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Trade-off modeling of superconducting levitation
machines: theory and experiment
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Abstract—Based on the critical state model for the super-

conducting components, we develop a set of theoretical tools

that allow to extract relevant engineering parameters of a

superconducting levitation machine. We provide a number of

analytical and numerical expressions for the evaluation of the

electromagnetic quantities, energies and forces in 2D problems.

This assumption includes: (i) rotational symmetric systems as

those in bearings and motors, and also the case of (ii) transla-

tional symmetry as in long transportation lines. The theory, that

trades off simplicity and predictive power builds on the vector

potential/current density formulation of the Maxwell equations

(A,J) and is validated by comparison against experimental

tension-compression data in our universal test machine. As

shown, very simple computer coding is required to implement

the method.

Index Terms—Critical State Model, Magnetic Levitation Force,

Superconducting Modeling.

I. INTRODUCTION

Magnetically levitated devices based on permanent magnets
and superconductors have received increasing attention over
the last years and a number of possible configurations have
been described [1]. The intrinsic properties of the high-T

c

materials, that are already available at the commercial level
with physical parameters suitable for large scale applications,
give way to unique levitation characteristics. In particular, self-
stabilization against arbitrary perturbations, provided by the
flux-pinning property is to be mentioned. At the engineering
level, the evaluation of performances involves to consider a
number of design parameters such as the maximum forces
and stiffness coefficients attainable. Concerning the numerical
simulations, the incorporation of the superconducting material
law in the electromagnetic equations, with a reasonable predic-
tive capacity has been the motivation of a number of works. A
very complete and comprehensive compilation of the different
advances in this field may be found in [2]. In brief, the authors
of that paper classify the hierarchy of models customarily used
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in the following terms: (i) Meissner limit models, (ii) frozen-
field models [3], [4], and (iii) critical state models [5]. Only
the latter may accurately describe the full set of relevant facts
of magnetic levitation with type-II superconductors, including
vertical and lateral forces, finite size effects and hysteretic
behavior. A lot of work has been done along this line, and
remarkably, one may find a number of publications that show a
very good agreement between theory and experiment [6]–[10].
Some of these models are applied to experimental situations
that allow a 2D approximation, and others are stated as
3D, owing to the finite size characteristics of the systems
under consideration. Certainly, together with an increased
predictive power, the degree of complexity of 3D models is
much higher. Nevertheless, as noticed in Ref. [2], one may
identify a considerable number of practical situations that are
very reasonably simulated in 2D. In particular, the axially
and translationally symmetric geometries fit the cases of (i)
rotating bearings, flywheels and motors, and (ii) transportation
systems. Still, analytical approximations have to be abandoned
for quantitative purposes, and more or less intricate numerical
modeling is still due. In fact, although some efforts have to
be mentioned [11], no analytical model is able to capture all
the facts described above in levitation experiments.

This work aims to supply the simplest possible tools for
the simulation of 2D systems with the highest generality. The
two mentioned geometries will be considered in a unified
treatment. As a final result for the end-user, we will introduce
an undemanding formalism that states the electromechanic
response of the levitating machine by using a few lines
of computer code, relating the main physical quantities to
straightforward multiplications. The proposal relies on the
knowledge of two material parameters, the so-called critical

current density J
c

for the superconductor and the remnant

magnetization M0 for the accompanying permanent magnet,
and takes the form of a finite–element–like approach based on
the use of scalar functions on a 2D mesh.

The paper is organized as follows. First, in (Sec.II), we
describe the theoretical framework of our investigation. We
establish the quasistatic approximation of the Maxwell equa-
tions for the hybrid superconductor/magnet system. Then,
taking advantage of the symmetries, we introduce the “scalar”
formulation of the problem and eventually propose a numerical
method for obtaining the solution in a given process. The
method, that involves a discretized version of the electromag-
netic problem is described in detail in Sec.II-B. It is basically
built upon the concept of mutual inductance between electric
circuits. Specifically, we show that the Maxwell equations, the
energy of the system and the electromagnetic forces may all
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be written in terms of mutual inductance matrices. Motivated
by the interest of evaluating the stiffness of maglev machines
against arbitrary perturbations, in Sec.II-B4 we concentrate
on the response of the system to small displacements along
the vertical and horizontal directions. The theory is validated
against experiments in our test machine in Sec.III.

