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Levitation experiments with superconductors in the Meissner state are hindered by low stability
except for specifically designed configurations. In contrast, magnetic force experiments with
strongly pinned superconductors and permanent magnets display high stability, allowing the
demonstration of striking effects, such as lateral or inverted levitation. These facts are explained by
using a variational theory. Illustrations based on calculated magnetic field lines for various
configurations are presented. They provide a qualitative physical understanding of the stability
features. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

Levitation experiments based on the repulsive !or attrac-
tive" force between permanent magnets and superconductors
are common. Almost everyone is fascinated and stimulated
by the observation of floating objects. When the setup in-
cludes a high pinning !or high critical current" supercon-
ductor, the possibilities of lifting moderate weights and dis-
playing lateral or inverted levitation are even more attractive.
Recent developments of vehicles capable of supporting sev-
eral passengers1 have increased the interest in this topic.

As the number of levitation phenomena becomes larger,
the difficulty of giving a reasonable explanation on how levi-
tation works and giving a quantitative analysis has also in-
creased. It is simple to understand that a magnet floating
above a superconductor is related to flux expulsion and we
may use the standard image technique in magnetostatics to
make quantitative estimates. Specialized image models have
also been introduced, which allow us to understand attractive
forces.2 However, such approximations are only useful for
small displacements of tiny magnets close to the supercon-
ductor and do not include material parameters.

As an alternative and complementary point of view to pre-
vious work,3 I will give a more general theoretical frame-
work and a number of examples. The presentation is aimed
at students who have had an intermediate course on electro-
magnetism and some background in classical mechanics. The
main concepts involved are electromagnetic energy, thermo-
dynamic reversibility and irreversibility, Lenz-Faraday’s law
of induction, and the use of variational principles. The pre-
sentation emphasizes the peculiarities of levitation with
type-I and type-II superconductors. In both cases, the limita-
tions imposed by Earnshaw’s theorem,4 which restricts levi-
tation in electromagnetic systems, are avoided.5

II. BASIC SUPERCONDUCTIVITY AND
VARIATIONAL PRINCIPLES

Superconductivity is a complex phenomenon, whose na-
ture combines electromagnetic, thermodynamic, and quan-
tum effects. For our purposes, the governing equations may
be found from relatively simple considerations.

A. Type-I superconductors

We begin with the definition of the electric current density
for conducting media

J = nqv , !1"

where n is the volume density of the charge carriers, q their
effective charge, and v their velocity. If the underlying ma-
terial is such that charges can move without friction, New-
ton’s second law gives

dJ
dt

=
nq2

m
E %

1
!0"2E , !2"

where " defines a characteristic length, called the London
penetration depth. Equation !2" leads to the property

E · J = !0"2dJ
dt

· J =
d

dt
&!0"2

2
J2' . !3"

If this relation is included in Poynting’s theorem, it is appar-
ent that the standard electromagnetic field energy is aug-
mented by a new form of reversible storage, related to the
kinetics of the moving charges. If we neglect the presence of
electrostatic charges, we have the energy conservation law

d

dt&(R3

B2

2!0
dV + (

VS

"2

2!0
)! Ã B)2dV' %

dU

dt
= 0, !4"

where VS denotes the superconducting volume.
Because energy is conserved, the system will settle in

some equilibrium configuration. If we use the field B as the
independent variable and let # denote derivatives with re-
spect to it, we may express the equilibrium condition as the
minimization of

U = (
R3

B2

2!0
dV + (

VS

"2

2!0
)! Ã B)2dV , !5"

which implies that

#U

#B
= 0. !6"

We minimize the quantity in Eq. !5" to obtain the static con-
figuration for fixed sources !boundary conditions for the
fields". Notice that this formulation reflects flux expulsion
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!diamagnetism" in superconductors, because B2 is mini-
mized. This expulsion is the Meissner state. The more con-
ventional differential statement B+"2!!Ã!ÃB"=0 !the
London equation6" follows from the zero derivative condi-
tion Eq. !6".

B. Type-II superconductors

For certain superconducting materials, we need to relax
the assumption that the electric current flow is completely
free of losses. In the hard type-II superconductors only low
!undercritical" currents are lossless. As a first approximation,
we may assume lossless behavior for J$Jc !Jc is the critical
current for the material", and Ohm’s law for J%Jc as for
normal metals #here E=&sc!J−Jc"$. The nature of such re-
sponse of the charge carriers, including the interpretation of
the intrinsic parameter Jc, may be found in Ref. 7. In brief,
these materials can hold an internal magnetic flux as long as
the field gradients !J" remain below a threshold. Above this
value, the flux is unpinned and the underlying currents flow
dissipatively.

