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Abstract
Based on recent experimental results, and in the light of fundamental physical properties of the
magnetic flux in type-II superconductors, we introduce a practical expression for the material law
to be applied in numerical modelling of superconducting applications. Focusing on the
computational side, in this paper, previous theory is worked out, so as to take the celebrated form
of a power-law-like dependence for the current voltage characteristic. However, contrary to the
common approach in numerical studies, this proposal suits the general situation of current
density flow with components either parallel or perpendicular to the local magnetic field, and
different constraints applying on each component. Mathematically, the theory is generated from
an elliptic locus defined in terms of the current density vector components. From the physical
side, this contour establishes the boundary for the onset of entropy production related to
overcritical current flow in different conditions. The electric field is obtained by partial
differentiation and points perpendicular to the ellipse. Some numerical examples, inspired by the
geometry of a two-layer helical counter-wound cable are provided. Corrections to the widespread
use of the implicit isotropic assumption (physical properties only depend on the modulus of the
current density vector) are discussed, and essentially indicate that the current carrying capacity of
practical systems may be underestimated by using such simplification.
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1. Introduction

Significant progress in the synthesis of superconducting
materials has recently led to the demand for modelling tools
that allow the precise simulation of their physical behavior in
potential applications. Thus, a rapid emergence of simulation
studies in electrical machines, solenoids and complex cable
geometries has occurred. However, several issues have been
identified related to the implementation of computational
codes at the engineering level, among which a fundamental
question remains: Are developers using a sound material law?
More specifically, when a conducting sample is subject to a
certain process, a standard practice in computational electro-
magnetism is to describe its behavior through the so-called
current–voltage characteristic ({V, I} relation) at the

macroscopic level. The concern is whether the formulas used
for superconductors, that somehow mimic their counterpart
for conventional conductors rely on a solid ground, and to
what extent they can be used in different configurations.

To start with, a basic consensus has been reached that a
functional power-law dependence, i.e.: V is negligibly small
for transport current values below a certain threshold value
(Ic) and quickly increases above, i.e. ∝V I I( )c N , typically
with ≫N 1, encodes reasonably the observed behavior of
type-II superconductors in the range of applications. More in
detail, being concerned with the influence of finite size
effects, in many instances, what one typically uses is a local
form of the law, i.e.: ρ= J JE J J( ) ( )c N

0 , and further solves
the Maxwell equations by one or another technique [1]. The
power-law behavior may be explained as follows. To start
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with, in the absence of thermal agitation or other statistical
effects, one has the high exponent limit. This fits the so-called
critical state regime [2] that describes the sudden transitions
of the flux line lattice, avalanching from one configuration to
another when the flux pinning threshold is exceeded. Thus,
speaking of averaged fields over distances containing a large
number of vortices, true superconducting current flow
( ≈E 0) may occur for the subcritical regime ( <J Jc or ‘all
vortices are pinned’). However, when the critical current
density is exceeded, i.e.: >J Jc some equilibrium condition
suddenly breaks down and a dissipative regime with a rapid
increase of E starts. On the other hand, either related to finite
temperatures or to inhomogeneous pinning interactions, a
smoothing effect takes place, but remarkably, one can still use
a power law dependence, now with a reduced value of N [3].
The validity of the formula over a noticeable range of electric
field was explained in [4] through the concept of partial flux
flow in the presence of thermal agitation. In practice, one
considers it an empirical parameter that may be measured for
the material of interest and in the required ambient conditions.

To the moment, the majority of numerical calculations
comply with such power-law idea and also rely on the so-
called isotropic hypothesis that follows on the implicit ansatz
of parallelism between the vectors E and J, as indicated
before. In fact, as long as the above relation is scalar, one can
plainly write it in the form ρ=E J J J J( ) ( )c N

0 that ‘cancels
out’ the corresponding unit vector. Notwithstanding the
straightforward explanation of the power-law dependence, the
validity of the isotropic behavior is much less clear. Truly,
one could find a number of reasons for using this form: (i) its
mathematical simplicity, (ii) the fact that, by using a nonlinear
resistivity, it is a minimal upgrade of the normal conduction
law, and (iii) the satisfactory predictions obtained in many
cases, as for long samples in parallel magnetic field. However,
contrary to the case of normal conductors, where Ohmʼs law
finds a natural explanation, in type-II superconductivity,
unless for the mentioned geometry, with parallel flux tubes,
isotropy is not guaranteed. Without going into detail yet, let
us just recall that, according to common knowledge, for these
materials, the transport properties relate to the drift of the flux
tubes under the action of magnetic forces of the kind ×J B,
and this establishes preferential directions in space (in parti-
cular those parallel or perpendicular to B). Then, one should
analyze if the reasonable predictive power of the isotropic law
is just a stroke of serendipity for other cases. Even more, it is
crucial to detect possible situations in which this ansatz is not
acceptable at all. Providing a tool for investigating this fact is
the main motivation of our work, that will be outlined below
in a simple pictorial way. Other interpretations have been
done and will be commented later.

As introduced in previous articles [5], under very general
conditions, the E J( ) law threshold for type-II materials with
complex flux structures may be described by some closed
contour that is formed by the possible values of the critical
current density vector (critical points J J( , )1 2 in two-dimen-
sional (2D) problems at some reference frame, as shown in
figure 1). At each point of this map, the electric field arising

by the breakdown of criticality points perpendicular to the
contour. Recall that, excepting the isotropic case (circular
contour) E and J are no longer parallel unless for the specific
cases of J pointing along the principal axes. Thus, in practice,
the question is to find out whether such a condition is satisfied
or not. As we will see, in many experimental instances the
answer will be positive (or nearly). This is the case for the
vast number of experiments in which a uniform magnetic field
of changing modulus is applied either parallel or perpendi-
cular to a flat or very long sample. The screening currents are
automatically perpendicular to the magnetic field and the
induced electric field parallel to the current density. However,
for those cases in which the answer is negative, a component
of J parallel to the magnetic field appears, and E is at an angle
with J. Then, it will be important to quantify the eccentricity
of the critical contour (a ‘material’ anisotropy of the super-
conductor under consideration). Apparently, if the semi-axes
are similar enough, one could be confident on the predictions
made by the isotropic model, that is nothing but the limit in
which the contour becomes circular.

