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†Departamento de Fı́sica de la Materia Condensada & INMA
Universidad de Zaragoza - CSIC
SPAIN



OUTLINE

1. A quick tour through superconductivity

2. Superconducting material law (macroscopic)

3. Problem 1: demagnetisation

4. Problem 2: relaxation effects

5. Problem 3: magnetic levitation

Directions about using this document



Quick tour through SC



Quick tour through SC Superconducting material law Problem 1: demagnetisation Problem 2: relaxation effects Problem 3: MagLev

LOW FREQUENCY ELECTRODYNAMICS (MQS)

∇× B= µ0 J (Ampere′s law)

∇× E= − ∂B
∂t

(Faraday′s law)

∇ · B = 0 (solenoidality of B)

B≈ µ0 H (.material laws .)

RANGE OF APPLICATION OF THE BULK-MQS-MODELLING

Property Typical range YBaCuO
Temperature T < 0.8 Tc 77 K
Applied magnetic field Hc1 � H� Hc2 '1 T
Sample dimensions L > 100µm λ ' 100nm
Frequency ν < 1 KHz ←
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ENERGY STORAGE AND ENERGY LOSSES

• Energy stored

UM =
1

2µ0

∫

R3
B2dV

=
µ0

8π

∫

V

∫

V′

J(r) · J(r′)
‖r− r′‖ dVdV′

=
1
2

∑

ij

IiMijIj

• Energy .losses.

WLOSS =

∫ ∫
2P dV dt
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Quick tour through SC Superconducting material law Problem 1: demagnetisation Problem 2: relaxation effects Problem 3: MagLev

ESSENTIAL SUPERCONDUCTIVITY (LONDON EQUATIONS)

Perfect conductivity..

E =
∂

∂t
(
ΛL J
) Expulsion of magnetic flux..

∇× ΛL J = −B
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FROM CLASSICAL TO QUANTUM

• .Unified London equations.

J = −A/ΛL

vector potential

+ ∇χ/ΛL

gauge function

• .Ginzburg-Landau free energy.

FS = FN0(T)+ α|Ψ|2 +
β

2
|Ψ|4 + ξ2|α|

(
∇
√
|Ψ|
)2

superconducting condensation

+
µ0λ

2
L

2
J2

kinetics of carriers

+
B2

2µ0

Ψ = |Ψ|eiθ ; θ =
q
~
χ (.complex order parameter.)

α/β = −|Ψ∞|2
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FLUX VORTICES

• Magnetic flux is quantized

ΛL

∮

C
J · d`+

∫∫

S
B · ds =

~
2e

∮

C
∇θ · d` = nπ

~
e
≡ n Φ0

• In type-II materials, this gives way to the Flux Line Lattice..
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TYPE-II SUPERCONDUCTORS (EQUILIBRIUM)

Equilibrium phase diagram

MEQ =
〈B〉
µ0

−Ha
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TYPE-II SUPERCONDUCTORS (DISSIPATION/METASTABILITY)

• Transport currents imply vortex drift
fi = JT × Φ0 k̂

⇓

dFSN

dt
+

dFN

dt
+

dFEM

dt
= − W

irrev. losses

− divJE

W = σF e2

Joule

+ γ|(−i∂t − Φ)Ψ|2 ..

• Sustainable by flux pinning forces
fi + fP = 0
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MACROSCOPIC VIEW OF THE FLUX TRANSPORT PROBLEM

〈B〉 implies very different length scales

L ≈ 1mm , a ≈ 100 nm

J× B + P = 0

Pinning “withholding” forces

(B.D. Josephson)
8
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Discretized variational principle

Min
1

2

∑

i,j

ξi,n+1M
x
ij ξj,n+1 −

∑

i,j

ξi,nM
x
ij ξj,n+1

+
1

2

∑

i,j

ψi,n+1M
y
ij ψj,n+1 −

∑

i,j

ψi,nM
y
ij ψj,n+1

+ µ0

∑
i ξi,n+1(hx0,n+1 − hx0,n)

