyond the critical value Jc. In other words, one has
to deal with a material law of the kind E = ⇢(J)J where

⇢(J) =
(

0 if |J|  Jc

⇢ff if |J| > Jc.
(3)

As a consequence of the non-linearity introduced by the
piecewise constant behavior of ⇢(J), one has to deal with
noticeable difficulties, such as, for instance, the form taken
by the diffusion equation (compare to equation (2))

✓
µ0

@

@t
� ⇢(J)r2

◆
H = (r ⇥ H) ⇥ r⇢(J). (4)

The difficulties of solving this equation by analytical
methods have been reported in [3, 4], which basically suggest
applying ad hoc approximations when justified by the set of
experimental data under consideration. On the other hand,
we stress that, in fact, the limiting Bean’s approximation
means avoiding such an equation for the following reasons.
If the actual material law in equation (3) is such that one
can speak about a sharp transition, i.e., ⇢ff takes elevated
values as compared to the experimental parameter E/J, one
can approximate ⇢ff ! 1. Then, the magnetic diffusion
time (⌧⇢ / 1/⇢) may be neglected and externally induced
evolutions may be accurately described as a series of
equilibrium critical states.

Figure 1 displays the main features of the above
mentioned modeling with a finite value of ⇢ff for the case of
1D systems. Let us analyze the physical significance of such
a material law.

(i) Note first that superconducting lossless transport is
allowed by the condition E = 0 within the region 1 ⌘
[�Jc, Jc]. The superconducting range 1 increases with
the value of Jc, starting from 0 in very low pinning
materials, which behave like ‘normal conductors’ (see
arrows in figure 1).

(ii) Persistent shielding is also possible, subsequent to
electromagnetic induction, because E can go to zero and
J take a local structure that allows r ⇥ J 6= 0 when
diffusion stops. In particular, this includes the critical
state solutions with J taking the values ±Jc or 0 within
the sample, and forming screening loops.

(iii) One can visualize Bean’s model as a limiting case of this
material law when there is an arbitrarily high slope of
E(J) for J > Jc.
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Figure 1. Piecewise linear E(J) law for a type-II superconductor.
The material parameter Jc defines the boundary 0c ⌘ {�Jc, Jc} of
the lossless behavior (region 1 ⌘ [�Jc, Jc] on the horizontal axis
and detailed as an inset). Ohm’s law corresponds to
Jc = 0 ) 1 = ;. The arrows indicate the effect of introducing
pinning forces, and thus progressively increasing Jc.

(iv) The conceptual implications of figure 1 may be
straightforwardly generalized to higher dimensions. In
particular, 1 may be a region of the J-space and 0c its
boundary. Thus, for the case of high-Tc superconductors
it has been recently shown [5] that a meaningful selection
would be to take 1 as an elliptic region, within the
plane defined by the components of J parallel and
perpendicular to the local magnetic field. Other possible
regions, related to specific materials, will be commented
on.

(v) The material law for a type-II superconductor depends
not only on the intrinsic parameter ⇢ff, but is strongly
affected by extrinsic quantities. In particular, the ambient
magnetic field will play a prominent role for the
definition of the region 1. Thus, already in the simple
1D cases, the dependence Jc(H) is usually an important
concern. On the other hand, as mentioned above, the
relative orientation of the vectors J and H is crucial for
the material law in higher dimensions.

Performing calculations within the above-described material
law and its natural extensions to 3D is by no means a simple
task. Below, we suggest a first approximation to the problem
that relies on thermodynamic concepts applied either close to
equilibrium or close to steady states. This will provide a useful
framework for developing numerical tools that allow one to
analyze the resistive transition in applied superconductivity.

2.2. Thermodynamic background

Non-equilibrium thermodynamics is still an area under
development. One of the main fields of interest, i.e., the
study of steady states will guide us through the analysis
of electrical conduction. In fact, being concentrated on
quasisteady systems, the extension to irreversible transient

processes (magnetic diffusion) will be straightforward. As
an example of what can be done, we recall [7], which
was based on the law of increasing entropy and also
on Onsager reciprocal relations, one can show that in
normal conductors, the conductivity tensor must be positive
definite and symmetric. This generalizes the 1D Ohm’s law.
Obviously, such properties could never be deduced from
the pure electromechanical principles used in the previous
paragraph. Thus, having the aim of a theory that generalizes
section 2.1.2 for type-II superconductors, in the forthcoming,
we present a minimal conceptual scenario that allows one
to host the main physical properties of these materials.
As before, we will start by introducing the main ideas by
taking advantage of our knowledge of the simpler normal
conductors.

2.2.1. Entropy and dissipation function in normal metals.
Let us start by recalling some definitions. Being interested in
local properties of the conductor, we consider the mesoscopic
entropy function S as an average that has smoothed
the statistical microscopic fluctuations. In fact, the spatial
dependence comes through the current density, which will
be our state variable: S[J(r)]. Here, r denotes the position
of a region of mesoscopic size, and nonlocal correlations are
neglected. In the absence of an external action the system
settles at the entropy maximum, i.e., the stable equilibrium
point J = 0. Physically, an overwhelming number of all
possible microstates corresponds to macrostates with J '
0, and then S(J)  S(J = 0) = Seq. Statistical fluctuations
around such a point become negligible with an increasing size
of the subsystem.

Out of equilibrium, but not far from it, the same statistical
mechanism that suppresses fluctuations will operate. Thus,
after a displacement caused by an external agent (electric
field in our case), a thermodynamic ‘restoring force’ Fdrag in
section 2.1.1, drives the system along increasing entropy until
Seq is reached again. Fdrag is responsible for the energy losses
that may be expressed in terms of the so-called dissipation
function [8] F ⌘ (1/2)Fdrag · ve, which is a measure of the
amount of heat generated per unit time. Macroscopically, the
amount of heat generated is given by3

dQ = T dS = 2F dt. (5)

As stated before, isothermal conditions will be assumed,
and we will use the relation Ṡ = 2F /T . Now, thermody-
namics enters through the so-called ‘principle of minimum
entropy production’ [9, 10], which may be expressed as

The steady state of a system is that state in which the rate of
entropy production has the minimum value consistent with
the external constraints.