In brief, this article brings the practical implementation of
the power-law-elliptic model for the E J( ) material law to be
used in superconducting application design. It will be derived
by combination of the power-law concept and the above
introduced contour in the elliptic case. The paper is organized
as follows. First, (section 2) we will introduce a physically
meaningful reference frame for analyzing the critical current
density vector. It is given by the local magnetic field vector
and its differential properties. Of particular relevance will be
to consider the component of J parallel to the magnetic field.
Then, in section 3, having clarified the geometry of Ampèreʼs
law, we will discuss the relation between the physics of type-
II superconductors and the above mentioned elliptic region.
We will concentrate on various phenomenological issues
related to the accurate determination of the specific elliptic
region for a given superconductor from experiment, as well as
on the practical expression E J( ). Finally (section 4), in order

Figure 1. Geometrical interpretation of the E J( ) law in a hard
superconductor. The current density takes ‘critical’ values J J( , )c c1 2

at some contour, while the electric field points perpendicular to such
contour when the equilibrium breaks down and flux flow occurs. In
general, the problem is defined within some reference frame in
which J has the components J J( , )1 2 . For homogeneous materials,
these components become the projections parallel and perpendicular
to the local magnetic field ∥ ⊥J J( , ).
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to provide some specific tools, as well as for evaluating the
relevance of using the correct material law, we give some
numerical examples. The discrete version of a variational
statement for the power-law-elliptic model is presented and
applied to evaluate the transport properties of helical cable
inspired configurations. We concentrate on the influence of
the basic parameters of the theory: the power law exponent
(steepness of the E J( ) dependence), and the eccentricity of
the ellipse, given by the ratio between the critical current
values at different orientations relative to the local mag-
netic field.

2. Local geometry of Ampèreʼs law: the normal
conducting case

As said before, the relative orientation of the electromagnetic
fields E J B, , in a superconducting material must be con-
sidered with care. Unless for the trivial situation in which the
magnetic field is confined to one-dimensional (1D) oscilla-
tions, one must expect a situation with screening currents not
perpendicular to B and with non-parallel electric fields
induced. On the other hand, the selection of an appropriate
macroscopic law has to consider intrinsic geometric proper-
ties of the electromagnetic fields, together with the constraints
introduced by the superconducting interaction. Here, in order
to gain understanding of the problem we start by introducing
general requirements for the macroscopic fields showing that
a natural reference frame may be introduced to visualize the
physics beyond the trivial situation ∥ ⊥E J B. Then, we will
pave the way for the analysis of the superconducting case by
first studying the simplest problem of linear materials under
the condition ⊥J B.

Being interested in the distinction between the compo-
nent of J flowing either parallel or perpendicular to the local
magnetic field, we introduce a reference frame that, for each
point of space relies on the differential properties of the
magnetic field. This will be useful for interpretative purposes,
as well as for simplifying computations. In practice, the usage
of this frame will restrict to situations where distinction
between the fields B and H is superfluous, i.e.: μ=B H0 . So
that, no specific consideration is needed for distinction
between them.

Consider a generic local magnetic field profile H r( )
around a point P, where generic means that the field is neither
null nor constant, and where the gradient of intensity is not
aligned with the field, × ≠HH 0. Our aim is to identify the
correlation between the field and its derivatives with the
parallel and perpendicular components of the local current
density, according to Ampereʼs law. We will group these
derivatives into mathematically meaningful terms, associated
to the geometric profile of the integral lines of H. In order to
do this we start by the factorization = HH h, and consider
separately the derivatives of H and of the unit vector h.

Let us choose a cartesian orthonormal basis (named
1 2 3{ˆ , ˆ , ˆ} for generality here) with origin at P, with its first
axis along PH( ), the second axis on the plane defined by P,

PH( ) and H P( ), and the third axis along ×P H PH( ) ( ).
Then, we have =P HH 1( ) ˆ0 and = ∂H P H 1( ) | ˆ

P1 +∂ H 2| ˆ
P2 .

Around P we have = HH r r h r( ) ( ) ( ), and we can use
spherical angles associated to the reference 1 2 3{ˆ , ˆ , ˆ} to
express the unit vector at and around P, such that

=h r( ) θ ϕr r 1sin ( ) cos ( ) ˆ θ ϕ θ+ +r r 2 r 3sin ( ) sin ( ) ˆ cos ( ) ˆ ,
with θ π=P( ) 2 and ϕ =P( ) 0.

A simple example for visualizing this is the case of an
infinite slab with parallel external field (sketched in figure 2).
By symmetry, the field is constant (in magnitude and direc-
tion) within each parallel plane, so that H must be normal to
these planes and h may rotate in-plane from the surface into
the bulk of the sample. In this case, choosing P at the surface
and using the global z coordinate to specify the position
within the slab: = =z HH 1( 0) ˆ0 , = + =z H z H zH 1 3( ) ( ) ˆ ( ) ˆ1 3

H z zh( ) ( ), with θ θ= +z z zh 1 3( ) sin ( ) ˆ cos ( ) ˆ . The slab
approximation is important because it encodes the main
behavior of the field in a macroscopic sample, far from cor-
ners, edges and curved surfaces. We will use this simplifi-
cation in several instances along the article.

Let us proceed with the general expression of Ampèreʼs
law in our reference frame. By applying × = × +HH h

×H h, we get

⎡⎣ ⎤⎦θ ϕ θ ϕ= −∂ + − ∂ + ∂ + ∂ + ∂( )H HJ 3 1 2 3ˆ ˆ ˆ ˆ . (1)2 0 2 3 1 1

Three different geometric terms can be identified:

(i) −∂ H 3̂2 will be denoted screening of intensity. It is the
main component of the perpendicular current density,
and appears related to the variations of the field
modulus. The screening current is normal to bothH and
H , so it is in-plane in the slab approximation.

(ii) θ ϕ− ∂ + ∂H 1( ) ˆ0 2 3 represents an helicoidal (or tor-
sional) distribution of flux lines around the reference
line through P. This term comes from twisted flux lines
(curl) along the directions of the unit vectors 2̂ or 3̂, or a

Figure 2. Sketch of the local orthonormal basis 1 2 3{ˆ , ˆ , ˆ} defined in
terms of the magnetic field and its derivatives for an infinite slab
under parallel magnetic field that changes in modulus and
orientation. The dashed line defines the polar angle θ for the
magnetic field in the lower plane.
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sum of both. It is the unique geometric term of the flux
lines correlated to a parallel current density. In the slab
approximation it is also in-plane.