II. 2D MODELING OF LEVITATING EXPERIMENTS

A. Continuum electromagnetics: the MQS limit

We start by establishing the range of application. Cus-
tomarily, one can argue that, owing to the typical operation
frequencies (small enough as compared to the superconducting
material response) a magneto-quasi-static (MQS) approxima-
tion may be used. Then, the set of electromagnetic equations
to consider may be cast as

curlH = J ⌘ J |̂

curlE = �µ0
@H

@t
( E = �@A

@t

E(J) =

(
0 , J  J

c

⇢↵(J � J
c

)|̂ , J > J
c

(1)

with |̂ the unit vector along the current density at each
point of the superconductor, and ⇢↵ the material property
(resistivity) that may acquire an involved tensorial character
[12], [13]. The second equation means that Faraday’s law may
be enforced by the use of the magnetic vector potential. A
possible additional electrostatic term (E� = �grad�) could
be absorbed by gauge transformation A0 ! A = A0+grad�
with � = @�/@t. As charge accumulation is negligible in the
range of frequencies involved, ours is a natural selection for
the potential, and one must not care about �. It is apparent
that the third equation models the superconducting behavior.
Lossless current flow occurs below the critical threshold
J = J

c

, whereas dissipation appears beyond such value. The
approximation that the resistivity ⇢↵ acquires a very high
magnitude leads to the critical state regime description [5],
then, excursions of J beyond J

c

are nearly instantaneous
processes, controlled by the diffusion time constant ⌧ ⇡ 1/⇢↵ .

The behavior of the permanent magnet may be introduced
in a variety of forms. Here, assuming uniformity, we will use
the effective magnetic current density, i.e.:

KM = M0 ⇥ n̂ (2)

locally, at the magnet’s lateral surface.
Thus, the MQS description of the electromagnetic problem

needs to incorporate the fields H,J,A coupled by the above
equations.

Though seemingly simple, the system (1) may be tough
to solve for arbitrary geometries. Even the powerful Finite
Element Methods developed for electromagnetic problems are
seriously hampered by the superconducting law E(J), due to
the complication introduced by the unknown dependence of
|̂(x, y, z). Let us pave the way for an undemanding method,
by exploiting some symmetry properties.

1) Two dimensional statements for the fields H,J,A :

We will discuss the 2D implementations that emerge from the
symmetries applying to the cases of rotating machines or long
transportation lines. In both cases |̂ is known a priori and ⇢↵
becomes a scalar.

a) Translational symmetry.: Let us assume that the ma-
glev system takes the form of a long guideway along the y axis,
such that the magnet is uniformly magnetized (for instance,
along the z�axis): M0 = M0 ẑ, and is shaped as a long bar
of rectangular cross section. Let its dimensions be 2a ⇥ h

M

in the cross section (xz plane). The superconductor is also
a long bar stretching along the y-axis and with cross section
2b⇥ h

S

. If the superconductor is homogeneous and isotropic,
the electromagnetic fields will take the form

H(x, z) = H
x

(x, z)x̂+H
z

(x, z)ẑ

J(x, z) = J
y

(x, z)ŷ ⌘ J(x, z)ŷ

A(x, z) = A
y

(x, z)ŷ ⌘  y(x, z) ŷ (3)

A relevant consequence of these equations is that, owing to the
symmetry, the general formulation of Eq.(1) greatly simplifies.
In particular, as regards, the potential A, one may forget about
vectorial properties, because its orientation is determined.
Thus, we stress the fact that (J, y) are the two basic scalar
fields of the problem. In particular, by using µ0H = curlA
one can write [14]

µ0Hx

= �@ y

@z

µ0Hz

=
@ y

@x
(4)

Related to these equations, recall that a so-called 2D “stream-
function formulation” is possible through the straightforward
relation

µ0 H = grad2 y ⇥ ŷ , (5)

where grad2 means the 2D operator (@
x

, @
z

) and  y plays
the role of a magnetostatic potential. Among other useful
properties, this means that the contour lines of  y are nothing
but the field lines of H. This follows from

d y = ds · grad2 y = 0 ) ds
x

ds
z

=
�@

z

 y

@
x

 y
=

H
x

H
z

, (6)

where ds stands for a generic displacement along the “con-
stant potential” lines ( y = constant).

Also, one can see that solenoidality condition divH = 0 is
authomatically enclosed in Eq.(5).

We want to emphasize that, by using Ampère’s law, the full
electromagnetic problem could be stated in terms of  y and
its derivatives, supplied with appropriate boundary conditions.
However, aiming at the technical simplicity of the eventual
numerical problem, we will prefer a mixed statement ( y, J)
formulation. More specifically, in the case of the magnetic
source, the magnetization currents will be given, and the
streamfunction obtained from them. For the superconductor,
J will be unknown, and the evaluation of  y will be done
after solving the problem. In fact, at the numerical level, we
will take advantage of the linear relation between currents
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and “potentials”. Thus, the potential created at the point
r = (x, y, z) by a long wire that settles at (x

i

, z
i

) reads

 y,i(r) =
µ0Ii
4⇡

Z
dy

ip
(x� x

i

)2 + y2
i

+ (z � z
i

)2
+ C . (7)