Notice that, based on this, the equilibrium state takes its
natural place when there are no constraints on the system,
because as a consequence of the second law, it reaches the

3 Note: in Classical Mechanics, frictional forces of the form Fv = �hv
are derived from a function F (Rayleigh’s dissipation function) defined by
F ⌘ (1/2)hv2 that relates to the system’s energy loss by d✏/dt = �2F .
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maximum entropy, and thus the absolute minimum of entropy
production, i.e., zero.

In order to see how the above principle operates, let us
assume that some external action (electric field) drives the
system out of equilibrium. If the constraint is removed, a
transient towards equilibrium (Seq) will occur. Around this
point, the function F will allow a quadratic expansion of the
kind

F ' 1
2

X

ij

Ji �
ijJj (6)

with �ij the components of a symmetric positive definite
tensor. It is apparent that, in the absence of constraints,
minimizing F leads to the condition J = 0, and that the
thermodynamic field driving the system towards equilibrium
may be obtained as Ether = �rJ F = ��J. Its lines of force
(maximal slope of F ) in the J-space correspond to the most
probable macroscopic evolution (faster increase of entropy).
In steady situations, this field balances the applied electric
field that verifies Ohm’s law (�Ether = E = �J).

On the other hand, steady states out of equilibrium will
be characterized by a constrained minimization problem, in
which F has to be augmented by some Lagrange multiplier.
For instance, as indicated by Landau [7], the steady current
distribution within a normal conductor may be obtained by
minimizing the volume integral of F +�rJ as corresponds to
the stationarity condition rJ = 0.

As a main conclusion from the above paragraphs, we
resolve that the behavior of a normal conductor close to
equilibrium may be formulated in terms of a quadratic
tensor �ij (resistivity) that is positive definite and symmetric
as dictated by thermodynamics. This obviously generalizes
the one-dimensional results in section 2.1.1. An additional
observation is that just recalling the definition of the gradient
function one can show that the electric field lines will be
perpendicular to the constant level sets of the dissipation
function F . Finally, variational principles allowing us to
carry out complicated calculations such as those related
to the diffusion towards the equilibrium point (J = 0) or
characterizing steady states may be stated in this realm.

Below, we show that the ideas in this section may be
exported to the case of type-II superconductors. However,
already related to the generalization of the one-dimensional
E(J) law in figure 1, some technical difficulties arise, and
further analysis is required.

2.2.2. Entropy and dissipation function in hard
superconductors. In the light of section 2.1.2 the concept of
thermodynamic equilibrium has to be reconsidered for pinned
superconductors. Thus, even for the simplest one-dimensional
configurations, one finds a vanishing drag force not just for
a point (J = 0) but within a whole segment (region 1) that
becomes a surface, or even a volume in the J-space for
more complex scenarios. Then, the entropy of the system
will be maximal within a full set of values Jc 2 1 and the
determination of the state from thermodynamic arguments
seems flawed by ambiguity. In fact, a complex multiplicity
of possible states would seem admissible. Against this,

Figure 2. Dissipation function for a type-II superconductor close to
the critical state. The horizontal plane is defined by the current
density vector components either along (Jk) or perpendicular (J?) to
the local magnetic field. For a given value of the current density
vector (Jk, J?), F is defined through the distance d to the critical
region boundary 0c. The related critical point Jc ⌘ (J⇤k, J⇤?) is also
shown.

one could argue that, in fact, either static or stationary
configurations always occur subsequent to some diffusion
process accompanied by drag forces (electric fields) and that
‘integration’ along some path within the J-space that connects
the overcritical region and the eventual critical point Jc can be
performed. However, the following mathematical quiz arises:
how does one expand a function F towards the resistive
behavior when a ‘starting region’, instead of a starting point,
is given?

Once more, a very general argument, uniqueness,
will help. Let us consider the kind of elliptical region
mentioned before, which is physically meaningful as related
to dissipation mechanisms in either Jk or J? relative
to the local magnetic field orientation. As depicted in
figure 2, irreversible energy dissipation corresponding to
some overcritical point J 62 1 may be uniquely quantified by
means of d, i.e., the minimum distance from the point J to
the boundary 0c. Geometrically, this means that expansion
is done perpendicular to 0c. Analytically, one has to find
some expression that allows one to obtain the critical point
Jc for each value of J. In the case of the elliptic region
considered here, this entails solving a quartic equation. Of
special mention is that meaningful cases [11] such as the
isotropic model (1 is a circle) and the Double Critical State
Model (1 is a rectangle) produce trivial conditions for the
determination of the point Jc.

From the physical point of view, the above mathematical
conditions imply that for small perturbations around equilib-
rium, the induced electric fields will keep perpendicular to the
levels of constant dissipation F . This extends our previous
result [11] that just ‘on surface’ (critical state) E is normal to
the boundary of the region 1. At least for small perturbations,
a consistent theory that assumes the existence of a critical
region with boundary 0c may be obtained by using E ? 0c
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and prolonging this condition towards the resistive state. We
call to the readers’ attention that this general property is
not restricted to the case of a region 1 defined in terms of
Jk and J?. This would just fit the case of a homogeneous
type-II superconductor, whose anisotropy only depends on
the local magnetic field. Other physical scenarios, such as
microstructure-induced anisotropy are apparently tractable,
just by using the required axes. For instance, one could use Jab

and Jc in the case of uniaxial symmetry for the current flow.
1 would be a cylinder with its axis parallel to the ĉ direction.
Also, one could introduce a dependence of the critical current
density on the orientation of the local magnetic field relative
to some axis in the material along which pinning is favored,
i.e., define 0c by a function Jc(↵) ⌘ Jc(Ĥ · n̂) ⌘ Jc(cos ↵).
In fact, the critical state solutions of such statements were
already investigated in [12] and the extension to the flux flow
regime may be done in the above terms.

Before pursuing a specific mathematical statement of
the above concepts, some clarifying words on the physical
system are still due. On the one side, we have invoked the
molecular thermal forces so as to describe the dissipative
behavior beyond equilibrium. On the other side, criticality
relates to a multiple number of possible ‘equilibrium’ states
for the system. The full framework is as follows. Indeed,
thermal forces acting on the long term would eventually
drive the system to a true (and unique) thermodynamic
equilibrium state with J = 0. However, as we are focused on
small perturbations around the critical state, we just consider
the fast relaxation towards a given metastable configuration
determined by the applied fields and pinning forces. This
corresponds to recalling that, in hard superconductors, much
creep occurs in the first instances when the flux density
gradient (basically, our Jc parameter) is high [13]. Subsequent
flux homogenization by flux hopping can be neglected in
the magnetization processes under consideration as far as its
typical time would be much beyond the experimental period.