I now show that the behavior of these materials also fol-
lows a variational law. Recall that the dynamical equations of
a single particle under conservative forces may be obtained
by a minimum action principle. That is the minimization of
*Ldt implies that

d

dt
& "L

"ẋ
' =

"L

"x
, !7"

where L=mẋ2 /2−V is the Lagrangian. Note that nonconser-
vative forces may not be treated variationally, so that New-
ton’s second law is equivalent to

d

dt
& "L

"ẋ
' =

"L

"x
+ Fncons. !8"

Nevertheless, if we assume that Fncons is a viscous drag
force !Fncons=−m'ẋ" with a friction constant ', Eq. !8"
may be obtained from minimizing *0

(tL̂dt:

d

dt
& "L̂

"ẋ
' =

"L̂

"x
. !9"

We have defined L̂%L+ !m'ẋ2 /2"t, and assumed that (ẋ
) ẋ for increments within the time interval #0,(t$. Then Eq.
!9" leads to mẍ=−m'ẋ−"V /"x as required.

The result !9" is a quasistationary variational principle,
which may be applied in a time discretized description of the
system !redefine #0,(t$ and iterate".

Generalization is possible if we recall that for a single
particle, m'ẋ2 is the energy loss per unit time. For instance,
the eddy-current problem in normal !ohmic" metals may be
solved iteratively by minimizing

Sn % (
0

(t (
R3

L̂dVdt , !10"

with L̂%B2 /2!0+ !E·J /2"t as the modified Lagrangian den-
sity for the magnetostatic field. Recall that E·J corresponds
to the energy dissipation per unit time and volume. Then, if
we assume (E)E and use the stationary relations E=&J
and !ÃB=!0J in the time interval #0,(t$, the minimization
functional in Eq. !10" becomes

Fn % (
R3

!(B"2

2!0
dV + (

Vmetal

&(t

2!0
)! Ã B)2dV . !11"

If we take variations with respect to the variable B, we ob-
tain #Fn /#B=0, and

(B
(t

= − ! Ã & &

!0
! Ã B' !12"

as expected. This equation in terms of increments is just the
time-discretized version of Faraday’s law !"B /"t=−!ÃE".

The application of the previous ideas to superconducting
media follows naturally. We have to use a suitable form for
the energy loss that is related to overcritical current flow. The
simplest theory that accounts for losses in such conditions
was proposed by Bean8 in the context of magnetic hysteresis.
In terms of a conduction law, Bean’s model is equivalent to
the E!J" relation sketched in Fig. 1. Note that the multival-
ued graph corresponds to the overdamped limit of the physi-
cal properties mentioned previously: nondissipative current
flow is allowed for current densities below a critical value Jc,
and induced electric fields relate to the current density flow
by an infinite slope resistivity. Obviously, the vertical rela-
tion is just an idealization of real cases in which there is a
very high slope &sc. In terms of Eq. !10", Bean’s law can be
written as a quasistationary principle in which the modified
Lagrangian is L̂=L+Dt, with the dissipation function

D = +0 if J * Jc

+ if J % Jc.
, !13"

The variational principle admits a simple treatment of this
singular behavior. We may minimize the first term in Eq.
!11" and replace the second one by the cutoff condition J
$Jc.

By using a time discretization in layers of step size #t, that
is, tn=n#t, we obtain the following iterative model.9 We
minimize the quantity

Fig. 1. -E ,J. graph !conduction law" for a hard type-II superconductor,
according to Bean’s model !Ref. 8". Vertical lines correspond to infinite
resistivity above Jc.
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1
2!0

(
R3

)Bn+1 − Bn)2 !14"

with )!ÃBn+1)$!0Jc for VS"R3 and !ÃBn+1=!0J0,n+1
for R3 outside the superconductor VS, where magnetic
sources are located. Due to the inequality restriction on
!ÃBn+1, a differential equation does not directly follow
from the mathematical statement in Eq. !14". Another tech-
nical difficulty relates to the infinite domain for the integral.
Thus, some transformations will be suggested for the practi-
cal application of the model !see Sec. IV".

However, from the physical point of view, the model is
clearly linked to the compensation between minimum mag-
netic flux changes !Lenz-Faraday’s law" and minimum en-
ergy losses in the evolution of the system.