Recall that we have included a constant C that will be used
to deal with the artificial divergences arising from the infinite
wire approximation.

b) Rotational symmetry: we proceed by showing that a
full analogy exists for the case of rotational symmetry: one
may also define a scalar field formulation in a Euclidean 2D
space. Here we assume that the levitating machine consists in
a cylindrical magnet coaxial with a superconducting cylinder.
We will denote their respective radii by b and a, and their
heights by h

M

and h
S

. Let us start by using the cylindrical
coordinate system, in which the electromagnetic fields read

H(⇢, z) = H
⇢

(⇢, z)⇢̂+H
z

(⇢, z)ẑ

J(⇢, z) = J
'

(⇢, z)'̂ ⌘ J(⇢, z) '̂

A(⇢, z) = A
'

(⇢, z)'̂ (8)

Again, it is apparent that the vector potential is not necessarily
given as vector quantity. Thus, starting with µ0H = curlA
one obtains

µ0⇢H⇢

= � @

@z
(⇢A

'

) ⌘ �@ '

@z

µ0⇢Hz

=
@

@⇢
(⇢A

'

) ⌘ @ '

@⇢
(9)

Now, the “streamfunction” formulation that generates the field
becomes:

µ0 H =
1

⇢
grad2 ' ⇥ '̂ (10)

For the readers’ sake we mention that this function is well
known in fluid mechanics and named after “Stokes stream-
function” related to the problem of incompressible three
dimensional axisymmetric flows. For our purposes, a couple
of properties must be highlighted. On the one side, the contour
lines of  ' are also the streamlines of H:

d ' = ds · grad2 ' = 0 ) ds
⇢

ds
z

=
�@

z

 '

@
⇢

 '
=

H
⇢

H
z

(11)

On the other side, as in the translational symmetry, one can
also take advantage of the linear relation between currents and
potentials. Now, the potential created at a given point r by a
circular current loop, carrying I

i

is:

 ',i

(r) =
µ0Ii
2⇡

I

C

I

C

0

dl · dl
i

kr� r
i

k (12)

with the definitions
r
i

: generic point at the source circular current loop.
dl: differential vector tangent along the circle C that
includes the field point r.
dl

i

: differential vector tangent along the circle C 0 that
includes the source point r

i

We call the readers’ attention that the above expression
closely resembles the Neumann formula for mutual induc-
tances, a fact that will be advantageous below.

To conclude this section, we want to emphasize that the
2D problems exposed above are formally equivalent. Thus,
hereafter, we can use a common notation (J(x, y), (x, y))
for both cases. Just, one has to recall that for the cylindrical
symmetry, x plays the role of ⇢, and recall the “metric” factor
1/⇢ when deriving H from  .

2) The Maxwell equations in the MQS limit. Variational

statement : Having defined the electromagnetic field structure
of our problem, we now proceed by introducing an alternative
formulation for the Maxwell equations in the MQS limit
(Eq.(1)). A variational statement will be preferred to the con-
ventional differential equation form, mainly motivated by the
convenience for the numerical treatment when superconduct-
ing materials are involved. Considering that the basic unknown
quantity in the statement will be the local supercurrent density,
one gets the benefit of: (i) avoiding to implement involved
boundary conditions for the fields and (ii) increase the stability
of calculations because the quantities of interest are obtained
by integration [15].

The main concepts were introduced in Ref. [16]. In brief,
the process of magnetic diffusion that takes place when the
bias is modified, obeys the variational statement minF [J(r)],
with F the functional given by

F [J] =
µ0

4⇡

ZZ

⌦


1

2

J(r) · J(r 0)� 2J0(r) · J(r 0)

kr� r 0k

�
dV dV 0

+

Z

⌦
�AS · J dV +�t

Z

⌦
P[J (r)]dV (13)

Here, the following notation has been used:
⌦: region occupied by the superconductor
J(r): (unknown) current density at point r and incre-
mented time t0 +�t
J0(r): (given) current density at r and previous time t0
�AS: variation of the vector potential created by the
sources (the magnet in our case) along �t
P[J]: power dissipated per unit volume at a given point
within the superconductor

For further application it will be useful to consider each
term of the functional by separate, and thus we define

F ⌘ FJJ + FJ0 + FJS +�tWJE (14)

with
FJJ: self energy of the evolutionary circulating currents
FJ0: interaction energy of the evolutionary currents with
a frozen distribution
FJS: interaction energy of the evolutionary currents with
the magnetic source
�tWJE: energy related to the entropy production due to
dissipative mechanisms

Eq.(13) is a powerful statement for solving quasi-steady
conduction problems. One may trace the evolution J(r, t) for
any given material dissipation law P and excitation process
(say AS(r, t)). For instance, P = ⇢0J

2/2 would portrait the
behavior of a normal conducting sample of resistivity ⇢0.
Specific dependencies P(J) for hard superconductors (as the
one related to the law in Eq.(1)) have been discussed in many
works. Corresponding to the quasi-linear E(J) expression in
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Fig. 1: Sketch of the interacting magnet and superconductor in
2D geometry. The discretization of the system into elementary
current circuits is indicated. The superconductor needs a
two dimensional grid of circuits that are named after latin
indices. The divisions for rotational (N⇥M ) and translational
geometries (N 0 ⇥M ) are indicated.