+ µ0

∑
i ψi,n+1(hy0,n+1 − hy0,n)

for (1− h2
x,i)ξ

2
i + (1− h2

y,i)ψ
2
i − 2hx,ihy,i ξiψi ≤ j2c⊥

and h2
x,i ξ

2
i + h2

y,i ψ
2
i + 2hx,ihy,i ξiψi ≤ j2c‖

Mx
ij =M y

ij ≡ 1 + 2 [min {i, j}]

Mx
ii =M y

ii ≡ 2

(
1

4
+ i− 1

)

Superconducting material law
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STATEMENT OF THE PROBLEM

• Maxwell equations

∇× B = µ0 J

∇× E = −∂B
∂t

∇ · B = 0

• Material law

E = E(J,B)

9
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SIMPLEST SOLUTION: BEAN’S MODEL (CSM)

• Infinite slab |x| ≤ w in parallel field (0, 0, µ0 Ha) ..

dB
dx

= ±µ0 Jc(B) or 0

MV =
〈B〉
µ0

− Ha

• Provides physical interpretation

• May be used to .characterise. the sample ∆MV = Jc w 10
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PROVIDING BACKGROUND FOR THE CSM

• A singular {E, J} law

? Bean′s limit : α→ π/2 ⇐⇒
{

ρ→ 0, J ≤ Jc

ρ→∞, J > Jc
11
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SIDE BENEFITS OF GENERALISING THE CSM PICTURE

• Flux penetration in long cylinder of square section with a hole ..
Ha ‖ k̂

an arbitrary shape of the restriction region !, even the direc-
tion of E is unknown along the surface and has to be calcu-
lated a posteriori. Generally speaking, E must be determined
by the specification of the locus e!p!0. In physical terms,
this locus is defined by two kinds of lines. First, we have e
!0 for the free boundary reached by the penetrating front
(Hn"1!Hn). In addition, e must vanish at the points where
the vector field e displays sharp bends. Macroscopically, this
follows from the continuity condition for the tangential com-
ponent of E "provided Ḃ is finite, as it should be in the
absence of flux cutting phenomena!#.

As soon as the critical profile Hn"1(x) has been ob-
tained, one may cast Eq. "10# in the form

$e!"Hn"1#Hn#e div p̂ #$s , "11#

with s the arclength measured along the streamlines of p̂ .
Notice that p̂ "flux penetration paths# may be obtained by
combination of Eqs. "3# and "6# in the form p̂(u). Thus, an
electric field map may be obtained just by integration with
starting points at the lines e!0.

In order to obtain an explicit analytical form of Eq. "11#,
one must select a given restriction for the current density. For
instance, within the isotropic model % !J!&Jc "i.e., ! is a
circle#' Eqs. "3# and "6# lead to gradHn"1!u! p̂ . Insofar as
in this case e!eJ/Jc , and as the current density streamlines
are straightforwardly determined by the critical state solu-
tion, one is just led to solve for the scalar field e(x), and one
equation suffices. We get

$e!"Hn"1#Hn#e(2Hn"1#$s , "12#

which is a quite simple expression in terms of the critical
state profiles. Other selections of !, however, lead to cum-
bersome expressions and are better treated just at the numeri-
cal level, keeping Eq. "11# as the basis. As an example, el-
liptic anisotropy is treated later in this work.

III. APPLICATION: ISOTROPIC CASES

In the following, we give the results of the previous
procedure for isotropic samples with cross sections in the
form of "i# a square with circular holes, "ii# a star with sharp
concave corners, and "iii# an ellipse. These examples have
been investigated numerically, by application of Eqs. "1# and
"12#. The actual numerical method relies on the finite ele-
ment discretization of our variational statement, which was
described elsewhere.10 Basically, Eq. "1# becomes a matrix
quadratic optimization problem, when the magnetic field is
expanded in terms of nodal mesh functions. This can be
solved by a number of computational mathematics
algorithms.12 In addition, comparison with simple analytical
criteria has been done when possible.