(iii) Finally, θ ϕ∂ + ∂H 2 3( ˆ ˆ)0 1 1 is associated to bending of
the reference flux line through P, i.e., changes of
orientation of the field lines when one ‘walks’ along
them. The rotation of h can be either in the 1̂–2̂ plane
(and the term ϕ∂H0 1 is added to the much higher−∂ H2 )
or in the 1̂–3̂ plane (and θ∂H0 1 correlates to a new
normal component of the current density orthogonal to
the main screening term). Along this article, we will
neglect the bending terms to simplify the analysis,
understanding that bending is small in the bulk. Indeed,
it will vanish exactly in the slab approximation.

The screening current is usually the most relevant in
magnitude, with direct physical interpretation as the reaction
of the sample against external variation of the magnetic field
modulus. Similarly, the helicoidal current is a screening
reaction of the sample against external variation (rotation) of
h. All this occurs because Faradayʼs law determines the
induction of electric field under variation of magnetic
induction. Thus, in a normal metal, parallel and perpendicular
components of the electric field generate the corresponding
currents. The sample reacts, according to the material law

σ=J E0 , against external variations of H.
For a better visualization, we will exploit the planar

geometry (see figure 2). Thus, in a slab with fieldH parallel to
the plane and H perpendicular, there are two independent
current densities, screening of field intensity variation and
parallel screening of field rotation, both currents in-plane.
They will be denoted = −∂⊥ HJ 3̂2 and θ= − ∂∥ HJ 1̂0 2 .

Let us consider a metallic infinite slab occupying
the region − ⩽ ⩽d z d as sketched in figure 2, that is
subject to an excitation of the kind =Happlied

ω ωH t H t( sin ( ), cos ( ), 0)0 0 . It is well known that, in terms
of the normal metal resistivity, the magnetic diffusion
equation reads

μ σ= ∂
∂tH
H
. (2)2

0 0

In figure 3 we visualize the solution of this equation, here
for the boundary conditions specified above. For the readers’
sake, we recall that a variety of numerical routines are
available in different codes that address this problem. In our
case, we have adapted a MATLAB function designed to solve
the heat equation that formally coincides with ours. Recall
that, upon rotation of the applied magnetic field, a peaked
structure of parallel screening current appears. The peaks,
close to the boundaries of the slab will be a feature later to be
observed in superconductors, and clearly ascribed to the lag
between internal layers and the rotating boundary condition.
This simple example allows analytical manipulations that one
can use to better understand the role of ∥J . Thus, starting with

equation (2) it is not difficult to show

= ⇒
∂

∂ =( )H H

t
J H· 0 0, (3)

x y

thus ensuring that perpendicularity of H and J is only pos-
sible for those processes in which field rotation does not
occur, as argued before.

We want to emphasize that the above discussion on the
appearance of components of J parallel to the magnetic field
is not restricted to linear materials. In fact, it may be extra-
polated to the case of nonlinear E J( ) relations and, in parti-
cular, to the superconducting power-law. However,
specialized numerical methods will be required for the ana-
lysis. On the other hand, a relevant distinctive feature for the
latter will be the persistent character of the current densities,
that only occur as transients in normal metals.

3. E(J) law for type-II superconductors in non-
parallel magnetic fields

A simple analysis based on the infinite slab geometry sket-
ched figure 2 together with fundamental concepts of type-II
superconductivity will tell us about the specific constraints on
any acceptable E J( ) relation when flux rotation occurs. Let us
first suppose that H0 stands for a uniform field applied to the
superconducting slab and that the field penetrates in the form
of parallel flux tubes. In the standard configuration of a single
component field, the following relations hold:

= = =B z J z E zB 1 J 3 E 3( ) ˆ ; ( ) ˆ ; ( ) ˆ . (4)

For instance, they may be supplemented with a material
law of the kind =E E J J( )c N

0 . Increasing the modulus of H0

nucleates more and more vortices that penetrate in the sample,
driven by the force ×J B (along the axis named 2̂). Addi-
tionally, the electric field and the magnetic flux velocity are
connected by the celebrated Josephsonʼs relation = ×E B v.

On the contrary, if by virtue of some external process, B
would rotate within the sample, two striking facts need con-
sideration: (i) the rotation of B would produce a parallel
component of J, i.e. J1 as said in the previous section. Then as
long as one has ∥E J a component of E parallel to the mag-
netic field would also appear, a fact that contradicts Joseph-
sonʼs relation. (ii) Contrary to the case for =⊥J J( )3 , an
arbitrary value of =∥J J( )1 would be allowed, in a so-called
parallel configuration equilibrium state. In fact, according to
the ‘conventional’ concept that flux lines drift if required by
the magnetic force ×J B, the parallel condition would result
in a force free state with no limit for the supercurrent.

The physical considerations exposed above as well as a
number of interesting collateral concepts are already a clas-
sical subject. In fact, motivated by the possibility of achieving
very high practical critical currents, several decades ago, still
in the era of low temperature superconductivity, an intense
research activity about the so called ‘longitudinal configura-
tions’ (in reference to the appearance of ∥J ) has to be reported.

4
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The interested reader may find some selected contributions to
this area, along the years, in [6–15]. As extensively compiled
in [16], the main facts can be summarized as follows: (i) in
practice, longitudinal configurations are characterized by
increased (though finite) values of the critical current ∥Jc , (ii)
related exotic phenomena as paramagnetic magnetization and
negative resistance are found, (iii) a noticeable electric field
component along the local magnetic field has been measured,
(iv) contrary to the case of ⊥Jc , that is rather well understood
in the language of material pinning forces, no consensus
exists yet about the real nature of the critical value ∥Jc . More
in detail, the main topic about the parallel critical current
threshold is whether the underlying physical mechanism is
flux cutting (as considered for a long time) or not. Contrary to
such hypothesis are the facts that concomitant theoretical
predictions greatly overestimate the measured values of this
quantity and also the experimental observation that ∥Jc is
noticeably influenced by the pinning center landscape [16].
Moreover, as shown in that reference, if one completes the
theory with the concept of pinning torque balance, a reason-
able prediction for the parallel critical current threshold is

obtained, together with a natural upgrade of Josephsonʼs
relation Ψ= × +E B v .