Eq.(1), and for the 2D problems, the related dissipation term
takes the form

PJE =

8
><

>:

0 if |J |  J
c

(1/2)⇢↵(J � J
c

)2 if J > J
c

.

(1/2)⇢↵(J + J
c

)2 if J < �J
c

.

(15)

Notice that ⇢↵ is the material parameter that describes the
sharpness of the transition from the superconducting state
to dissipation, when the threshold J

c

is reached. In many
practical situations, transitions are rather steep and the induced
electric fields are such that E0/⇢↵Jc is a small parameter. This
means that J goes very little beyond J

c

and the term �tWJE

may be just replaced by the critical state condition |J |  J
c

,
holding “quasistatically” along the time [12].

B. Discrete formulation

As numerical techniques will be used, one needs to translate
the previous equations to the language of discrete systems.
Here, this implies to define a virtual collection of circuits that
will carry the unknown superconducting current distribution.
Also, the magnetic sources of the problem (cylindrical or bar
shaped magnets with uniform magnetization) may be pictured
as a collection of surface currents (KM = M0 ⇥ n̂). Below,
we describe the basic geometrical concepts of the ensemble:
location and labeling, mutual inductance, energy of the system,
forces, etc. As shown in Fig.1 the collection of circuits (either
long straight wires or coaxial rings) may be mapped by using
a square grid. Each point of the grid (labelled with latin
index i in the superconductor, and with the greek ↵ for the
magnet, will be allocated according to the normalized cartesian

coordinates:

x̃
i

⌘ x
i

�
= i+N

✓
1� d i

N
e
◆
+X

S0

z̃
i

⌘ z
i

�
= d i

N
e+ Z

S0

x̃
↵

⌘ x
↵

�
= X

M0

z̃
↵

⌘ z
↵

�
= ↵+ Z

M0 (16)

Here, � is the unit cell spacing and we have used the standard
notation for the ceiling functions, i.e.: dze = min{n 2 Z |n �
z}. On the other hand, X

S0, ZS0 and X
M0, ZM0 are constant

values to be adjusted according to the position wanted for the
origin of coordinates.

1) Circuits and inductances: Mutual inductance is a central
concept in the discrete resolution of our problem. Related to
this, a number of specialized treatises [17] provide a collection
of useful formulas. Thus, the mutual inductance between
two circular loops i and j, respectively described by the
coordinates (x

i

, z
i

) and (x
j

, z
j

) in our scheme, is given by

M�
ij

= µ0
p
x
i

x
j

✓
2

k
� k

◆
K(k)� 2

k
E(k)

�
(17)

with the definition

k =

s
4x

i

x
j

(x
i

� x
j

)2 + (z
i

� z
j

)2

and K(k), E(k) the complete elliptic integrals of the first and
second kind. The self inductance of the loops is given by

M�
ii

= µ0xi

h
ln

x
i

�
+ 0.9018

i
. (18)

On the other hand, for the case of long wires, one can find
the following expressions that correspond to the unit length
inductance coefficient for wires of radius a

M
k
ij

=
µ0

2⇡
ln

a2

(x
i

� x
j

)2 + (z
i

� z
j

)2

M
k
ii

=
µ0

8⇡
(19)

For further use, we introduce the dimensionless inductance
coefficient in 2D problems (valid for both geometries):

m
ij

⌘ M
ij

(x̃
i

, x̃
j

, z̃
i

, z̃
j

)/µ0

2) Energies and forces in 2D problems:

a) Free energy of the system: The reader may straight-
forwardly check that the free energy terms in Eq.(13) are eval-
uated as follows in discretized form (just recall the Neumann
formula for mutual inductances)

FJJ =
µ0

2
J2
c

�5
X

ij

|
i

m
ij

|
j

(20)

FJ0 = �µ0J
2
c

�5
X

ij

|̌
i

m
ij

|
j

(21)