A. Square cross section with circular hole

Let us first consider an increasing external field applied
parallel along the axis of a squared section cylinder "edge
length 2a , and origin of coordinates at the center# with a
cylindrical hole %radius R and center (0,yc)]. As one can see
in Fig. 1, the initial fronts of penetration are parallel to the
edges, determining successive smaller and smaller squares,
x!$x0 , y!$y0 , and the usual sand pile profile. The in-

tersection of two perpendicular fronts produces a line of dis-
continuity for the current density x!$y , and a vanishing
electric field.4 Recall that field contours and current stream-
lines are the same thing for the long specimen geometry.

As soon as the flux fronts reach the hole y0!yc"R , it is
filled with a uniform value of the penetrating field. After-
wards, the straight fronts associated with the edges are ac-
companied by a circular front x2"(y#yc)2!r0

2 emanating
from the hole. The intersection of the planar fronts from the
edges and the circular one determine parabolic lines of dis-
continuity for the vector J, given by x2!4R(yc"R#y)
"vertical parabola# and (a#yc#R)2"(y#yc)2!2(a#yc
"R)(a#yc#R$x) "horizontal parabolae# as it is apparent
in Fig. 1.

The electric field can be obtained from Eq. "12#, by in-
tegration with starting point at the lines e!0, toward the
boundary. For illustration, Fig. 2 displays a number of flux
penetration streamlines obtained with our numerical method
for a given field step. In addition, a three-dimensional "3D#
plot of e is given, showing that one gets the expected behav-
ior near the edges "compare to Ref. 4# as well as a consider-
able increase around the hole. Notice that a nondisplayed
high flow of magnetic field is concentrated around the line
x!0, a)y)yc"R , which connects the hole with the near-
est edge, because it is the line by which the hole is being
refilled. Actually, for the ideal case of a perfect circular hole,
E diverges as E"$*/$t/$! and $!→0.

Some additional remarks, concerning the physics of flux
penetration in samples with holes, may be done by analyzing
the case of a lattice of circular holes. Figure 3 shows the
current density contours and associated e!0 line structure
for a 3%3 square lattice. It is apparent that, soon after the
vortices have reached the outer row of holes, a physical
boundary is established "continuous line in the figure# where
the flux velocity becomes zero. Subsequent penetration of

FIG. 1. Current density streamlines in the critical state for a square super-
conductor with a circular hole close to the upper edge. Four stages of the
initial magnetization process are depicted. The diagonal e!0 lines have
been marked in the upper left picture and dashed parabolic e!0 lines
around the hole for the complete set.
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Current density streamlines

flux toward the sample’s core only takes place across the
intersections of this boundary and the holes, which behave as
a set of point sources with interfering circular fronts. Further
flux motion barriers are established at the intersections be-
tween vortex trajectories emanating from the holes !straight
dashed lines in Fig. 3".

B. Tetracuspid shaped cross section

On taking the four points (!R ,!R), and drawing the
four quarter circumferences of radius R closest to the origin
we obtain a tetracuspid like region with sharp spikes !see
Fig. 4". Being it the cross section of a long superconducting
sample, we may consider the problem of an increasing ap-
plied magnetic field and determine the penetrating profile as
well as the generated transitient electric field inside the
sample. Figure 4 shows the penetrating magnetic field con-
tours, as well as the electric field corresponding to the tran-
sition from the displayed to the subsequent critical state.

The main property of this example is that e is a nonlinear
function of space and, as a consequence, the induced electric
charge density during the transition is not piecewise constant
as reported in Ref. 4 for the rectangular geometry. In fact, on
using a cylindrical coordinate system, with the origin at the
center of a circumference !f.i., ("R ,"R)) q may be analyti-
cally evaluated !just one quarter of the problem needs to be
considered by virtue of the symmetry"

q#! #0ḂR2 sin $/r2 cos3 $ , 0$$$$*
0, $*$$$%/2"$*

"#0ḂR2 cos $/r2 sin3 $ , %/2"$*$$$%/2
!13"

Above, the critical angle $* refers to the intersection be-
tween the penetrating free boundary and the current bending
discontinuity lines !see Fig. 4". In the full penetration re-
gime, we get $*#%/4 and a piecewise continuous behavior
for the induced charge density, with jumps from positive to
negative values at $*.