Below, we will describe our geometrical interpretation of
the general critical current problem, including the perpendi-
cular as well as the parallel component of Jc. The equivalence
to the description by Matsushita [16] will be established.
Eventually, we will introduce the description of the resistive
regime, i.e.: the E J( ) law dealing with the overcritical
behavior.

3.1. Geometrical formulation of the critical state: critical current
yield region

As introduced before, figure 1 gathers the main features of our
critical state theory for general problems with ∥Jc and ⊥Jc
contributing at any relative strength [17]. Recall that the
equilibrium ‘critical states’ of the superconductor are given by
a certain ‘yield region’ defined by the admissible endpoints of
the critical current density vector Jc. Under a certain external
process, that induces an instantaneous overcritical condition,
Jc moves to another point of the locus, and the updated
equilibrium is defined by the condition that the transient

Figure 3. Evolution of the components of H and J penetrating in a metallic slab (figure 2) as induced by rotation of the applied field. The left
column depicts the applied field vector. To the right, we plot the parallel component of J. Dimensionless units, defined by the maximum
applied field Hm and the ratio H dm have been used.
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electric field is perpendicular to the contour. No further
evolution along the perfectly conducting contour occurs
because along such boundary one has ∂ ∝J Et . On the other
hand, the actual shape of the ‘critical’ ⊥ ∥J J( )c c curve is
dependent on the underlying physics:

• if one assumes that ∥Jc and ⊥Jc are governed by different
physical phenomena (as in the cutting/pinning hypoth-
esis) the region is a rectangle limited by the points

± ±∥ ⊥J J( , )c c
* * , with ∥Jc* and ⊥Jc* being independent

material parameters. This approximation corresponds to
the well-known double critical state model [14], that has
been extensively exploited.

• If one assumes that ∥Jc and ⊥Jc relate to the same
physical mechanism, a certain functional relation

⊥ ∥J J( )c c may be established, and one has a contour
defined by some smooth curve. This idea supports the
elliptic models [20], a class that includes our current
proposal.

Let us show that, if one follows the simplifying ansatz
that it is one single physical mechanism that fully determines
the constraint forces that hold flux structures in equilibrium
[16], then, the yield region is an ellipse. Although a rigorous
treatment of vortices and their interactions would require to
invoke the Ginzburg–Landau theory, the London approx-
imation will suffice for incorporating the relevant ideas. Thus,
to start with, we consider that magnetic flux penetrates the
superconductor in the form of a net of straight, rigid flux tubes
(vortices) interacting with each other, with the magnetic field,
and possibly with the underlying material. A somewhat
lengthy but standard calculation gives the following expres-
sion for the vortex lattice free energy, under the action of an
external field [18, 19]

⎡
⎣
⎢⎢

⎤⎦

 ∑ ∑Φ β Φ
μ λ β β

λ

= − + −

× −
<

( ) ( )
( )

H l

d

cos cot

exp . (5)

p
p

p m
p m

pm

0 0
0

0

Here, βp is the tilt angle for the vortex p relative to the
external field direction and dpm the (minimum) distance
between the vortices p and m.

What is important here is to realize that for large mag-
netic fields H0 (as compared to the field created by the vor-
tices themselves at each point of space) the dominant term for
each individual vortex is βH cos ( )p0 , and the stationary array
is the well known arrangement of parallel vortices:
β = ∀p0 ,p in a regular triangular mesh. On the other hand,
in the presence of pinning, stationary configurations of
magnetic field with non-vanishing current density compo-
nents, both perpendicular (gradient of field intensity) and
parallel (lack of alignment) may exist. One can say that the
vortex–vortex and vortex–external field interactions are
balanced by some ‘vortex-pin’ force and then: (i) the per-
pendicular component of the local current density is main-
tained in the stationary regime by a pinning force opposed to
the repulsion between vortices. Similarly, (ii) the parallel

component of the current density, associated to misalignment
of flux lines with the external field, is maintained by an
opposed pinning torque. This is sketched in figure 4. The
reader is addressed to [16] for a detailed discussion on the
physical origin of torques.

In this scenario, the thresholds for the two components of
Jc are related to the projections of a unique pinning force
vector, say F0 either parallel or perpendicular to the plane of
the slab under consideration: φ φ= F FF ( sin ( ), cos ( )0 0 0 .
Assuming linearity in the relation between the forces (tor-
ques) and the current densities, that is to say:

φ φ= =∥ ⊥J c F J c Fcos ( ), sin ( )c c1 0 2 0 one arrives at the
equilibrium condition

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟+ =∥ ⊥J

c F
J
c F

1, (6)
c c

1 0

2

2 0

2

where c1 and c2 play the role of phenomenological constants,

Figure 4. Sketch of virtual perturbations of the flux line lattice
relative to the configuration of equilibrium. Upper: compression of
flux lines. Lower: rotation. Also indicated are the pinning actions
against the restoring forces.
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allowing different critical parameters =∥J c Fc
* 1 0, =⊥J c Fc

* 2 0,
and thus, magnetic anisotropy3.

In conclusion, the common origin of a total threshold for
pinning interaction forces and torques which balance the
intrinsic repulsion and alignment, gives way to an elliptic
region of critical supercurrents at each point of the sample,
with principal axis parallel and perpendicular to the local
field. Obviously all this refers to the mesoscopic scale, i.e.:
after coarse graining in order to smooth fluctuations in the
scale of individual vortices.

3.2. Experimental determination: securing the Jc⊥; Jc∥
! "

relation

The investigation of general critical states has deserved
attention in numerous experiments in the last decades, but it
has not been until recently that a clear evidence of the kind of
mechanism controlling ∥Jc and ⊥Jc has been available. The
relevance of parallel current flow in type-II superconductors
was been tested in a dedicated experiment [20] that, provides
direct information on the threshold (critical) current density
when J and B are at an arbitrary angle.