FJS = µ0J
2
c

�5
X

i

� P
i

|
i

(22)
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In these equations, we have introduced dimensionless units
for the current density, in terms of the material critical current

density, i.e.: |
i

⌘ J(x
i

, y
i

)/J
c

. Tilded quantities “ ˇ ” mean
the given values for the previous time ( |̌

i

⌘ |
i

(t0)). The
vector potential AS in the interaction term FJS has been
replaced by the streamfunction in the discrete version. Thus,
 P
i

“represents” the vector potential created by the magnetic
sources at the region of the superconducting circuit i and
� P

i

⌘  P
i

�  ̌P
i

.
 P
i

can be evaluated by using the linear property announced
in Eqs.(7) and (12) and recalling the discretized expression for
the magnetization currents

I
↵

= K
M,↵

� = M0 � (23)

with I
↵

standing for a volume current density at the circuit ↵
Then, one gets the normalized streamfunction

 P
i

⌘  (r
i

)

µ0Jc �2
= P

X

↵

m
↵i

(24)

with P the dimensionless parameter that accounts for the
“relative strength” of the magnet and the superconductor

P ⌘ M0

J
c

�
(25)

and m
↵i

the mutual inductance coefficient between the mag-
netic circuit ↵ and the superconducting circuit i.

For further application, it is useful to note that the discrete
version of the streamfunction related to the superconducting
currents reads

 sc

j

⌘  sc(r
j

) =
X

i

m
ji

|
i

(26)

with |
i

the current density at the circuit i.
Thus, we get the following expression of the free energy

function to be minimized, so as to obtain the updated config-
uration of supercurrents {|

i

} at t0 +�t

F[{|
i

}] = 1

2
hJ| m |Ji � ȟJ| m |Ji+ h� P |Ji (27)

Here, we have defined the g dimensional (g = N ⇥M ) vector
quantities, formed by the values of the current density at the
grid points, i.e.:

|Ji ⌘

0

BBBBBB@

|1

|2

·
·
|
g

1

CCCCCCA
, hJ| ⌘ (|1, |2, . . . , |g) (28)

Also, for compactness, we are using Dirac’s “ket” and “bra”
notation, with hJ| the transpose of |Ji.

From the technical point of view, the mathematical problem
to be solved (find the g�vector |Ji that minimizes F[{|

i

}]
subject to the constraints �1 < |

i

< 1 , i = 1, 2, . . . g) is
a large non-linear constrained optimization problem. Accu-
rate simulations will typically mean g values around several
thousands. Noteworthily, Eq.(27) fits the so-called quadratic

programming paradigm. This very well known problem has

received much attention between applied mathematicians, and
the interested reader may benefit from an abundant collection
of excellent software solutions. For instance, the popular
languages OCTAVE and MATLABr implement the quadratic
problem by means of the specific built-in functions qp() and
quadprog() respectively. The user must plainly input the
values of the matrix m and the arrays | P i , |J̌i. Thus, one may
solve the evolutionary critical state statement of the levitation
problem by iteration of the single line command

|Ji := QP�function
⇣
m, |A0i , |Lbi , |Ubi , T

⌘
(29)

Here, we have defined |A0i = | P i � | ̌P i � m |J̌i and the
critical current bounds, that for isotropic conditions read

|L
b

i ⌘

0

BBBBBB@

�1

�1

·
·

�1

1

CCCCCCA
, |U

b

i ⌘

0

BBBBBB@

1

1

·
·
1

1

CCCCCCA
(30)

T represents the transport current condition. In our case,
simply T =

P
|
i

= 0. QP�function stands for either
qp() or quadprog() in the mentioned instances. Both options
have been tested successfully, checked against the powerful
optimization fortran package LANCELOT [18].

b) Forces: Being able to obtain the solution |Ji for
an arbitrary configuration, one may readily evaluate the me-
chanical behavior of the system. Thus, performing “virtual
displacements” around a given position, forces arise as partial
derivatives of the interaction energy. For instance, the normal-
ized force acting on the superconductor due to the interaction
with the magnet may be obtained from

f = grad2 h P |Ji = hgrad2  
P |Ji . (31)

This equation is the counterpart of the celebrated Lorentz force
expression F = µ0

R
J⇥H dV , from which it can be obtained

just by replacing µ0 H = grad2  ⇥ û and applying vector
algebra. Here, our interpretation is that it defines the “force
projector”, that allows to obtain the force components for any
given configuration hgrad P |. In practice:

grad2  
P
i

= P
X

↵

grad2 m↵i

⌘ P
X

↵

n
↵i

. (32)

Notice that the bold notation indicates the vectors in real
space, not to be confused with the {|

i

} components of the
current density in the “finite element space”. For example,
if one assumes a vertical displacement of the magnet in the
cylindrically symmetric system, the matrix elements nz