2.2.3. Thermodynamically admissible E(J) laws: mathemat-
ical issues. The dissipation function F must be defined,
positive and obviously single valued, outside the region 1 of
(sub)critical current densities, in the J vector space

F : R3/1 ! R+ F (J) � 0. (7)

A Taylor expansion around the boundary of critical currents
0c will encode the main properties of the electromagnetic
behavior close beyond the critical state, i.e., the E(J)

constitutive law.
To start with, we will consider spatially isotropic samples.

Thus, the surface 0c will be axially symmetric around the
local H direction, as well as symmetric under reflection
through the plane normal to H. 1 is also supposed convex.
With this symmetry, the local electric field takes value in the
plane defined by H and J. Hereafter, we restrict the analysis
to this plane, and use Cartesian coordinates (J1, J2), (E1, E2)

and (H1, 0). We note that the Cartesian coordinates are
nothing but the physical directions (k, ?) defined in figures 2
and 3. However, in order to avoid awkward notation, within
this section we use (1, 2) ⌘ (k, ?).

Figure 3. Schematics of the current density vectors in the
overcritical state problem (as in figure 2). J stands for the actual
current density, Jc for the nearest critical current density vector, and
1J for their difference. Related angles are also defined.

0c is then a closed curve surrounding the convex
region of subcritical currents. In polar coordinates (J1, J2) =
(J cos(✓), J sin(✓)), and 0c is determined by a function Jc(✓).

Let us see how the concept of perpendicular expansion
introduced above arises. In principle, there is no particular
point at 0c from which to perform the Taylor expansion.
Let us then consider an arbitrary J(1)

c 2 0c, and denote by
T(J; J(1)

c ) the Taylor expansion of F ' T(J; J(1)
c ) around this

point J(1)
c . It is reasonable to take a point J(1)

c close to the
value J of interest, in particular, the nearest point to J on the
critical surface. However, a well behaved function F should
admit compatible approximations from nearby points, say,
F ' T(J; J(2)

c ). Therefore

T(J0; J(1)
c ) ' T(J0; J(2)

c ) ' T(J0; Jc(✓)) ) @✓ T = 0 (8)

i.e., when fixing a value J0, the derivative of T(J0; Jc) along
the curve 0c must vanish.

Now, for our purposes it suffices to include second- and
third-order terms

T(J; J(1)
c ) = 1

2 [⇢11(J1 � J(1)
1c )2 + ⇢22(J2 � J(1)

2c )2

+ 2⇢12(J1 � J(1)
1c )(J2 � J(1)

2c )]
+ 1

6 [�111(J1 � J(1)
1c )3 + 3�112(J1 � J(1)

1c )2

⇥ (J2 � J(1)
2c ) + 3�122(J1 � J(1)

1c )(J2 � J(1)
2c )2

+ �222(J2 � J(1)
2c )3]

with

⇢ij = @2 F
@Ji@Jj

(J(1)
c ) �ijk = @3 F

@Ji@Jj@Jk
(J(1)

c ). (9)

From the condition @✓ T = 0 we get, to first order

(⇢11, ⇢12) · T(✓) = 0 (⇢12, ⇢22) · T(✓) = 0 (10)

6
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so that T = @✓ (Jc(✓) cos(✓), Jc(✓) sin(✓)), the tangent vector
to 0c, belongs to the kernel of the resistivity tensor, which in
physical terms means that no resistive losses occur for paths
along 0c

� =
 

⇢11 ⇢12

⇢12 ⇢22

!

. (11)

On the other hand, to second order

(�111, �112) · T(✓) = �@✓⇢11

(�112, �122) · T(✓) = �@✓⇢12

(�122, �222) · T(✓) = �@✓⇢22.

Note that for the strict second-order Taylor polynomial (�ijk =
0), the compatibility condition implies that � is constant, but
this is no longer true when third-order terms are considered.

Now, if we use the vector basis {t̂, n̂}, i.e., unit tangent
and normal vectors at a given point of 0c, the tensor �
becomes

� =
 

0 0
0 ⇢n

!

. (12)

Thus, the Hessian of F is positive semidefinite, with t̂ a null
eigenvector, and ⇢n the eigenvalue of n̂.

Remarkably, one can maintain the simplicity of the
second-order approach while allowing anisotropic �(✓), by
performing the Taylor expansion as follows; from each point
Jc 2 0c we compute the Taylor expansion ‘exclusively’ along
the normal halfline Jc + 1Jn̂. In such a way, and taking into
account the convexity of the base curve, there is a univocal
correspondence of each J with a particular Taylor expansion,
and the whole region R2/1c is covered. The second-order
approach to the dissipation function becomes

F (J) = 1
2⇢(↵)(1J)2 J = Jc(↵) + 1Jn̂(↵). (13)

The correspondence J ⌘ (J, ✓) $ (1J, ↵) is the geometric
condition of the nearest point of the curve 0c to J, and it
obviously depends on the specific Jc(↵) function. Note the
distinction between ✓ and ↵, the angular coordinates of J and
Jc (figure 3).

Eventually, the electric field (E = rJ F ) is given by the
polar coordinate expression

E = @J F Ĵ + 1
J
@✓ F ✓̂ = EkĴ + E?✓̂ . (14)

For practical purposes, an intrinsic coordinate system
representation will be useful. Thus, a better adapted
expression in polar-like coordinates {1J, �}, with 1J the
distance of J to 0c, and � the angle between 1J and the H
axis reads

E = @1J F 1̂J + 1
l�

@� F �̂. (15)

Here l� is the length of @�J = @�Jc + 1J@� n̂, and 1̂J ⌘ n̂.
Then, one has

E = ⇢(�)(1J)n̂ + 1
2l�

@�⇢(1J)2�̂. (16)

Figure 4. Schematics of a simple irreversible system: a charge
carrier subjected to the action of an electric field and a simultaneous
viscous force.