C. Elliptical cross section

The long superconductor with elliptical cross section
was already considered by Campbell and Evetts13 as a model
system for the critical state. It was illustrated that when the
flux front reaches the nearest center of curvature of any part
of the surface, further advance in that direction is halted,
with a resulting cusp in the subsequent field distribution.
Here, we show that our variational statement of the critical
state reproduces this behavior and allows an easy computa-
tion of penetration fronts, which have a by no means trivial
analytical evaluation, unless some approximation is used. In
this sense, we should mention that, based on the assumption
that flux penetration has the shape of an ellipse, a very accu-
rate analytical solution was proposed.14 Additionally, we can

FIG. 2. Flux penetration streamlines !left half" and induced electric field
modulus !right half" in the magnetization process of a square supercon-
ductor with a circular hole close to one edge. Parabolic and diagonal e#0
lines have been marked.

FIG. 3. Current density streamlines in the critical state of a square super-
conductor with a !3%3" square lattice of holes. The e#0 structure has been
emphasized by dark lines. Continuous style is used for the flux penetration
barrier and dashed for connections with inner boundaries.

FIG. 4. Upper left: Current density streamlines in the critical state for a
superconductor with tetracuspid like cross section; right: induced electric
field modulus contours for increasing magnetic field. Lower left: flux pen-
etration streamlines; right: three-dimensional !3D" plot of the induced elec-
tric field modulus, obtained by integration along the streamlines. Only one
quarter is depicted for clarity.
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Flux paths and .induced. electric field

© AIP 2004- Electric field in Superconductors of arbitrary cross section (A. Badı́a-Majós & C. López)
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SIDE BENEFITS OF GENERALISING THE CSM PICTURE

• Flux penetration in long cylinder of rectangular cross section
Ha ⊥ k̂

 ∗d∗F = J
d F = 0

Electromagnetic scenario

Mathematical background

HTS Numerical modelling

Title

JJ II
J I

Page 17 of 18

Back

Full Screen

Close

Quit

Home Page

Example 3: the flux shaking experiment

Balance of Energy

�
I

(E ⇥ H) · ds =
@

@t

Z
µ0H

2

2
dv +

Z
E · Jdv

Flux paths and density of generated heat

WLOSS =

∫ ∫
E · J dV dt
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SHORTCOMINGS OF BEAN’S MODEL

• New physical phenomena (rotation experiments .., crossed fields )

• Finite resistivity (time relaxation)

• Finite size effects, non-uniform fields

Motivation

Contents

• Variational statement

• Results: DCSM

• Conclusions
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1. Motivation (beyond 1D Bean’s model)

1.1. Experimental scenario 70’s . . . 90’s: rotation
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Figure 8.9: Time relaxation of the current density penetration profile within the
superconducting slab after applying a transport current step. Only the upper half is
depicted (zi � 0). The insets show the electric fields evaluated by means of Eq.(8.35)
at two points: zk within the sample and zn at the very surface.

Application and analysis

We call the readers’ attention that, differently to the previous cases in this
chapter, the above minimisation principle (8.41) does not restrict the admissi-
ble values of the individual unknowns, i.e.: the condition |i  1 has been re-
leased. Physically, we are relaxing the limiting (though frequently appropriate)
condition of infinite dissipation beyond Jc. This opens the possibility of de-
scribing new phenomena. In particular, having included the variable �t in the
formulation, we have the chance to investigate time relaxation effects. Fig.8.9
shows an example of how one can apply the principle (8.41) for investigating
the evolution of the transport current penetrating within the superconducting
slab (Fig.8.2) with an E(J) law given by Eq.(8.35). The simulation proceeds
as follows. One sets a “final” value of the transport current (K) and iteratively
obtains the current density profiles (values of |i) by successive minimization

© AIP 1980- ... rotating disks of type-II superconductors (Boyer, Fillion & LeBlanc)
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GENERALISING BEAN’S MODEL (I)

• The evolutionary statement

Minimize C ≡ 1
2µ0

∫

IR3
‖Bn+1 − Bn‖2 + ∆t

∫

Ω

P[J]

m

C[Jn+1] =

∫

V
d 3r
∫

V
d 3r ′

[
Jn+1(r) · Jn+1 (r ′)
‖r− r ′‖ − 2

Jn(r) · Jn+1 (r ′)
‖r− r ′‖

]

self-interaction

+
8π
µ0

∫

V
d 3r (Ae,n+1 −Ae,n) · Jn+1

interaction with EM sources

+
4π∆t
µ0

∫

V
d 3rP(J‖,n+1, J⊥,n+1)

interaction with thermal modes
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GENERALISING BEAN’S MODEL (II)

• Re-interpretation of Ohm’s law ..