Figure 5 displays the basic features of the experimental
setup. Owing to the quasi-1D structure of the conductor, and
to the negligible self-field effects, the authors could draw a
clear picture of the critical current behavior, i.e.: θJ ( )c . Based
on the straightforward measurement of the voltage in their
transport measurement, they present a set of data for the
induced electric field components θE ( )y and θE ( )z . As a
figure of merit, that allows to clearly distinguish between
different models, they plot the ratio θ θE E( ) ( )y z . Basically,
the experimental data agree with a dependence of the kind

θ θ Φ θ− + ≡a a a[(1 ) tan ( )] [ tan ( )] ( , )c
2 2 2 with a some

constant, as will be later discussed. Such data, supported by
complementary analysis by Campbell [21] together with
diverse publications that focus on the angular dependences

[22] confirm that an elliptic yield region

θ θ+ =
∥ ⊥

J

J

J

J

cos ( ) sin ( )
1 (7)c

c

c

c

2 2

* 2

2 2

* 2

is an excellent approximation to the dependence θJ ( )c . As
noticed by the authors, although the transport measurement
provides a direct information as relates the direction of the
current density vector, one has to be careful with the voltage
criterion that are used for determining the ‘critical’ compo-
nents. In their experiment, the determination of the ⊥ ∥J J( )c c

critical curve was secured by checking the independence of
the results when changing the threshold. Here, we add some
theoretical analysis that gives another perspective of the
problem. The question is that transport measurements rely on
the detection of a voltage when the system is driven away
from equilibrium ( Δ→ +J J Jc c ) and one is just willing to
reconstruct the equilibrium region θJ ( )c . Taking advantage of
the quasi-linear analysis developed in [5] we have derived the
following expression that quantifies the deviation of the
measured critical curve in terms of the voltage criterion:

⎡⎣
⎤⎦

θ δ Γ θ Γ δ Φ θ θ Γ

Γ θ θ

= + + −

− +

⊥ ( )
( )

( ) ( )j j j

j

, , , 1 sin cos 1

cos sin . (8)

c c c

c

0 0 0
2

0
2

3
0
3 2 2

Here, we have introduced the dimensionless parameters
δ ρ=⊥ ⊥E J( )0 0 , that quantifies the voltage criterion,

θ Γ θ= + +j (1 tan ) ( tan )c
2

0
2 2 , and Γ = ⊥ ∥J J0 0

*
0
* . The

subindex ‘0’ is used to indicate ‘measured values’ by contrast
to their ideal counterpart ‘c’. Notice that the above expression
may be used for testing the influence of the voltage criterion
in the determination of the yield region, more specifically, one
can check the anisotropy ratio obtained from experiment.
Figure 6 displays its application by the ‘reconstruction’ of the
yield region for different values of the anisotropy parameter
and voltage criterion used. It is apparent that deformation of
the reconstructed contour increases with the voltage criterion,
as well as with the actual anisotropy ratio. As one could
expect the more isotropic the behavior, the less relevant the
threshold used.

Enlightened by these above discussion, our contribution
proceeds as follows. Having established that the elliptic
region is privileged both theoretically and from experiments,
we will subsequently introduce an discuss a tractable form of
the related E J( ) law to be used in calculations, and eventually
show some numerical applications.

3.3. The critical ‘yield region’ and the E(J) law

Having established that an elliptic region of supercurrents is a
proper description of the threshold against general distortions
of the flux line lattice, our next step is to investigate the
overcritical behavior. Physically, the situation is as follows.
We start from the basic knowledge that in 1D situations (those
problems for which =∥J 0 is guaranteed) perturbations are
described by an ‘almost vertical’ E J{ , } graph with associated
equilibrium condition =J Jc (or 0). In counterpart, for a

Figure 5. Sketch of the experimental setup used for obtaining the
critical current density yield region as a function of the angle
between J and the magnetic field. In this case ( ≪ ≪w w wx y z), J is
basically along z-axis and the self field can be neglected. H0 stands
for the applied magnetic field.

3 The components of the current density vector characterizing the
equilibrium state are labelled with a subindex ‘c’: θ ≡J ( )c

θ θ ≡ ∥ ⊥J J J J( sin , cos ) ( , )c c c c . This set of points defines the critical yield
region. On the other side, the parameter values that quantify a specific curve
are marked with an asterix. Thus, for the elliptic case, ∥ ⊥J J,c c

* * define the
semi-axis.
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general situation, criticality will be expressed by Ω∈J c (or
0) with Ωc the elliptic contour mentioned before. Previously
[5], we argued that transients from overcritical points back
towards the region Ωc could be described by a thermo-
dynamic dissipation function  . This function measures the
entropy production and, to the lowest order, is quadratic in the
separation from equilibrium ΔJ . In addition, it was shown
that the electric fields along the dissipative process may be
obtained as =E J .

Below, we develop the theory for the power-law exten-
sion beyond the elliptic critical state region. In brief, this
entails to identify a mathematical expression for  that
introduces a power-like penalty when J goes beyond the
boundary Ωc (see figure 6 for a sketch of the situation). Other
meaningful expressions for  as the plain parabolic behavior
have been checked, but will be discussed elsewhere.

3.3.1. Elliptic-power-law E(J). The starting point for the
elliptic-power-law model is the following expression for the
dissipation function

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥ = +∥

∥

⊥

⊥

J

J

J

J
J( ) . (9)

c c

M

PL 0
*

2

*

2

At this point  J( )PL is introduced as a reasonable assumption
of a mathematically tractable model that accounts for
dissipation when the critical condition represented by
equations (6) and (7) is overpassed. A complete theory
relating the value of M to the flux-pinning properties is out of

reach here. However, it will be shown that some physical
observables (as the actual angle between E and J) are indeed
model-independent. Notice also that the ‘partition’ of energy
dissipation is ensured because by means of the ‘penalty
function’ in equation (9) one accounts for virtual
displacements (figure 6) that can be decomposed as the sum
of parallel and perpendicular components, at least
differentially. Again, this relies on the idea that a single
physical mechanism (flux depinning) is the basic limitation
for either conventional or longitudinal configurations. On the
practical side, taking derivatives as dictated by =E J
along the principal directions, one may easily obtain

γ γ= + +∥
−

∥( ) ( )j je j j j( ) . (10)
M2 2 1

This formula is a central result of our work, and will be
discussed in detail below. Firstly, dimensionless units have
been introduced for convenience, through the definitions



γ Γ≡ − ≡ −
≡ =
≡

⊥ ∥

⊥ ∥ ∥

⊥( )

J J

J j

M J

j J j h

e E

/ * 1 1,

; ,

2 .