Note that, in case of a constant ⇢, the electric field is
always parallel to n̂. However, as will be analyzed below in
connection with voltage–current experiments, the ratio Ek and
E? changes with the separation of the working point and the
critical region 1J = J � Jc (see section 3.2).

2.2.4. Variational formulation of the conduction problem. It
has been argued that classical mechanics and its methods do
not provide a complete framework for the analysis of electrical
conduction. However, having exploited the consequences of
the second law of thermodynamics, one can reconsider the
problem. In particular, below we show that by including the
concept of admissible dissipation function F one can issue
a variational formulation for the magnetic diffusion problem
between steady conduction states. In this case, a unified
description that encompasses normal conductors and type-II
superconductors is presented.

Just for illustrative purposes we start by considering a 1D
problem with a charged particle subject to an electric field E
with associated potential energy U. Recall that the Lagrangian
formulation of Hamilton’s principle is as follows

S ⌘
Z

L(x, v) dt =
Z 

mv2

2
� U(x)

�
dt

MinS ) d
dt

@L

@v
� @L

@x
= 0 , m

dv

dt
= �@U

@x
⌘ Fcons

where Fcons stands for the conservative force Fcons = qE.
Consider now that a viscous drag acts on the particle (as

depicted in figure 4 for the case of an electron). Note that a
minimum principle leading to the sound equations of motion
can still be formulated for a modified Lagrangian as shown
below

Ŝ ⌘
Z

L̂(x, v, t) dt with L̂ = L + F t ⌘ L + 1
2 hv2 t

Min Ŝ ) d
dt

@L̂

@v
� @L̂

@x
= 0 , m

dv

dt
' �@U

@x
� hv

= Fcons + Fv.

What has been done in deriving such formulation is to
neglect variations of the viscous force Fv within the interval
of time considered. Then, the suggested approximation will
be valid if minimization is applied ‘iteratively’ with intervals
of duration much less than the characteristic time ⌧ ⌘ h m�1.
This relates to the so-called adiabatic hypothesis used in other
physical disciplines:

If energy, though not conserved, varies slowly according
to some parameter, then one is allowed to assume a kind

7
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of isolated system within small enough intervals of the
temporal evolution.

An eventual calculation will help us to gain some more
insight. Let us use the classical mechanics expression for
calculating the energy of the particle in terms of the modified
Lagrangian. Upon neglecting the term 1Fv1x the energy
within a given interval is

E = v
@L̂

@v
� L̂ ' mv2

2
+ 1

2
Fvv1t, (17)

that is to say, we are effectively dealing with an isolated
system which stores an average energy of one half of the full
loss Fvv1t.

Let us now see how the above arguments may be
exported to the problem of electrical conduction. Within the
quasi-steady approximation, the incremental time-averaged
field Lagrangian for conducting materials reads

hL̂i = µ0

2

Z

R3
kHn+1 � Hnk2 dV

+
Z

Vol
1t F dV ⌘

⌧Z

R3
L̂ dV

�
(18)

with F the dissipation function introduced in section 2.2.
Here, Hn means the magnetic field distribution at a given time
instant given by tn and 1t ⌘ tn+1 � tn.

For the case of a normal conductor, it is relatively simple
to show that the Euler–Lagrange equations lead to the desired
diffusion equation (equation (2)). Thus, if one assumes a
diagonal resistivity matrix, i.e., �ij = ⇢0�

ij, and replaces F
by its value, it follows that

@L̂
@Hn+1

=
X

j

@

@xj

@L̂
@(@Hn+1/@xj)

+
µ0

Hn+1 � Hn

1t
= �⇢0r ⇥ r ⇥ Hn+1 = ⇢0r2Hn+1 (19)

i.e., the time discretized form of equation (2).
Outstandingly, the interest of equation (18) is that it gives

the possibility of applying direct numerical minimization
methods. In particular, this allows one to deal with non-simple
forms of F , as required for the investigation of type-II
superconductors (recall figure 2).

From the mathematical point of view, one can distinguish
two kinds of problems as related to the minimization of the
functional in equation (18): (a) strictly variational structures,
when either the first or the second term may be neglected, and
(b) a quasi-variational structure when both are relevant [14].
Physically, one would speak about:

(i) Equilibrium-like processes, leading to the critical
state (the dissipation function may be neglected and
one basically obtains the configuration that balances
magnetic and pinning forces).

(ii) Steady states within a dissipative regime (the magnetic
inertia 1H may be neglected, typically because external
sources are fixed).

(iii) Quasisteady evolutions when both inertia and dissipation
have to be included (system diffuses towards the critical
state or towards a new steady state if dictated by the
external sources).

The remainder of this paper will be focused on several
examples in which the properties of type-II superconductors
close to the critical state are calculated based on the theory
issued in this section. The presentation will be organized
according to the three cases described above.

3. Numerical applications

As was explained in section 2, the core of our theoretical
proposal is the existence of a dissipation function F that one
may write down as a quadratic expression of the macroscopic
current density vector components. Recall that both from the
mathematical point of view and also as concerns the physical
background, F should be defined as a certain distance d.
Actually, d is a measure of the separation between the
operation point (given by the value of the current density J)
and a certain equilibrium value Jc that depends on J itself.
The specific form of the function F depends on the critical
current region boundary 0c, as we have explicitly shown in
figure 2 for the case of an elliptic behavior.

In this section, we present a number of examples in
which the above ideas have been applied to various practical
configurations. Let us start by writing down some useful
equations. Just for clarity, our statements refer to the elliptical
region in figure 2, but generalization is apparent.

• Notice that one may classify a given value of J (in
components (Jk, J?)) as lying inside 0c or not, by
calculating the sign of the quantity

�0(J) =
✓

Jk
Jck

◆2

+
✓

J?
Jc?

◆2

� 1, (20)

i.e., �0(J) is either negative or positive when J is either
within or beyond the contour of 0c (and null for the critical
values Jc 2 0c).

• The distance function for a given point (Jk, J?), also
involving its image Jc ⌘ (J⇤k , J⇤?) is given by

d 2 = (Jk � J⇤k )2 + �
J? � J⇤?

�2
. (21)

Here, J⇤k and J⇤? have to be determined for the actual
critical current law (region) under consideration. In the
case of an elliptic model, the criterion of minimum distance
between (Jk, J?) and the boundary leads to solving a
quartic equation.