Minimize C

⇓

µ0

Bn+1 − Bn

∆t
= −ρ∇×∇× Bn+1 = ρ∇2Bn+1

l

µ0

∂B
∂t

= ρ∇2B

Diffusion equation in normal conductors

16
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GENERALISING BEAN’S MODEL (III)

Min

{
C[Bn+1] ≡ 1

2µ0

∫
IR3
‖Bn+1 − Bn‖2

Inertial term: Faraday’s

+ ∆t
∫

Ω
P[J]

Thermal loss

}

...
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GENERALISING BEAN’S MODEL (IV)

∇× B = ∇B× B̂︸ ︷︷ ︸
J⊥

+ B∇× B̂︸ ︷︷ ︸
J‖, J⊥

18
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THE EXPERIMENTAL DISSIPATION FUNCTION (YBCO)

• A smart experiment. (Wz �Wy ⇒ θ is well defined !)

I tr

y

z

H  0

wz

wy

• Experimental data by courtesy of A. M. Campbell
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SUPERCONDUCTING MATERIAL LAW: APPLICATION

• Circuital interpretation (FEM)

C ≡ CJJ+CJ0+CJS+∆tWJE =
[1

2
〈J|m |J〉−〈J∨|m |J〉+〈∆ψS|J〉+∆tWJE

]

CJJ: self energy of the evolutionary circulating currents

CJ0: interaction energy of the evolutionary currents with a “frozen” distribution

CJS: interaction energy of the evolutionary currents with the magnetic source

∆tWJE: energy related to the entropy production due to dissipative mechanisms

⇢i zi

20



Problem 1: demagnetisation
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DEMAG IN MEISSNER STATE (I)

• Ideal susceptibility (χideal)

Bfull = µ0 Hak̂ + µ0 Kk̂ = 0 =⇒ K = −Ha

⇓

MV =
m

vol
=

K · L · A
A · L = K = −Ha

l

χideal =
MV

Ha
= −1

21
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DEMAG IN MEISSNER STATE (II)

• Demagnetising factor (ellipsoids in parallel field, ζ ≡ c/a)

MV = χideal(Ha + Hd) = χideal(Ha − N MV )

⇓

χ =
MV

Ha
=

χideal

1 + Nχideal
=
−1

1− N

0 0.1 0.2
-2

-1.5

-1

-0.5

22
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DEMAG IN MEISSNER STATE (III)

• Cylindrical symmetry

min U =
1
2
〈K|m |K〉+ 〈ψAppl|K〉 ⇒ |K〉 = m−1 |ψAppl〉

23
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CRITICAL STATE OF FINITE SAMPLES (I)

• Ellipsoidal symmetry

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

ζ = 10, 2, 5, 0, 5, 0, 1 ; Hp = Jc a ; M∗ =
3πJca

32
..
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CRITICAL STATE OF FINITE SAMPLES (II)

• Cylindrical symmetry

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

ζ = 10, 2, 5, 0, 5, 0, 1 ; Hp = Jc R ; Mp =
JcR
3
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CRITICAL STATE IN EXTREME GEOMETRIES

• Cylindrical symmetry

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

.Bean. .. .Mikheenko. ..
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THE INTERNAL MAGNETIC FIELD: Jc(B) VS Jc(µ0Ha)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

.The thinner the sample the better ∆MV (B) ≈ ∆MV (µ0 Ha)
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FLAT SAMPLES: FORWARD CSM PROBLEM (I)

• The stream function method (σ) ..

-6 -4 -2 0 2 4 6
-0.2

-0.1

0

0.1

0.2

K(x, y) =

∫ d/2

−d/2
J (x, y, z)dz ≡ −ẑ×∇σ

...
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FLAT SAMPLES: FORWARD CSM PROBLEM (II)

• Current density streamlines

29
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FLAT SAMPLES: FORWARD CSM PROBLEM (III)

• On-surface flux pattern: Bz(x, y) ..