(11)
c c c

c

c

* 2 2 2

*

0 *

Recall that the anisotropy constant has been reformulated
in terms of the new parameter γ, with the purpose of achieving
a compact and meaningful final form for the electric field e.
Thus, one can notice that

(i) the isotropic law, i.e. = − jje j( ) ˆM2 1 is obtained in the
limit γ → 0 as expected.

(ii) In those problems for which the parallel current flow
may be neglected ( →∥ ⊥j j 0) one also recovers the

formula = − jje j( ) ˆM2 1 (pseudo-isotropic situation).

As a consistency check, one may calculate the angle
between the electric field (normal to ϕ̂) and the current
density (normal to α̂), just by starting with equation (10) and
applying

ϕ α− = e j
e j

cos ( )
·

. (12)

Then

ϕ α
Γ α

Γ α
− =

−
+

( )
tan ( )

1 tan ( )

tan ( )
. (13)

c

c

2

2 2

Noticeably, this expression coincides exactly with the
expression that was earlier derived for the quasi-linear model
[5], and also with the experimental observation reported in
[20]. What is more, the angle between the electric field and
the current density happens to be independent of the power
law exponent M.

4. Numerical application: examples

In this section, we take a step further in the validation of the
elliptic-power-law characteristic. Several numerical examples

Figure 6. Model test of the voltage criterion effect on the
reconstruction of the critical current yield region. The upper panel is
a sketch the overcritical current (J) that relates to the experiment, as
well as the corresponding ‘real’ critical current density Jc. The lower
panel shows the actual reconstruction of the critical curves when
different voltage criteria δ are used. Specifically, we plot the profiles
coming from the set of values δ = 0.01, 0.05, 0.1, 0.2 and for the
anisotropy ratios Γ = 1, 0.5, 0.33. For each value of Γ, deformation
of the ideal elliptic profile (crosses) increases with δ.
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will be provided, for which the existence of parallel current
flow is relevant. To start with, we will consider the long-
itudinal problem in a strip (experimental setup of figure 5) but
now with the inclusion of a finite width. Secondly, a stack
geometry with different directions for the transport current
along each element, will be studied, aiming at the basic
description of helical cable structures. Such configurations
have been extensively treated in the literature [23, 24], but as
it will be seen below, noticeable effects due to the appearance
of parallel current flow may occur, that introduce corrections
to the isotropic modelling.

4.1. Quasi-1D analysis of the transport measurements
determining Jc(θ)

The analysis of the transport problem described in figure 5
was done under the 1D condition ≪ ≪ ⇒ ≈w w w JJ ẑx y z 0 .
Here, we will still consider a long and thin sample, but allow
the appearance of local effects across the width, i.e.: we solve
the transport problem modelled by

≈
=
= −

∥

⊥ ( )

zJ y
J J y h y

J J y h y

J ( ) ˆ
( ) ( )

( ) 1 ( ) .

(14)

z

z z

z z
2 2 2

Here, hz(y) is the z-component of the unit vector pointing
along the full magnetic field = +H H H0 self . Apparently, the
correction to the 1D solution will be more important close to
the edges, where the self field effects are more influent on the
local magnetic field orientation. As said before, an iterative
method can be used to solve for the y-dependence of Hself ,
arising from the distribution jz(y) itself.

Starting from our previous work [5] in which we applied
the power-law to the pseudo-isotropic situation
θ = ° ⇒ =∥J90 0, here we expand the result to the range

θ< < °0 90 . The numerical method described in that work
(equations (25) and (26)) has been applied for a dissipation
function that now reads

  γ= +( )h J1 . (15)z
M

z
M

0
2 2

In discrete form, hz and Jz are evaluated at a collection of
segment coordinates = …y i N{ }, 1,i with

= − … =y w y w2, , 2y N y1 . This parametrizes a collection of
long parallel straight wires, each carrying a current Ii. We
have investigated the resistive transition in terms of the angle
θ, by imposing the evolutionary transport condition

∑ θ θ=( ) ( )I t I t, , , (16)
i

i 0 tr 0

with θI t( , )tr 0 the increasing value of the transport current at a
given angle θ0 with the applied field. Figure 7 shows the main
features of our results for Γ = 1 3c , the actual value reported
in [20]. (i) To the left, we plot the sheet current profiles that
appear for the extreme condition θ = 0. Notice the increase of
the transport current density allowed towards the center of the
sample. This may be explained in terms of zones where
parallel transport is enhanced. For the smaller applied fields

( =H H5 c0 here), one can see that previous to the full pene-
tration regime, a peak may occur, as an indication of the locus
of maximum ∥J . For the case =H H50 c0 , the current flow is
basically longitudinal all across the width. (ii) Another aspect
that has to be recalled is the robust behavior of the anisotropy
dependent quantity 〈 〉 〈 〉E Ey z against the applied angle. Thus,
in spite of the noticeable influence of the voltage criterion in
the actual values of 〈 〉Ey and 〈 〉Ez , the ratio between them
accurately follows the ideal behavior given by the 1D relation
(equation (13)) for a wide range of transport levels along the
sample.

4.2. Approximation to the helical cable: modelling by planar
stacks

Being interested in modelling devices with superconducting
currents flowing along various regions of space, we start by
considering the functional analysis problem introduced in
[5, 25]. Under magneto-quasi-static conditions, any electro-
magnetic process, initiated by manipulation of the sources,
may be solved by minimization of the functional

⎡
⎣⎢

⎤
⎦⎥
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+ +
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2
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8
·

4
, . (17)

V V

n n n n

V
n n n

V
n n

dis
1 1 1

0
e, 1 e, 1

0
, 1 , 1

Here, the subindex ‘n’ indicates the value of the quantity
for the time layer tn, Δt is the time interval Δ ≡ −+t t t( )n n1
and Ae stands for the vector potential related to the external
sources. Formally, the problem to be solved is: find the vector
field +Jn 1 (the current density distribution) that minimizes
〈 〉L̂ dis subject to the constraints and boundary conditions (in
particular, the values at previous time layer Jn). The addi-
tional transport prescription ∫ = IJ s· d tr will have to be
applied if electric current is fed through the superconductor.
Recall that the notation 〈 〉L̂ dis is a reminder of the background
of the theory: we rely on a modified electromagnetic field
Lagrangian, as discussed in [5, 25]. Recall also that, the
elliptic-power-law will be introduced through the specific
selection of  .