• For a given value (Jk, J?), the dissipation function F (J)

may be written as

F = 1
2 ⇢ 20(J) d 2(J) (22)

with ⇢ the material resistivity, and d the distance function
referred to above. 20 stands for a step function whose

8
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value is zero within 0c and one over the outside. A useful
representation is

20(J) = 1 + tanh[k�0(J)]
2

, k � 1. (23)

Recall that for the rather usual experimental configuration in
which J = J? (the components of J parallel to the magnetic
field are zero), the above formulation may be cast as follows
(note the thick lines in figure 2):

�0 = (J?/Jc?)2 � 1

J⇤? =
(

Jc? if J? > Jc?
�Jc? if J? < �Jc?

d 2 =
(

(J? � Jc?)2 if J? > Jc?
(J? + Jc?)2 if J? < �Jc?.

(24)

These relations mean that, for a vast number of
experimental setups, F may be built by composing two
parabolae and a step function, as illustrated in figure 5. The
examples supplied below are based on this assumption. For
the readers’ sake, we eventually provide a useful discrete
form of equation (18) that is based upon the transformation
of the electromagnetic problem in terms of potentials [15]
and on identifying the set of elementary circuits related to the
problem’s symmetry, namely

hL̂idis =

µ0

2

Z

R3
kHn+1 � Hnk2dV

z }| {
1
2

X

i,j

IiMijIj �
X

i,j

ĨiMijIj +
X

i

Ii

⇣
Ae � Ãe

⌘

+

Z

Vol
1t F dV

z }| {
1
21t

X

i

Ri2(±Ici)
�
Ii ⌥ Ici

�2
. (25)

Here Ae means the vector potential component along the
current lines, related to the applied magnetic field, Mij

denotes the inductance between elementary currents Ii, Ij

flowing along the specific circuits of the problem, and
the tilded quantities relate to the previous time layer.
1t is the incremental time of our calculation, Ri stands
for the resistance of the ith circuit and Ici its critical
current. Application to different problems will imply different
expressions for the matrix elements Mij, the applied vector
potential, the resistance and the critical currents.

Just for completeness, we mention that other possibilities
for the dissipation function may be explored, as will be shown
below. In fact, the customary power-law expression for the
E(J) law will also be investigated in this paper, through the
related dissipation function

Z

Vol
1t F dV ! F01t

X

i

✓
Ii

Ici

◆m

. (26)

Figure 5. Detail of a one-dimensional dissipation function for
type-II superconductors. F is built by multiplying two parabolae by
the step functions depicted below and adding them. Note that the
horizontal axis, J, is common to both plots.

3.1. Metastable equilibrium: the critical states

To start with, we present an application of minimizing the
expression in equation (25) in a genuine ‘critical’ situation,
i.e., the dissipation term is not included explicitly, but replaced
by the constraint J  Jc in the minimization of the first
term. Physically, this corresponds to the conventional critical
state problems in which overcritical excursions are neglected.
We have chosen a case of interest, which has been solved
analytically, thus allowing a straightforward comparison to
our numerical results. In connection with the widely used
configuration of a flat sample in a perpendicular magnetic
field, we apply our method to the circular disk geometry.
According to Mikheenko and Kuzovlev [16], the sheet current
density distribution in a superconducting disk subject to a
uniform perpendicular field of intensity H0 is given by

Js(r) =

8
><

>:

2Js
c

⇡
tan�1

"
(r/R)

p
R2 � a2

p
a2 � r2

#

r  a

Js
c a  r  R,

(27)

with a ⌘ R/ cosh(2H0/Jcd). d stands for the (small) thickness
of the disk and R for its radius. Here, Js denotes the so-called
sheet current, which averages the current density over the
thickness, i.e., Js(r) ⌘ R

J(r, z) dz.
Figure 6 displays the comparison of our results and those

obtained from the above equation. We stress the fact that
numerics produce the correct solution, even for situations in
which the variable does not reach the true critical value. Recall
that, physically, the strict inequality (Js(r) < Js

c) relates to the

9



Supercond. Sci. Technol. 25 (2012) 104004 A Badı́a-Majós and C López

Figure 6. (Sheet) Current density profiles in the equilibrium
(critical) states that are induced in a superconducting disk by an
increasing magnetic field along its axis (given by
2H0/Jcd = 0.5, 1, 1.5, 2, 2.5, 3, 3.5 from the outermost to the
innermost curve). Lines correspond to the analytical solution in [16]
(see text) and symbols to our numerical results.

meaning of the sheet current as an average over the sample
thickness. This situation occurs when a non-penetrated core
still exists somewhere within the sample, i.e., at some points
(r0, z) one has J(r0, z) = Jc for the peripheral values of z and
J(r0, z) = 0 in the central core.

3.2. Steady states: the voltage criterion

Below, we analyze the opposite limit of the general
conduction problem with type-II superconductors. The steady
situation in which a dissipative state is maintained by the
external action (current source) will be analyzed. Thus,
based on the considerations introduced in section 2.2.3 for
the law E = rJ F , we concentrate on recently reported
voltage–current experiments [5], specifically designed to
investigate the complex E(J) law and underlying critical
boundary 0c in high-Tc superconductors. Owing to the smart
design of the experiment, a direct analytical study is allowed.

First, we recall that the results in [5] show that the
elliptic model for 0c gives an excellent fit to measurements.
The authors have also obtained the polar angular dependence
of the angle between E and J, say �(✓) (see figure 3 for
definitions and, in our case, consider equation (16) in order to
obtain the direction of E relative to 1J). In their experimental
configuration Ĵ is fixed along the film direction, while B̂ is
applied at different angles ✓ . The criterion for reaching and
exceeding the critical state comes from a fixed value of E
parallel to the direction of J (Ek ⌘ E · Ĵ = E0).

From the elliptical curve of critical currents
✓

Jk
Jck

◆2

+
✓

J?
Jc?

◆2

= 1 (28)

we get the parametric representation

Jc(↵)2

"✓
cos(↵)

Jck

◆2

+
✓

sin(↵)

Jc?