30
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FLAT SAMPLES: INVERSE CSM PROBLEM

• Reconstruction of the current density profile (magneto-optics)

|Bsc
z 〉 = Z |K〉 ??

==⇒ |K〉 = R |Bsc
z 〉
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1
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0
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separation of complete and incomplete relaxations when the
value of hx,a approaches 1 in units of Hp. On the other side,
recall that the steplike behavior in our plot would be smeared
out over a time scale comparable to the one used by the
authors in Ref. 1. In fact, if one takes the time unit as t0
!!acw /2d, the approximation for very thin samples used by
Brandt and Mikitik leads to t0"!ac /2, while in our case
"w=d# we have t0=!ac /2.

B. Influence of the dc field amplitude „hy,a…
Next, we analyze the relevance of the initial hy ramp on

the subsequent complete or incomplete relaxation of my dur-
ing the hx cycles. The main results for this study are plotted
in Fig. 8. There, we show the evolution of my for the oscil-
lation amplitudes hx,a=0.2,0.4,0.8,1.6 and three different
values of the dc field reached in the initial stage of the pro-
cess: hy,a=0.2,0.4,0.8. We emphasize two aspects: "i# On the
one side, the higher hy,a, the lower value of the relaxed com-
ponent my,# when relaxation is incomplete. However, the
separation between the values of my,# first increases, and

then decreases, going to zero when the complete relaxation is
reached. "ii# On the other side, crossings between the values
of the normalized magnetization are observed during the ini-
tial transient evolution. The importance of these crossings
increases as the value of hy,a does.

V. EXTENSIONS OF THE THEORY

As an advantage of the mathematical modeling proposed
in this work, one can deal with fully arbitrary 2D problems,
including nonuniform magnetic fields and nonhomogeneous
properties in the cross section of the sample. The $A! ,J!% for-
mulation stated in Eqs. "1# and "2# allows us to introduce
irregular cross sections just by defining the positions of the
appropriate elementary wires, and calculating the corre-
sponding Mij matrix.

In this section, we show the modifications introduced by a
nonhomogeneous current carrying capacity. First, we calcu-
late the evolution of the magnetic field profiles for a sample
with a central hole, when subjected to the process in Fig. 1.
Second, we consider the influence of having a central region
with Jc noticeably above the corresponding value at the pe-
riphery of the sample.

A. Samples with holes

A sample with a hole is straightforwardly treated within
the formulation in Eq. "2#, just by skipping the variables
related to the elementary wires within the empty region. Re-
sults are shown in Fig. 9. This plot has been obtained for the
values of the applied field hx,a=hy,a=0.4. Several stages at
the first ac cycle are shown, which already suggest the for-
mation of a stationary regime, as in the case of Fig. 4. Nev-
ertheless, in the present situation, the transverse field shaking
process cannot induce penetration of current within the
empty region. On the other side, the magnetic field lines
progressively enter. Then, as a topological effect, the current-
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1
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FIG. 7. "Color online# Evolu-
tion of the magnetic moment com-
ponents for several excitation pro-
cesses in the form sketched in Fig.
1. mx and my are obtained through
Eq. "5# and normalized to the val-
ues of my at the beginning of the
ac cycle. Time "t# is given in units
of t0!!acw /2d. hx is given in
units of the penetration field Hp.
The different lines "some are la-
beled for clarity# correspond to
hx,a=0.1,0.2,0.4,0.8,1.2,1.6. All
have been obtained for hy,a=0.4.
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FIG. 8. "Color online# Time dependence of the normalized mag-
netic moment my at various amplitudes of the ac magnetic field
hx,a=0.2,0.4,0.8,1.6. For each value of hx,a, we compare the decay
of my at three values of hy,a: hy,a=0.2 "continuous line#, hy,a=0.4
"dashed line#, and hy,a=0.8 "dot-dashed line#.
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SIMPLIFIED TRANSPORT PROBLEM