III. LEVITATION IN THE MEISSNER STATE

Diamagnetism is a necessary condition for stability,5 but is
not sufficient. A specific geometrical configuration is re-
quired to produce a position of stable equilibrium in the pres-
ence of magnetic and gravitational fields. Thus, the radial
force on a dipole magnet over a diamagnetic disk has been
shown to be directed outward10 unless the magnet is just
above the center !where it vanishes". It is for this reason that
Arkadiev11 used a small permanent magnet that was floated
over a concave lead bowl. Recall that lead is a type-I super-
conductor.

The relation between the geometrical arrangement and sta-
bility is illustrated in Figs. 2 and 3, where we display the
structure of the magnetic field lines for a small horizontal
magnet on top of a flat sample and on top of a curved one. In
the first case, an arbitrarily small horizontal disturbance in
the position of the magnet irreversibly leads to the magnet’s

fall over the edge. However, as seen in Fig. 3, the concave
structure of the superconductor produces a restoring force
that pulls the magnet back to its equilibrium position above
the center.

The vertical force for horizontal configurations is repul-
sive, which can be seen by using the image method limit and
considering the two poles of the magnet.

A. Minimum energy model

Arkadiev noted that levitation may be understood by the
repulsive force between the real magnet and the correspond-
ing magnetostatic image within the superconductor using the
method of images.11 Nevertheless, this method does not ex-
plain the aforementioned stability properties. The image is
only simple for the limiting case of a superconducting half-
space. Otherwise the problem becomes a nontrivial issue of
complex variables on the flat disk12 and may require much
effort in arbitrary geometries. In the following we develop a
theory including the fewest ingredients !see Sec. II" for
studying the stabilization process in a general context. Fig-
ures 2 and 3 have been obtained as two specific applications.

We have solved the integral statement !5" by a numerical
technique. Some modification of the model was helpful. For
our purposes, the approximation !"→0" may be used.9 We
minimize13

Fig. 2. Magnetic field lines around a horizontal magnetic dipole over a
superconducting tape, for three positions of the magnet. Induced currents
within the tape flow perpendicularly to the plot !outward within the small
segment below the magnet, and inward for the rest". To the right, we plot the
magnetostatic potential energy Um=−m·BS for small horizontal displace-
ments of the magnet around each position.

Fig. 3. Same as Fig. 2 for a superconducting tape with a concave section.
The potential has been calculated for several positions around the plane of
symmetry.
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!0

2 (R3
H2dV !15"

with !ÃH=J0 outside the superconductor, and !ÃH=JS
within. The first condition lets us include the magnetic
sources, but numerical integration over R3 is not straightfor-
ward.

We now use vector differential calculus to restrict the in-
finite domain. Equation !15" is equivalent to the minimiza-
tion of

!0

8,
( (

VS

JS!x" · JS!x!"
)x − x!)

dVdV! + (
VS

A0 · JSdV , !16"

where we have used JS for the current density within the
superconductor and A0 for the magnetic source vector poten-
tial.

If we can determine a priori !for example, by symmetry
considerations" the current density streamlines !the paths of
the charge carriers", a mutual inductance approach may be
used. Equation !16" reduces to the minimization of

1
2/

i,j
IiMijIj + /

i
IiA0i. !17"

Here the set of unknowns -Ii. stands for the current elements
flowing along appropriate circuits and Mij is the mutual in-
ductance matrix. The elements Mij are geometric coupling
coefficients between generic circuits Ci and Cj, which may
be calculated if we make the substitution JidV! Iidli. Then,
we obtain the Neumann formula

Mij =
!0

4,
0

Ci

0
Cj

dli · dl j

Rij
=

1
Ii
0

Cj

Ai · dl j , !18"

where Rij is the distance between points within the circuits Ci
and Cj, and Ai is the vector potential created by the circuit
Ci. Eventually, Eq. !17" becomes a series of linear equations
in many variables that may be solved with moderate compu-
tational effort.

B. Application

To obtain Figs. 2 and 3 we have considered the magnetic
field structure over a long flat/curved superconducting tape
when a parallel dipole line is placed above and horizontally
shifted. Recall that the dipole line vector potential is

A0 =
!0

2,

m Ã r
r2 , !19"

where m is the magnetic moment per unit length. The super-
conducting current density will flow along parallel infinite
straight lines given by

Mii =
!0

8,
, !20a"

Mij =
!0

2,
ln

a2

!xi − xj"2 + !yi − yj"2 , !20b"

where a is the radius of the wires, which are assumed to be
equal, and along the z axis. These expressions have been
obtained from Eq. !18" for parallel cylindrical wires and ap-
ply to the unit length.