◆2
#

= 1, (29)

in terms of which the normal vector is given by
(cos(↵)/J2

ck, sin(↵)/J2
c?). Recalling the notation introduced

in section 2.2.3, n̂ = (cos(�), sin(�)), we have � 2 tan(�) =
tan(↵), with the anisotropy ratio � = Jc?/Jck.

Now, the ratio E?/Ek (experimental Ey/Ez) for small
dissipation (1J ! 0) is basically that of the electric field
components at 0c, where E ? 0c (� = � � ✓), i.e.,

E?/Ek = tan(✓ � �) = tan(✓) � tan(�)

1 + tan(�) tan(✓)

= tan(✓)(� 2 � 1)

� 2 + tan(✓)2 ⌘ 8c(� , ✓) (30)

because in this limit ↵ = ✓ .
In order to quantify the influence of the dissipation

parameters in the electric field ratio, we proceed by
considering a first-order correction in terms of 1J. In the
simplest case of constant ⇢ (see section 2.2.3) this maintains
E k n̂, but now ↵ 6= ✓ . From the trigonometric relations in the
triangle of sides J, Jc and �J and the condition Ek = E0 we
get ✓ � ↵ ' 8cE0/(⇢Jc), and then

E?/Ek ⇡ 8c

"

1 � �� 2(1 + 82
c)

⇥ (1 + tan2(✓))1/2(� 2 + tan2(✓))1/2

� 4 + tan2(✓)

#

⌘ 81J(� , ✓, �), (31)

where � = E0/(⇢Jc?) is the small parameter in the expansion.
Eventually, we consider the most general case in which

anisotropic resistivity is allowed. Let us assume the form
⇢ = ⇢kcos2(✓) + ⇢?sin2(✓), and r2 ⌘ ⇢k/⇢? the anisotropy
ratio. Starting with equation (16) and after some algebra we
get

E?/Ek ⇡ 81J + �8r(8
2
1J � 1)

q
1 + 82

c

⇥ (� 2 + tan2(✓))3/2

(r2 + tan2(✓))(� 4 + tan2(✓))1/2

⌘ 8cr(� , ✓, �, r) (32)

with 8r ⌘ (1 � r2) tan(✓)/(r2 + tan2(✓)).
Note that, considering that the anisotropy ratio � is given,

our theory includes two parameters, � and r2, which may be
used to fit the experiment. Ultimately this will either allow one
to obtain the resistivity coefficients or (if they are known by
other means) check for consistency.

Our theory has been used to analyze the experimental
information in [5]. Figure 7 shows our predictions as
compared to the available data. Basically, we plot the angular
dependence of the ratio E?/Ek as given by the different levels
of approximation in equations (30)–(32), i.e., 8c, 81J and
8cr. Our theoretical curves are obtained by using � = 0.34,
the value that is reported by the authors as a direct information
from their experiments. Several facts are worthy of a mention:

• Experimental data have been ‘recalibrated’, multiplying by
a factor of 0.714.
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Figure 7. Plots of the electric field ratio Ey/Ez in the magnetotransport experiment sketched in the inset. A transport current is directed
along the z axis of a superconducting wire, which is also subjected to an applied magnetic field (induction at an angle ✓ ). Electric fields are
calculated for J & Jc according to equations (30)–(32) and plotted as lines. Symbols come from the experiment in [5]: YBCO film at
T = 85 K. Top left: comparison between our theoretical curves 8c, 81J , and 8cr for a couple of values of the anisotropy parameter
(r = 0.3 and 3). Top right: 8c is compared to the experimental data, either multiplied or not by a factor ↵. Bottom left: 81J is compared to
the experimental data. Bottom right: comparison of the derivatives of the function [Ey/Ez](✓) obtained from theory and experiment. See the
text for details about parameter values in our simulations and scaling of data.

• If one takes for granted that the value of � is correct,
8c does not produce the best fit even when multiplying
by constant factors (in the plot, we have the direct data
and also multiplied by ↵ = 0.714). In contrast, allowing
a constant factor between theory and experiment, the best
results are given by 81J with � = 0.15.

• The correction introduced by anisotropic resistivity (8cr)
does not seem relevant to this experiment. Lacking direct
information, we just see that changing its value from 3 to
1/3 only minor effects are observed.

• If one analyzes the first derivative of 8 and compares it
to the results obtained from the experimental data, some
doubts arise, because 80

1J does not seem to show the real
shape, whereas 80

c looks more realistic.

From these issues, we state that the comparison between
theory and experiment is reasonable. First, from the value
� = 0.15 one obtains a resistivity, ⇢ ⇡ 10�9 � m, which
is nor far from the typical values for flux flow resistivities
at the experimental range (around 10�8 � m for YBCO
films at T = 85 K). Second, the calibration factor for the
experimental data (C = 0, 714) is not unreasonable because
the electric fields were just obtained from the averaged
expression voltage/distance. According to the authors of [5],
this procedure should be ‘refined’ when (as it is the case in

parallel configurations) the electric field structure along the
sample is not homogeneous, a fact that is under investigation.

3.3. Transient behavior: relaxation towards the critical state

Finally, based on the minimization of the expression in
the equation (25), we put forward several cases that
explicitly show the diffusion of electromagnetic fields in
a hard superconductor. We will concentrate on the tape
geometry (figure 8) and analyze relaxation towards the critical
state, when either transport current or magnetic field steps
are applied. By considering different values of the bias
characteristic period ⌧0 as compared to the magnetic diffusion
time constant ⌧⇢ = µ0L2/⇢ (with L the sample’s dimension),
we will display different conditions in which critical states are
(or aren’t) realized after relaxation. It will be shown that the
conditions studied may be applied to establish validity of the
CSM approximation in AC experiments.

The general features of our simulations are shown in
figure 8. Notice that we obtain the current density profiles
that occur between two equilibrium states when a step of
transport current is introduced. Mainly, we have studied the
influence of the ratio ⌧0/⌧⇢ on the diffusion process within
the quadratic dissipation function framework developed in the
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Figure 8. Illustration of the diffusion processes simulated in this
work. Here, a step is applied to the transport current I along the
X-axis of a thin strip (as shown in the insets). The circulating sheet
current J(y) increases over the initial critical state profile (lower
dashes) and then ‘relaxes’ towards the subsequent critical state
(upper dashes). Continuous lines correspond to the intermediate
current density profiles, and arrows are used to indicate the time
evolution of J at different parts of the sample. These relaxation
curves are obtained subsequent to the step in the transport current
(I ! I + 1I) and occur at equidistant time intervals of value 0.4 ⌧0.

previous sections. This relates to the piecewise linear behavior
of the E(J) law. Furthermore, for completeness, we have
also analyzed the results for power-law relations as indicated
above.