• Statement: J along y−axis of a plate

|x| <∞
|y| <∞
|z| < d

⊗
x

z⊗ ⊗

⊗

zi

⊙

Transport Shielding

K =

∫ d

−d
Jy(z) dz ⇒ Kc = 2Jc d
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CRITICAL STATE FORMULATION (QUASI-STATIC)

• Bean model (instantaneous response)

minimise
[1

2
〈J|m |J〉 − 〈J∨|m |J〉+ 〈∆ψS|J〉+ ∆tWJE

]

↓




minimise
[1

2
〈J|m |J〉 − 〈J∨|m |J〉

]

for |i| ≤ 1

and
n∑

i=1

i =
K

2Jcd
n
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CRITICAL STATE FORMULATION (QUASI-STATIC)

• Current and flux density penetration profiles (AC cycle)
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RELAXATION IN FLUX-FLOW REGIME (I)

• Piece-wise linear approximation

P(J) =





ρf(J + Jc)
2/2 , J < −Jc

0 , −Jc ≤ J ≤ Jc

ρf(J − Jc)
2/2 , Jc < J

⇓





minimise
[1

2
〈J|m |J〉 − 〈J∨|m |J〉+ 〈J|P |J〉 ∓ 2 〈1|P |J〉

]

for
n∑

i=1

i =
K

2Jc d
n
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RELAXATION IN FLUX-FLOW REGIME (II)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0 1 2
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0 1 2
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0.4

0.6

0.8

Time-scale to establish the Critical State: τ =
µ0 d2

ρf
36



 

 

Quick tour through SC Superconducting material law Problem 1: demagnetisation Problem 2: relaxation effects Problem 3: MagLev

RELAXATION IN FLUX-CREEP REGIME

• Power-law approximation .. ..
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1

1

E(J) = ρ(J)J , ρ ≡ ρ0

(
J
Jc

)2M−2
⇒ P =

ρ0 J2
c

2M

(
J
Jc

)2M
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RELAXATION? IN THE CRITICAL STATE (FLUX SHAKING) ..
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SIDEWINDING DRIFT OF VORTICES

• Flux lines are not only pictures ( B. D. Josephson)

−w 0

−0.1 d

0

0.1 d

1 2 3 

3 4 5 6 
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..............................
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Levitation in Meissner state (I)

• Historical note

© 1947 Nature Publishing Group

..............................
40
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LEVITATION IN MEISSNER STATE (II)

• Analytical approximation (method of images)

a� RS ; RM � RS ; RM ≈ a allowed

F(a) = 2µ0 M2
0
RM

[
2a2

K(p2)− E(p2)

p2

−a1
K(p1)− E(p1)

p1
− a3

K(p3)− E(p3)

p3

]
..............................
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LEVITATION IN MEISSNER STATE (III)

• The issue of diamagnetic mechanical stability

42
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LEVITATION IN CRITICAL STATE (I)

• Self-stabilised structures

Pinned flux lines pin the magnet.

Lateral restoring (guidance) force:

Fαj

µ0 M0 JcW2
=

j

2π

(xj − xα, 0, zj − zα)

(xj − xα)2 + (zj − zα)2
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LEVITATION IN CRITICAL STATE (II)

• Analytical approximation (the .frozen image. method) for dipoles

Magnetic levitation for hard superconductors
Alexander A. Kordyuka)
Institute of Metal Physics, 252680 Kiev 142, Ukraine

~Received 12 June 1997; accepted for publication 23 September 1997!

An approach for calculating the interaction between a hard superconductor and a permanent magnet
in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole
over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide
practical range of melt-textured high-temperature superconductors’ systems with magnetic
levitation. In this case, the energy losses can be calculated from the alternating magnetic field
distribution on the superconducting sample surface. © 1998 American Institute of Physics.
@S0021-8979~98!01501-1#

The study of systems with levitation has provoked par-
ticular interest before1 and after2–4 the discovering of high
temperature superconductors ~HTS! and especially today
when melt-textured HTS technology is actively developed.5,6

Earlier7 we described the elastic properties of the point
magnetic dipole over a granular HTS sample. We showed
that in such a system the granular HTS at 77 K may be
considered as a set of small isolated superconducting grains
in calculating elastic properties7 and energy losses.8 We ob-
tained the information about granular structure and intragrain
magnetic flux motion from the investigation of the resonance
frequencies7 and damping coefficients9 for different modes
of the permanent magnet ~PM! forced oscillations.