In this section, we have developed the numerical appli-
cation of equation (17) for the geometry described in figure 8.
As a first approximation to the helical geometry, we introduce
a planar model that allows a conceptual understanding, as
well as some simple tests against analytical evaluation.
Nevertheless, upgrading to the actual cylindrical geometry is
straightforward as will be explained below.

To start with, we notice that as explained by Clem and
Malozemoff [24] the inner and outer layers may be solved
separately in this problem. In fact, the coupling between them
only occurs through a global factor, which is the magnetic
field in the intermediate region. This quantity is only depen-
dent on the net currents within each superconductor, and not
on the actual distribution zJ( ). Let us, thus, concentrate on the
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outer layers. Due to symmetry, one can just solve one of the
two slabs (for instance the upper one in our plot). By using
the coordinates defined in the figure, we state the problem as
follows:

We want to solve equation (17) for a thick slab occupying
the region < <z d0 (i.e.: V), carrying a transport current
Itr along the axis α α(sin , cos , 0)1 1 , and coupled to: (i) an
identical slab with transport along α α−( sin , cos , 0)2 2 ,

Figure 7. Application of the elliptic power-law model to the experiment sketched in figure 5 in the case of a finite width sample under a
moderate applied magnetic field at an angle. To the left, the sheet current density across the width of the sample wy. Labels indicate the
increasing values of the transport current in normalized units ( ⊥J w wc x y* ). Also, we use π≡ ⊥H J wc c x* . To the right, we show the average
electric fields and their ratio as a function of the angle between field and current. The upper pane shows each component at different values of
the transport current. All curves collapse when one plots their ratio (lower pane) and converge to the 1D relation in equation (13).

Figure 8. Left: sketch of a two-layer counter-wound cylindrical cable built from superconducting tapes. Right: approximation to the cable
geometry by a stack of infinite slabs.
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and (ii) the field created by two inner slabs also carrying Itr
each, but at the angles β1 and β− 2 as shown in figure 8.

This will be done by numerical minimization of the
following expression, that is the discrete counterpart
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Here, we have used the discretization of V in the form of
a set of parallel layers, each at the position zi, with

= =z z d0 ,..., N1 and constant thickness δ = d N . The layers
may carry current along the x and y axes. In fact, we have
defined the sheet currents along the cartesian axes

δ≡I J z( )i
x

x i and δ≡I J z( )i
y

y i (our set of N2 unknowns).
Also included is the coupling to the applied vector potential
Ae
x y, . Tilded quantities refer to the previous time layer. Dis-

sipation within each sheet is parameterized by the function Fi

that depends on the current components ∥Ii and ⊥Ii . Recall that,
for each time step, the evaluation of parallel and perpendi-
cular components is performed multiplying by the previous
local magnetic field, i.e.:

= +
= −

∥

⊥
I I h I h
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with h̃i the unit vector along the magnetic field at zi from the
previous iteration. This quantity must be updated for each
time step, by application of Ampèreʼs law.

Finally, we have to notice that the ‘mutual inductance
coefficients’ between the layers ij must be dealt with care
in this problem. In fact, with our selection of axes, together
with the specific orientation for the transport current, one has
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As it was discussed in [17], the different expressions
have to do with the symmetry/antisymmetry conditions for
the current flow along each direction. On the other hand,
application to the cylindrical geometry would merely consist
of replacing these expressions for planar layers by their
counterparts, i.e.: either longitudinal or azimuthal current
tubes.

4.3. Approximation to the helical cable: results

The solution of the problem stated in equation (18) has been
studied in terms of the main parameters of the elliptic power
law model, i.e.: the exponent M and the anisotropy ratio
Γ = ⊥ ∥J Jc c

* * . Realistic values in the range of those for HTS at
liquid nitrogen temperature have been used. In particular, we
have explored the influence of the power M between 10 and
100, and compared the isotropic hypothesis (Γ = 1) to the
values Γ = 1 2 and Γ = 1 4 that are close around Γ ≈ 1 3
obtained in [20] for a patterned YBCO film. Our main find-
ings are summarized in figures 9–12.

4.3.1. Influence of the power law exponent M. Figure 9
shows a collection of two dimensional maps that, on the one
side assess the validity of our numerical method. Notice that,
as expected, the dissipation function restriction introduced in
our variational model, gives place to a concentration of points
close around the elliptic (in this case, circular) yield region.
The higher the value of M, the narrower the region ‘explored’
by the sample, eventually becoming a thin line when in the
critical state limit ( ≫M 1). On the other side, one can also
realize that the appearance of dissipation produces distinctive
features in the ∥ ⊥[ , ] or x y[ , ] plots. In the former case, the
states beyond full penetration (i.e.: the critical current has
been exceeded) are characterized by a narrow band of values
of constant J modulus that rotates as M increases. In the x y[ , ]
plots, the concentration of overcritical points appears around
the vertical axis (along which transport was addressed in
this case).

4.3.2. Influence of the anisotropy parameter Γ. Two aspects
have been analyzed as regards the influence of the ratio
between the parallel and perpendicular critical current values
Γ = ⊥ ∥J Jc c

* * . Firstly, as shown in figure 10, we concentrate on
the magnetic hysteresis loops predicted for the currents
circulating along the outer superconducting layer. The main
purpose of this simulation was to evaluate how strongly
anisotropy affects the shapes of the loops and, as a
consequence, the electromagnetic losses. In particular we
have evaluated the magnetic moment per unit area of the slab
as

∫= ×z zm Jd . (21)
d

0

A number of distinctive features are to be recalled for the
ac process generated by the transport current cycle

ω=I I tsin ( )tr 0 .

(i) Only for the case Γ = 1 a collapse of the loop mx is
observed. The absence of hysteresis indicates that the
profile of current density has reached the dissipation
limit, i.e.: −J Jc lies beyond the contour Ωc all around
the material.