3.3.1. Superconducting strips with transport current. A
number of situations related to the experimental setup
sketched in figure 8 have been studied, but only a
representative set of results are shown below (figures 9
and 10). To start with, the choice of the long strip (tape)
geometry allows a straightforward comparison to analytical
results for the related limiting critical states. Thus, the thick
dashed lines in that figure (critical states) have been obtained
from the well-known expressions for the above defined sheet
current [17]

Js(y) =

8
><

>:

2Js
c

⇡
tan�1

s
a2 � b2

b2 � y2 |y|  b

Js
c b  |y|  a,

(33)

with a the tape ‘half-thickness’ and b = a
p

(1 �
I2/I2

max), Imax ⌘ 2aJs
c ⌘ 2⇡aHc. In our case, normalized

units have been used for all the physical quantities:
J/Jc, H/Hc, I/Imax, y/a. The magnetic field profiles have
been obtained by integration of the current density. Analytical
expressions derived from equation (33) may be found in [17].
As for the results of this paper, straightforward numerical
integration of the current density data was performed.

Figure 9 shows the penetration profiles for a transport
current that increases from the virgin state until the value
I/Imax = 0.98 is reached. Then, a negative ramp towards
the value I/Imax = �0.98 was applied. The associated

field penetration profiles are shown in the lower panels.
Just for the readers’ sake, we recall that expressions for
critical state curves in the negative ramp of transport current
may be obtained from equation (33) by applying linear
superposition [17]. For the numerical curves in this plot, the
calculated relaxation takes place under the condition ⌧0/⌧⇢ =
2; here we just show the profiles previous to the application of
the following step (evolution takes place in the fashion shown
in figure 8). Note that for the increasing branch, a high degree
of coincidence between the ‘relaxed’ profiles and the exact
critical states displays. It is only for the nearly penetrated
sample that relaxation is noticeably incomplete at t = ⌧0 =
2.0 ⌧⇢ . A mismatch appears in the central part of the tape,
which is inherited by the decreasing branch of the cycle, i.e.,
when new steps are applied before reaching the equilibrium
profile. As a counterpart, a reasonable coincidence is always
observed at the sample edges. Apparently, this behavior
relates to the concept that flux penetrates from the surface,
and that dissipation is an integral over the sample, thus giving
place to a most effective relaxation when a smaller region
is involved. In other words, relaxation leads to equilibrium
quicker close to the surface than in the bulk.

Figure 10 has been obtained in a similar fashion,
but under the condition ⌧0/⌧⇢ = 0.2. As expected, clearly
incomplete relaxation is obtained. In practice, this would lead
to magnetization profiles with absolute values beyond the
critical state limit, and also to higher AC losses, corresponding
to the noticeable excursions of the transport current density
towards the region J > Jc.

We conclude this part by mentioning that results obtained
for the power-law relation are rather similar to the previously
described behavior, when the respective choices m = 100 and
m = 10 are done (to be compared to the cases ⌧0/⌧⇢ = 2 and
⌧0/⌧⇢ = 0.2 respectively).

3.3.2. Superconducting strips with applied magnetic field.
The diffusing current and field profiles in a thin strip in
a changing perpendicular field H0 and with zero transport
current have been calculated under a wide set of conditions.
Figures 11 and 12 present the main features observed in
our simulations. In this case, the seed for the analytical
evaluations is the expression

Js(y) =

8
><

>:

2Js
c

⇡
tan�1 cy

p
b2 � y2

|y|  b

Js
c

y

|y| b  |y|  a,
(34)

where c ⌘ tanh(H0/Hc). Magnetic field profiles may be
obtained by integration and negative ramp equations by
linear superposition [17]. Also as before, dashed lines
stand for the analytical results of equilibrium profiles, and
continuous curves for our numerical calculations of finite
time (incomplete) relaxation processes. We only display the
profiles corresponding to the diffusion step just previous to
the change of external condition.

Figure 11 shows the results for the quadratic dissipation
function, and figure 12 for the power-law relation. It is
noticeable that, in both cases, a remarkable degree of
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Figure 9. Normalized sheet current (top) and magnetic field (bottom) profiles in a superconducting strip carrying an impressed transport
current I, which is cycled as labeled in the curves (see text for the definition of units). Dashed lines correspond to the analytical solutions
in [17], and continuous lines to our numerical diffusion calculations. In this case, and for each current interval, we just plot the relaxation
profiles obtained for a quadratic dissipation function at the time t = ⌧0 = 2.0 ⌧⇢ , previous to the subsequent step in transport current. The
panels to the left stand for the increasing branch of the applied current, while the right panels display the decreasing branch profiles.

Figure 10. Same as figure 9, but now for ⌧0/⌧⇢ = 0.2.

coincidence between the relaxed profiles and the eventual
critical state solution occurs for ⌧0/⌧⇢ � 2. Nevertheless,
important differences appear for the case ⌧0/⌧⇢ ' 0.2. As
related to such differences, an important feature has been

observed. We call to the readers’ attention that in figure 11
Js(y) displays a basically linear penetration profile close to the
sample’s edge, whereas a kind of square root trend is observed
in figure 12. This may be explained as follows. According to

13



Supercond. Sci. Technol. 25 (2012) 104004 A Badı́a-Majós and C López

Figure 11. Normalized sheet current (top) and magnetic field (bottom) profiles for a superconducting strip in an impressed perpendicular
magnetic field H0. To the left, the depicted profiles correspond to the values H0/Hc = 0.16, 0.32, 0.48, 0.64, 0.8. To the right, the applied
field is cycled, i.e., H0/Hc = 0.8, 0.48, 0.16, �0.16, �0.48, �0.8. Dashed lines correspond to the analytical solutions in [17], and
continuous lines to our numerical diffusion calculations. In this case, we plot the profiles obtained for a quadratic dissipation function with
⌧0/⌧⇢ = 0.2, just previous to the subsequent step in the magnetic field. Notice that the upper left plot also includes the results for
⌧0/⌧⇢ = 2.0, which are omitted in the rest to avoid confusion, and virtually coincide with the analytical lines. Labeling is bypassed in some
apparent cases.