The melt-textured large grain HTS samples that are ac-
tively studied now are very different from granular ones in
levitation properties. First, they have very strong pinning re-
sulting in the absence of the effect of the PM rise above HTS
sample at its cooling. Second, the small isolated grains ap-
proximation does not work for large grains.

In this article, the absolutely hard superconductor ap-
proach is used. The sense of this approach is to use the
surface shielding currents to calculate the magnetic field dis-
tribution outside the superconductor and to obtain from it the
elastic properties of the PM-HTS system. The magnetic field
inside such an ideal superconductor B~r! does not change
with PM displacements. The feasibility of this approximation
is determined by the condition d!L , where d is the field
penetration depth and L is the character system dimension
~first the distance between PM and HTS!. With such an ap-
proximation, this problem has an exact analytical solution for
the case of a magnetic dipole over a flat superconductor in
the field cooled ~FC! case.

To describe the FC behavior of the PM, the advanced
mirror image method was applied. The method is illustrated
by Fig. 1. Its distinction from the usual one, which is applied
to the type-I superconductors, is in the using of the frozen
PM image that creates the same magnetic field distribution
outside the HTS as the frozen magnetic flux does. From the
uniqueness theorem, the magnetic field distribution in an
area with no induced currents is uniquely determined by the
normal field component on its boundary. In other words, the
distribution of this component determines the PM-HTS inter-

action, and in turn is determined by the PM initial position
~FC position!. For the PM with initial position r0
5(x0 ,y0 ,z0) and magnetic moment m0 ~see Fig. 1! that gen-
erates the magnetic field H(r2r0 ,m0), the normal magnetic
field component on HTS surface r5(x ,y ,0) is equal to the
same component of its reverse image with r0*5(x0 ,y0 ,
2z0) and m0* ~the operation * maps any vector symmetri-
cally about r surface!

Hz~r2r0 ,m0!5Hz~r2r0* ,2m0*!. ~1!

It is required that Hz(r) should be unchanged at any PM
displacements dr5r12r0 ~m0!m1 , Fig. 1! from initial po-
sition. To do this, the presence of another image with m1* is
required. This image moves with PM to r1* position @Hz(r
2r1 ,m1)1Hz(r2r1* ,m1*)50# . Thus, the interaction be-
tween the PM and shielding current can be described by the
interaction of the PM with net field of two images

Him~r!5H~r2r0* ,2m0*!1H~r2r1* ,m1*!, ~2!

and for the field outside and inside the superconductor we
can write:

B~r!5H~r2r0 ,m0!1Him~r!, ~for z.0 ! ~3!

B~r!5H~r2r0 ,m0! ~for z,0 !. ~4!

a!Electronic mail: kord@imp.kiev.ua FIG. 1. The advanced mirror image method illustration.

610 J. Appl. Phys. 83 (1), 1 January 1998 0021-8979/98/83(1)/610/3/$15.00 © 1998 American Institute of Physics

Downloaded 15 Mar 2013 to 128.148.252.35. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

Bimages = Bfrozen + Bactive

By using F = (m∇)Bimages :

F =
3µ0 m2

2π

[
1

16a4 −
1

(a + a0)
4

]
k̂

© AIP 1980 Magnetic levitation for hard superconductors (A. A. Kordyuk)
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LEVITATION IN CRITICAL STATE (III)

• Numerical solution. Hysteresis .......
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MACROSCOPIC VIEW OF THE FLUX TRANSPORT PROBLEM

hBi implies very different length scales

L ⇡ 1mm , a ⇡ 100 nm

J⇥ B + P = 0

Pinning “withholding” forces

(B.D. Josephson)
8
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PROVIDING BACKGROUND FOR THE CSM

• A singular {E, J} law

? Bean0s limit : ↵ ! ⇡/2 ()
(

⇢ ! 0, J  Jc

⇢ ! 1, J > Jc
11
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