(ii) The anisotropic cases show a feature in the form of a
kink in the loops, that shows up close to the condition

=I 0tr . This feature is a clear indication of the
increased value of ∥J and thus can be used as a test of
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the appearance of intrinsic anisotropy Remarkably, such
behavior was reported in early experiments with
longitudinal fields [26]. In order to clarify this
interpretation we include a plot of the components of
H, as well as the profiles of J (figure 11). The reader
may notice the increased shielding (higher slope of
hx(z)) that is related to a peak in the current density.
This peak occurs at the region of the superconductor,
where Hx is close to zero, then rotation predominates
and Jy basically coincides with the parallel component
( ≈∥J Jy). Recall the similar phenomenon in figure 3 for
the case of a normal metal. The difference here is that
the peak of parallel current sits upon the step-like
‘critical state’ step profiles.

The second aspect to be recalled as regards the influence
of Γ is compiled in figure 12. Here, we show the actual
profiles of the transport current in the helical cable geometry,
as one passes over the dissipation condition in a simulation
that feeds a ramp of transport current along the sample.
Noticeably, the transport profile in the isotropic situation goes
from what is basically a step function below dissipation,
towards a flat profile that fills the sample (and eventually goes
beyond Jc) if more current is supplied. On the contrary, for
the anisotropic case, the intermediate profiles display a
peaked structure, and eventually become monotonous in the

dissipation regime beyond the critical value. The current
flows preferentially along the inner layers of the tape, once
again advantaged by the parallel current condition. This effect
may be explained through the predominance of self-field
effects close to the periphery of the sample, in such a way that
parallel current flow is enhanced towards the center.

5. Concluding remarks

The aim of this work was to provide a reliable expression of
the material law to be used in wide range simulations of
superconducting applications. More specifically:

(i) we have addressed the (frequently bypassed) question
of modelling problems for which the current density is
manifestly non-perpendicular to the magnetic field.

(ii) we have proposed to use a modified version of the
popular power-law E J( ) formula.

The main result of the paper is equation (10):

γ γ= + +∥
−

∥( )j je j j j( ) ( )
M2 2 1

with j the dimensionless
current density and ∥j its projection onto the local magnetic
field. We name it after ‘elliptic-power-law’ model. This
expression incorporates the well reported fact that in a type-II

Figure 9. 2D plot of the region ‘explored’ by the superconducting slab (figure 8) that is fed through with an ac transport current of amplitude
=I Ictr, max . Each dot represents a point in J-space that has occurred somewhere within the material. The upper plots correspond to the local

axes relative to the field direction and its normal ∥ ⊥[ , ]. The lower pane shows the counterpart for the same conditions, but in terms of the
global x y[ , ] components. Each column corresponds to a given value of the exponent M as labelled. In all cases, the isotropic condition Γ = 1
was used. For this simulation, the angles defined in figure 8 take the values α α= = 01 2 and β β= = °901 2 . J is given in units of ⊥Jc* .
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Figure 10.Magnetization loops related to the currents circulating along the outer superconducting layer for the system defined in figure 8. A
cyclic process of the transport current along the system was assumed that produces a magnetic field h h( , )x y0 0 in the intermediate region.H is

given in units of ⊥J d 2c
* , and the magnetic moment in units of ⊥J d 4c

* 2 with d the thickness of the slab. Here, we have used
α α β β= = = = °0 , 67.51 2 1 2 .

Figure 11. Profiles of the magnetic field and current density penetrating the superconductor in the configuration studied in figure 10, for the
case Γ = 1 2.H is given in units of ⊥J d 2c

* , J in units of ⊥Jc* and z normalized to the width d. z = 0 means the inner part of the slab. The arrow
indicates the evolution of the boundary conditions.
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superconductor with pinning, the equilibrium of flux lines is
dependent on the angle between J and B. Thus, γ para-
metrizes the ratio between the maximum (critical) super-
conducting current densities ∥ ⊥J J,c c

* * related to the extreme
situations ∥J B and ⊥J B. Equation (10) is ready to be
incorporated in finite element codes, and is supported by
experimental measurements [20] as well as by rather general
theoretical arguments [16]. In fact, section 3 incorporates our
proposal that the equation means nothing but assuming a
common origin for the pinning interaction that prevents flux
compression or rotation away from equilibrium.

With the background idea that the E J( ) law encodes the
physical behavior of the superconductor that has been driven
away from equilibrium, we have addressed a couple of
questions. First, related to the experimental procedures that
allow to obtain the critical parameters ∥Jc* , ⊥Jc* from non-
equilibrium measurements:

(i) On the one side, we give an expression that quantifies
the error in the ‘eccentricity’ ratio γ in terms of the
voltage criterion used to obtain θJ ( )c , i.e.: the angular
dependence of the critical current.

(ii) On the other side, we have quantified the relevance of
the magnitude of the applied magnetic field and sample
finite size effects in the θJ ( )c measurements.

Finally, we also provide examples of the numeric
application of our model on a practical system that involves a
considerable amount of parallel current, i.e.: a stack of
superconducting layers carrying current along crossed direc-
tions. By using a variational algorithm that is equivalent to the
power-law elliptic model

(i) We have shown that increasing the value of the power
M converges towards the critical state behavior,
characterized by the geometric rule Ω∈J c, with Ωc

the ‘critical contour’. This condition means: whenever
induced, current density takes the critical value.
However, when M diminishes, the sample explores a
band of values around the critical boundary, if driven

away from equilibrium. This band gets narrower as M
increases.

(ii) Some fingerprints of anisotropy (i.e.: ≠∥ ⊥J Jc c
* * ) on the

distribution of current density within the superconduc-
tor have been identified. For instance, if we assume the
typical situation >∥ ⊥J Jc c

* * an enhancement of the
transport capacity occurs in the considered geometry.
This means that a non-uniform current density profile
with transport concentrated towards the inner part of the
sample is obtained. Physically, as the angle between the
current and the field is smaller in that region, and thus
the critical current density is higher. On the other hand,
anisotropy shows a characteristic feature (kink) in the
predicted hysteresis loops.

In conclusion, we present support and applications of the
elliptic-power-law model. In its mathematical form it is ready
for application in massive finite element calculations for
realistic systems such as helical structures or Roebel cables.
Other relevant issues as the consideration of material aniso-
tropies can be incorporated [27] through the dependence of
the critical parameters ∥ ⊥J J,c c

* * on the orientation of the local
field relative to some material axis.
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