↵i

are
given by

nz

↵i

=
z
↵

� z
ip

(x
↵

+ x
i

)2 + (x
↵

+ x
i

)2

h
K(k

i

)

� x2
↵

+ x2
i

+ (z
↵

� z
i

)2

(x
↵

� x
i

)2 + (z
↵

� z
i

)2
E(k

i

)

�
(33)
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Fig. 2: Left: magnetic field lines around a cylindrical magnet/superconductor arrangement. Also indicated are the penetrating
supercurrent circular loops. To the right, we show full hysteresis cycles of the vertical force for different values of the critical
current density parameter in the ZFC case.

with the definition

k
i

=

s
4x

↵

x
i

(x
↵

+ x
i

)2 + (z
↵

� z
i

)2
,

and the levitation forces read

f
z

= P
X

i,↵

nz

↵i

|
i

(34)

Apparently, by using this equation, one obtains the force in
dimensionless units. It may be rescaled to physical units by

F
z

= µ0J
2
c

�4f
z

(35)

3) Application to rotationally symmetric problems: In
this section, we consider the case of a cylindrical mag-
net/superconductor arrangement. As usual, Field cooling (FC)
and Zero Field Cooling (ZFC) conditions were simulated
by selecting the initial position of the magnet and plainly
implying the initial zero current condition |J0i = 0 for the
superconductor.

Fig.2 illustrates the results for the specific set of conditions:
• Magnet: µ0M0 = 1.17 T, h

M

= 15 mm, 2b = 45 mm.
• Superconductor: various values of J

c

⇡ 108 A/m2, h
S

=
15 mm, 2a = 50 mm.

These correspond to our home-made levitation assembly,
built with standard commercial materials (MT-YBaCuO su-
perconducting cylinder and NdFeB permanent magnet).

The superconducting region was meshed with a rectangular
grid of 70⇥ 42 = 3010 elements, each representing a circular
loop of current. Minimization of Eq.(27) was performed for
a number of vertical trajectories of the magnet, step by step,
with increments of 0.2 mm.

Fig.2 displays the magnetic field structure induced by
cooling the superconductor with the magnet at a big enough
distance (in practice d = 60 mm suffices) so as to approach

the ZFC condition. Also we show the full hysteresis cycle for
the force subsequent to the descending/ascending trajectory.

For each position of the magnet along the path (that we
parameterize by the time values t

n

), we get |J(t
n

)i ⌘
(|1n, |2n . . . |gn), and with this, we have been able to evaluate
the “superconducting” streamfunction at any position of space
(r

j

) by using Eq.(26). Then, as follows from Eq.(11) one can
plot the magnetic field lines just by drawing the contour lines
of  full

n

=  sc

n

+  P

n

. Combined with the built-in function
contour() this was done to obtain the left panel of Fig.2.
On the other hand, the calculation of the levitation force is a
straightforward application of Eq.(34). At the step of time t

n

one has

f
n,z

= h@
z

 P

n

|J
n

i = P
X

i,↵

nz

↵i

|
in

(36)

This equation, with nz

↵i

replaced by the expression in Eq.(32),
leads to the results of the right pane of Fig.2. They were
obtained for standard values of J

c

in MT-YBaCuO at 77 K.
4) Application to translationally symmetric problems:

Here, we show that our model may provide useful information
about the stability issues in levitation machines. We have
investigated a system composed by a vertically magnetized
bar-shaped permanent magnet parallel to a superconducting
bar. The cross section of the system fits the schema in Fig.1,
with the material parameters:

• Magnet: µ0MS

= 1.17 T, h
M

= 15 mm, b variable.
• Superconductor: J

c

= 3⇥108 A/m2, h
S

= 15 mm, 2a =
50 mm.

The superconducting region was meshed with a grid of
100 ⇥ 30 = 3000 elements, each representing a long wire.
The magnet was described as a pile of 30 elementary wires at
each side, standing for the magnetization currents. The starting
point of our simulations was always taken in “centered”
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Fig. 3: Levitation (K
zz

) and guidance (K
xx

) stiffness coeffi-
cients dependence on the relative width (b/a) of the magnet
and superconductor. The different curves correspond to the
cooling distances between them (from top to bottom) d/a =
0, 0.1, 0.2, 0.4. In the inset we give a detail of the behavior of
F
x

(x).

configuration. Then, two kinds of numerical experiments were
performed so as to characterize the stiffness coefficients:

• “Vertical disturbances” were considered for obtaining
K

zz

. The linear regime was evaluated as the first mil-
limeter displacement, for each cooling distance.

• “Horizontal disturbances” were also studied for obtaining
K

xx

. Again, the first millimeter provided a linear regime
of F

x

(x).