IV. MAGNETIC LEVITATION WITH PINNED
SUPERCONDUCTORS

With the advent of high Tc superconductivity, a number of
exotic levitation configurations have been reported.14,15 To-
day such experiments are routinely reproduced with the
availability of good quality samples at liquid nitrogen tem-
peratures. As was immediately recognized, the key property
behind rigid !stable" levitation is the pinning of magnetic
flux lines, which occurs within type-II superconductors such
as high Tc superconductors.

A. Minimum action model

The stability issues in levitation experiments with type-II
superconductors will be discussed within the framework in-
troduced in Sec. II B. Thus, we have to solve the constrained
minimization statement in Eq. !14".

As was discussed in Sec. III A, minimization is better re-
alized when the problem is mapped onto the finite volume of
the superconductor and we minimize:

( (
VS

1Jn+1!x" · Jn+1!x!"
)x − x!)

− 2
Jn!x" · Jn+1!x!"

)x − x!) 2dVdV!

+
8,

!0
(

VS

!A0,n+1 − A0,n" · Jn+1dV , !21"

for Jn+1$Jc!VS and A0,n+1 given.
Again, minimization may be further discretized in spatial

variables, and we obtain the mutual inductance formulation
and minimization of

Fig. 4. A small magnet descends toward a cool superconductor, which re-
jects the magnetic field by means of critical currents with density ±Jc. In-
duced current lines are perpendicular to the plot. Inward/outward flow is
indicated by different shades for the right/left regions.
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1
2/

i,j
Ii,n+1MijIj,n+1 − /

i,j
Ii,nMijIj,n+1 + /

i
Ii,n+1!A0,n+1

− A0,n" !22"

for )Ii,n+1 ) $ Ic and A0,n+1 given.
This statement has to be solved as follows: we start from

the initial configuration -Ii,1. and iteratively find
-Ii,2. , -Ii,3. , . . . in terms of the desired excitation process
A0,1 ,A0,2 ,A0,3 , . . . . In the following section we present some
applications of statement !22" related to levitation configura-
tions using magnets and superconductors. The interested
reader is directed to Ref. 16 for the details on constrained
numerical minimization. In brief, an augmented Lagrangian
method, a generalization of the popular Lagrange multiplier
technique in differential calculus, is used. Recall that the
extrema of a function f!-xi." constrained by m relations of
the type - j!-xi."=0 are obtained by unconstrained minimiza-
tion of

F!-xi." = f!-xi." + /
j=1

m

" j- j!-xi." !23"

with the additional unknowns " j !Lagrange multipliers". Spe-
cialized numerical methods allow us to add inequality con-

straints !.k!-xi."*0,k=1, . . . , p, for instance" by minimizing
functions of the kind

G!-xi." = f!-xi." − /
k=1

p

"ksk log!sk − .k!-xi.""

+ /
j=1

m

" j- j!-xi." + !/
j=1

m

- j!-xi."2, !24"

where new auxiliary parameters sk and ! have been intro-
duced. Several numerical programs !both free16 and commer-
cial" are available, with excellent algorithms related to Eq.
!24".

B. Examples

Most of the properties that are typically displayed in dem-
onstrations with high Tc superconductors may be explained
within the theory we have discussed. For instance, it is pos-
sible to describe the difference between cooling the super-
conductor close to the magnet or at a long distance. We can
also predict the appearance of lateral restoring forces and
calculate what happens when arbitrary displacements of the
magnet occur around the superconductor.

Fig. 5. Standard method for levitating a magnet above a hard superconductor. The superconductor is cooled with the magnet close to the surface !bottom-left
picture", then the magnet is moved away and finally put back to its original position.
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Figure 4 displays the magnetic field configuration which
arises when a small magnet descends toward a cool super-
conductor. We consider a long superconducting bar !rectan-
gular cross section 2W/L" and a magnetic dipole line on
top. Notice that the magnetic field penetrates from the upper
side, being excluded in the lower part of the sample. Super-
conducting currents along the infinite length of the bar with
density J= ±Jc have been induced in the region penetrated by
the field. The combination of induced currents and the dipole
line produces the resultant magnetic field structure.