Figure 12. Same as figure 11 but for the power-law model with m = 10 and 100.

Faraday’s law, one has @yEx = @tBz. Then, for small variations
@tBz will be practically constant in space and so Ex ⇠ (@tH0) y,
which implies a linear behavior of Js

x(y) in the case of a
piecewise linear E(J) law, and an inverse power law when
E ⇠ Jn and, then, Js

x ⇠ y�n.

3.3.3. Superconducting strips with transport current and
applied field. Just for completeness, we will also provide
an example of relaxation towards the critical state when
both a transport current and a magnetic field are applied
to the superconducting strip. Analytical expressions for the
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Figure 13. Normalized sheet current (top) and magnetic field
(bottom) profiles for a ‘field-like’ state in a superconducting strip
with both transport current and perpendicular magnetic field applied
with constant ratio. In normalized units, the different steps
correspond to H0/Hc = 0.08, 0.16, . . . , 0.72 and
I/Imax = 0.025, 0.05, . . . , 0.225. Dashed lines correspond to the
analytical solutions in [17], and continuous lines to our numerical
diffusion calculations. In this case, we plot the profiles obtained for
a quadratic dissipation function with ⌧0/⌧⇢ = 20.

case of synchronous ramps of current and field have also
been provided in [17]. Thus, the solution is built through the
‘generating function’

j(y, a, b) =

8
>>>><

>>>>:

1 b  y  a

1
⇡

cot�1 b2 � ay

p
|y|  b

0 �1  y  �b,

(35)

where p ⌘ p|y2 � b2|(a2 � b2). Explicitly, one has

Js(y) = Js
c [ j(y + w, a + w, b) + p j(�y � w, a � w, b)]

(36)

with the definition w ⌘ (I/Imax)/ tanh(H0/Hc).
Figure 13 shows the comparison of our numerical results

and the analytical calculation described above. Following the
nomenclature in [17] we have concentrated on a so-called
field-like situation given by r ⌘ I/2⇡aH0 = 0.32.

In this case, we have considered a high relaxation ratio
⌧0/⌧⇢ = 20, and a practical coincidence with the critical state
profiles is observed.

4. Conclusions

The motivation of this work has been to explore the
possibility of extending the critical state concept so as to
include the effects of flux flow resistance in a general

sense, i.e., allowing the possibility of overcritical current
density in several dimensions. More specifically, we have
studied the case of homogeneous type-II samples, in which
anisotropy is introduced by the direction of the local
magnetic field. However, generalization to other cases, such
as microstructure-induced anisotropy are straightforwardly
dealt with. Conceptually, we have chosen a macroscopic
(thermodynamic) point of view, which avoids the explicit
consideration of the underlying vortex physics. In brief, our
theory relies on two facts: (i) the experimental evidence that
in type-II superconductors dissipativeless currents are allowed
when the components of J either parallel or perpendicular
to some specific direction do not exceed specific thresholds,
and (ii) the resistive transition has to occur according to
the laws of entropy production. These considerations are
formulated in a geometrical language through the definition
of the so-called dissipation function, which takes values
over the space of current densities, i.e., F (J). F goes to
zero within the so-called critical region 1 (generalization
of the one-dimensional condition J  Jc) and is a positive
definite quadratic form beyond. The main role of this function
relates to the issue of the material law E(J) that appears
by just imposing consistency and uniqueness in the physical
quantities. In fact, one has E = rJ F .

The relevant approximations of the theory may be stated
in terms of time constants. As related to the typical time
scale of the macroscopic experiments (i.e., 1 Hz < ! <

1 kHz), the following scale applies: (i) charge recombination
processes are assumed to occur instantly (magnetoquasistatic
approximation), (ii) magnetic diffusion occurs very fast in the
critical state limit and may be modulated by a time constant
⌧⇢ / 1/⇢ in our theory, and finally (iii) thermal activation and
relaxation to the true equilibrium (J = 0) occurs very slowly
and may be neglected.

From the practical point of view, and taking advantage
of the variational interpretation of the electromagnetic
problem [18], we put forward a minimization statement that
gives way to the numerical form of our theory. Equation (25)
displays the function that is minimized, and is the central
result of this paper. One can identify two basic contributions
that relate to the physics of the problem: (i) the inertial terms
that account for the reversible energy storage, and (ii) the
energy dissipation term that includes F . Inspired by this
interpretation, we have worked out a number of examples that
illustrate the application of the theory either straightforwardly
to the standard critical state problem, to steady states in which
permanent dissipation is forced by some external action, or
to the transient (diffusive) processes that occur in between
successive critical states.

Based on the comparison of our results to other
theoretical works on the critical state, we conclude that
the complex non-linear diffusion processes that take place
according to the theory, converge to the previously reported
critical states solutions for a given set of external conditions.
Excellent agreement is observed when the system is allowed
to relax within the typical excitation period.

Related to the analysis of dissipative steady states, we
stress the fact that our theory unifies the standard CSM
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framework and the results of current–voltage techniques,
used to derive the critical current parameters. In this sense,
we give a number of relations (equations (30)–(32)) that
allow one to analyze the multicomponent E(J) measurements
designed for characterizing the critical current behavior
of high-Tc superconductors [5]. Along this line, we have
compared our predictions to those experiments and can
conclude that, although a reasonable agreement is obtained,
more experimental information would be desirable in order
to choose between one theory or another for the overcritical
states.

Although we state that a quadratic dissipation function
(and thus a piecewise linear E(J) law) is the more judicious
choice for investigating the behavior close to the critical state,
the rather extended use of a power-law relation has also been
checked against our results with good degree of coincidence.
Only second-order qualitative differences can be observed.
Note, in passing, that large discrepancies with the critical state
are out of reach of our theory and also of experiments, because
holding current densities much above the critical value would
result in a blow-up of the sample.

Further work along the lines of this paper entails the
application of the theory to obtain the relaxation profiles in
higher dimensional systems, such as structurally anisotropic
materials and problems with multicomponent magnetic fields
with non-homogeneous electric field profiles.
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