We summarize our results in Fig.3. The vertical (levitation)
and lateral (guidance) stiffness coefficients are plotted against
the relative dimensions of the magnet and the superconductor.
Notice that, for the whole range of values, both K

xx

and K
zz

are positive, as corresponds to a stable system. More in detail,
it is also clear that the maximum of K

zz

occurs close to b/a =
1 (as between permanent magnets). The maxima of K

xx

for
small values of the separation d are clearly shifted to the left.

A feature to mention in the behavior of K
xx

is the “kink”
that occurs at the value b/a = 1, clearly visible for the lower
distances. This is a finite size effect that one can understand by

Fig. 4: Magnetic field lines obtained for a lateral displacement
in the FC condition with b/a = 0.2 and d = 0.

plotting the field structure for the system as done in Fig.4. For
the range 0 < b < a superconducting currents are not severely
constrained by the size of the superconductor, and lateral
current flow is not important. However, as b increases, the
superconducting currents stretch, and suddenly get constrained
when the condition b = a is reached.

For the readers’ sake, we mention that a number features
observed in Fig.3 agree with other results of the literature.
First, field cooling at a non-zero distance produces a vertical
stiffness two times greater than the horizontal, as described in
experiments [4]. In fact, as noted by the authors of that paper,
in their simplified analysis by image techniques, such property
is related to the high critical current density of the system that
makes the actual J

c

parameter irrelevant. In our case, the value
of J

c

enters the theory, but as shown in Fig.2 it is high enough
(recall the small hysteresis). Also, we note that the maximum
value of K

zz

at b/a ⇡ 1 is a feature already reported by
other authors that apply similar numerical techniques within
the critical state formalism [19].

A technical issue regarding the identification of the initial
slope of F must be clarified. We have evaluated the evolu-
tion of this quantity for small displacements �x, �z around
equilibrium. As illustrated in the inset of Fig.3 an initial
“linear” behavior can be inferred. Quantitatively, a correlation
coefficient R > 0.97 was achieved for all the cases displayed,
by considering the region mentioned: �x, �z . 1 mm.

III. EXPERIMENTAL VALIDATION

A. Experimental setup

The axial component of the levitation force between a
bulk YBCO superconductor and a NdFeB permanent magnet
(PM) was measured using the tension-compression tests in a
universal test machine, INSTRON model 5565. The machine
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Fig. 5: Quantitative comparison between simulated and measured data on the cylindrical system. Continuous lines correspond
to the theory and crosses to the experiment.

was equipped with a full electromechanical control and data
acquisition via software. Bulk YBCO superconductor (Can
Superconductors, CSYL-50) and NdFeB PM (Idemag, N35)
with diameters and heights of 50 mm, 15 mm and 45 mm,
15 mm, respectively, were used in these measurements. The
critical temperature of our YBCO sample is around 90 K,
while the remnant induction of the PM is 1.17 T. The setup
scheme basically fits Fig.1.

The lower tensile grip of the universal test machine was re-
placed by a liquid nitrogen container, fixed to the tensile table.
The superconductor was placed and fixed within this container,
while the PM was attached to the bottom of a cylindrical
aluminium holder, placed above the superconducting sample
by matching their axes. The PM along with its support were
attached to the upper tensile grip.

The axial component of the levitation force was measured as
a function of the distance between the superconducting sample
and the PM using 10 mm/min displacement speed. The tests
were performed by cooling down the YBCO superconductor
to 77 K under the action of magnetic field provided by the
PM (Field Cooling). Several cooling heights were investigated,
with a minimum distance of 3.57 mm, as determined by the
thickness of the cryogenic container’s cover.

B. Experimental results

1) Theory vs. experiment: Fig.5 shows the validation of
our theory against the experiments performed in the setup

described above. We display the hysteretic response of the
levitation force corresponding to a set of field cooled experi-
ments labelled FC1, FC3, FC4, FC10 as shown. In all cases,
the superconductor was cooled with the magnet at the given
height over the cryostat (1, 3, 4, 10 mm respectively). To start
with, the vertical force was measured up to an ascending
vertical distance of 60 mm (lower lines in the plots). Then,
the descending branch was recorded, and the resulting plots
correspond to the upper lines (when visible).

Notice that hysteresis is more and more pronounced as the
cooling distance diminishes. Recall also that a very reasonable
agreement between theory and experiment is observed. The
theoretical lines have been obtained by solving Eq.(27) for
the parameter values: J

c

= 3 ⇥ 108 A/m2, µ0M0 = 1.17 T.
The critical current density of the superconductor was deduced
from the data of the manufacturer’s data sheet [20].