The repulsion between the magnet and the superconductor
follows directly from the picture and the elementary force
per unit volume JÃB. Orientation of J has to be done ac-
cording to Lenz’s law.

When the superconductor is cooled with the permanent
magnet close to the surface, a new physical picture arises.
The flux structure due to the magnet is frozen within the
sample. The condition JS=!ÃH=0 is fulfilled, and no
change occurs until the magnet is shifted. The reason for the
passivity of the superconductor corresponds to the condition
E=0 in Fig. 1. However, if we move the magnet !see Fig. 5",
an electric field arises !!ÃE=−!0"H /"t" and according to
the E!J" law, a critical current distribution appears.

In Fig. 5 we plot the simulation of a typical process of
stable magnetic levitation. The magnet is initially moved
away from the superconductor. Due to the Faraday-Lenz law,
a current distribution appears, which tries to preserve the
frozen flux lines. This current induces an attractive force due
to the paramagnetic flux line structure, which is observed
!the field is compressed toward the superconductor". How-
ever, if the movement of the magnet is reversed !rightmost
part of Fig. 5", the new induced currents flow in the opposite
direction to the previous structure because the sample is try-
ing to avoid field penetration. As a consequence, the interac-
tion force becomes repulsive and we can observe stable levi-
tation. Figure 6 shows the actual behavior of the levitation
force for a specific process. This force has been evaluated
from the relation

F = (
VS

!0!H0 Ã JS"dV , !25"

which combines the magnetic force on moving charges and
Newton’s third law. H0 is the contribution to the field com-
ing from the magnet.

We can show that the process illustrated in Fig. 5 leads to
a highly stable configuration. Figure 7 displays the current
density and flux line structure that appear when the levitating
magnet is laterally displaced. Again, the current density dis-
tribution preserves the flux line structure within the sample
to the highest degree possible. As a consequence, a deep
potential well in the magnetostatic energy Um arises. We em-
phasize that the restoring force remains even when the mag-
net is beyond the edge of the superconductor. However, a
noticeable change in the slope of Um is observed.

V. CONCLUDING REMARKS

The main property of type-I superconductors is flux expul-
sion !diamagnetism". This phenomenon leads to a vertical
repulsion force, which allows levitation. However, lateral
stability is poor. Thus, magnets have to be levitated over
bowl shaped superconductors. These facts follow from a
minimum magnetostatic energy model. Further refinements
such as the inclusion of finite penetration depth " are easy to
implement.

Fig. 6. Vertical force as a function of the normalized height for the small
magnet in Fig. 5. A positive sign corresponds to repulsion, and a negative
sign means attraction.

Fig. 7. Lateral displacement of the small magnet considered in Fig. 5. The
restoring property is illustrated by the magnetostatic potential energy. W
denotes the superconductor’s half width. Large squares are used to indicate
the corresponding positions of the magnet in the upper plots.
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The basic ingredients underlying the rich phenomenology
in levitation experiments with type-II superconductors are
Faraday’s law and a highly nonlinear E!J" relation. When
these properties are put in the form of a variational principle,
the features of field or zero field cooling, finite size effects,
and lateral stability are obtained directly. As in other physical
systems !such as air cushions and eddy currents" lateral sta-
bility with hard type-II superconductors is achieved by a
physical tendency to minimize the irreversible loss of energy.
What is unusual in the case of superconductors is that dissi-
pation occurs only during transitions between metastable
states with different magnetic flux structures. Thus, as long
as the levitating superconductor does not experience flux
variations, energy must not be supplied.

VI. SUGGESTED PROBLEMS

!1" Show that the condition #U /#B=0 in Eq. !5" leads to
B+"2!!Ã!ÃB"=0 within the superconductor. Hint:
take the formal derivative of the integrand in the sense of
a gradient. Derivatives with respect to B and !x ,y ,z"
may be interchanged. Integration may be extended to R3

by taking "→+ outside the superconductor.
!2" Check that the statement !9" leads to the correct dynami-

cal equations for an object falling in uniform gravity
against a viscous force when (ẋ) ẋ.

!3" Show that the time integration of Eq. !10", performed in
the sense of averages over the interval #0,(t$, leads to
the spatial variational principle in Eq. !11".

!4" Show that Eq. !15" may be transformed into Eq. !16" by
means of vector calculus manipulations. Hint: introduce
the magnetic vector potential and use the divergence
theorem.

!5" Obtain Eq. !20" and write a program for solving the ma-
trix problem in Eq. !17". Apply it to different shapes of a
superconductor.
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