2) Maximum attainable force.: The values of the levitation
force obtained in our experiments are obviously determined
by the actual superconducting critical current density of the
sample. A couple of questions arise: (i) how far are these
values from the maximum forces attainable (Meissner limit)
in the specific configuration of our machine? (ii) to what
extent should one be concerned about finite size effects when
interpreting real data? f.i.: may the superconductor be modeled
as a flat infinite medium [3]? We will address them through
the numerical model of this paper, together with a dedicated
analytical approximation.

The theory developed in this article provides a method to
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evaluate the reference value for any given system. Just, one
has to calculate the ZFC behavior for the specific geometry,
in the limit J

c

! 1. In practice, this means nothing but
minimizing Eq.(27) and plainly skipping the restriction on J

c

(just declare |L
b

i and |U
b

i as empty sets in QP�function).
In our geometry, one obtains a levitation force of 405 N for
d = 0. When the calculation is performed for the actual
superconductor in our machine (J

c

= 3⇥108 A/m2), the value
obtained is 260 N, roughly 64% of the maximum attainable.

As concerns the second question, an analytical expression
is given below that allows to estimate the maximum force
between a cylindrical magnet (radius b) and superconductor
(radius a) in the region b < a. Based on [21], when b/a ! 0
one has (infinite superconductor):

F1 ⇡ 2µ0M
2
0 b


2
K(k2)� E(k2)

k2/d2

�K(k1)� E(k1)

k1/d1
� K(k3)� E(k3)

k3/d3
)

�
(37)

where we have defined k
n

⌘ b/
p

b2 + d2
n

and d1 ⌘ d , d2 ⌘
d+ h

M

/2 , d3 ⌘ d+ h
M

This expression gives F1 = 420 N, a value that has to be
compared to the result F = 405 N for our case (b = 0.9 a).
This implies that the flat superconductor approximation works
rather well for obtaining the force at small distances just if
one has b < a.

IV. CONCLUDING REMARKS

It can be said that the levitation systems based on supercon-
ductors and permanent magnets are a promising concept, but
their modeling is not a trivial issue. In this work, we provide a
set of theoretical tools that allow a precise quantitative analysis
of two predominant geometries (rotationally and translation-
ally symmetric) with the least mathematical complication. A
unified treatment of both cases is introduced, with inductance
matrices m and a scalar streamfunction,  obtained from those,
being the central elements to the model. Though grounded on
more abstract formalism [12], [13], this application finds a
rather tractable layout.

A discretized formulation has been described that easily
runs on a personal computer, with a minimal effort, just
relying on elementary use of popular computing languages (as
OCTAVE or MATLABr). The basic procedure may be sketched
as follows.

1 Generate the grid points (x
i

, z
i

) that allocate the current
circuits equivalent to the components: Eq.(16) with
di/N e just replaced by ceil(i/N)

2 Apply Eqs.(17, 18, 19) to generate the matrix m.
Next, one introduces the physical process (relative displace-
ments) and iteratively solves the problem, i.e.: gets the super-
current g�vector |Jni ⌘ {|

i

(t
n

)} This is done by:
3 Calculate the “updating” vector that gauges the varia-

tions of the state variables |A0i = | P i � | ̌P i � m |J̌i.
4 Use built-in solver of the quadratic problem:

|Ji := QP�function
⇣
m, |A0i , |Lbi , |Ubi , T

⌘

that gives the induced supercurrents, constrained by the
bounds |L

b

i and |U
b

i, and the transport condition T.
5 Iterate along the desired process by updating | P i.
6 Evaluate forces f = P hn|Ji with the “projector” hn|

given by Eq.(32)
7 Optionally, plot the field lines (“isolines” of
 full =  sc +  P ), by using the built-in function
contour(x, z, ).

The validation of the theory against experimental data shows
that the ansatz of constant material parameters (superconduct-
ing critical current density and magnetic remnant field) are
justified at T = 77 K and for the high-quality MT-YBaCuO
and NdFeB materials. Calibration against the ideal maximum
forces attainable (Meissner limit) is suggested. For this case,
we provide a practical analytical expression (Eq.(37)) that
gives a good estimation, just by assuming that the lateral size
of the magnet is not bigger than the superconductor’s.

Natural extensions of the model that can be implemented
with ease would be (i) the consideration of field dependence
for the critical current density, (ii) the inclusion of inho-
mogeneities in the superconductor (as those related to the
appearance of granularity [22]) by using a position dependetnt
J
c

, (iii) the investigation of the behavior of multicomponent
systems, such as levitation tracks with an arbitrary array of
magnets, or (iv) the inclusion of paramagnetic materials. A
fundamental, but simple modification of the model must be
considered in the last instance: additional unknowns related
to the effective paramagnetic current densities, as well as a
boundary condition related to the material permeability should
be incorporated. Assuredly, any of these extensions should
keep the 2D character of the problem.
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