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ABSTRACT 

     The paper is dedicated to deriving a gaussian procedure to test for cointegration. We 

consider four alternative specifications, depending on the form adopted by the deterministic 

terms. We then define the test statistic and derive its asymptotic behaviour under both the 

null and the alternative hypotheses. We show that, under the null hypothesis, the test 

procedure follows a Standard-Normal distribution. The Monte Carlo results confirm that 

the performance of the proposed test procedures is quite satisfactory. 

      

  

 

 Classification Code: C12, C15, C22 

      Keywords: integrated process; cointegration; Gaussian procedures; Monte Carlo 

experiments 

 3



 

 

1.- INTRODUCTION 

Following Ericson and MacKinnon (2002), we can distinguish three general approaches for 

testing whether or not non-stationary economic time series are cointegrated: single-equation 

static regressions (Engle and Granger (1987)); vector autorregressions (Johansen (1988, 

1995)); and single-equation conditional error correction models (Sargan (1964), Davidson et 

al. (1978) and Harbo et al. (1998)). 

Most of these procedures adopt a testing framework in which a null hypothesis of less 

cointegration, that is a simple hypothesis, is tested against the alternative composite 

hypothesis of more cointegration. The result is that, under the null hypothesis, the testing 

procedure follows a non-standard probability distribution that requires ad-hoc procedures to 

determine the limits of the critical region. The paper by Ericson and MacKinnon (2002) is 

again the reference for more details on this point. 

 Against this background, the aim of this paper is to develop a procedure for testing 

cointegration which, under the null hypothesis, follows a Standard Normal distribution, so 

that the usual critical points can be used to formulate the critical region of the test. We 

propose to test a composite null hypothesis of more cointegration, against a simple 

alternative hypothesis of  less cointegration. 

 The rest of the paper is organized as follows. In Section 2 we introduce the models 

and some preliminaries used in the subsequent sections. The testing procedures and their 

asymptotic properties for the different models are described in Section 3. The Monte-Carlo 

results are presented and commented on in Section 4. Finally, Section 5 closes the paper with 
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a review of the main conclusions. The proofs of the results formulated in Section 3 are given 

in the Appendix. 

 

2.- MODELS AND SOME PRELIMINARIES 

     Let  be an n-dimensional vector of time series variables and let us partition it as: ty

( )t2t1t yyy ′=′ , where has 1 element and t1y ty2′ has the remaining n-1 elements. Assume 

that the Data Generating Process (DGP) for ty′  is the following: 

ttt uyty 12101 +′++= βδδ      (1) 

t21t2t2 uyy += −       (2) 

where 0δ  and 1δ  are parameters and β ′  is an (n-1) vector of cointegration parameters; 

further, we assume that: 

t
*
2tu)L(A εδ +=       (3) 

where  ) , with ),0( 2
*
2 δδ ′= ,( 21 ttt uuu ′=′ tu2′  having (n-1) elements, and with L denoting the 

lag operator, such that , with 1−=′ tt zzL ∑= i
i LALA )( nIA =0 and               
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We additionally assume that the roots of 0=)(LA  are outside the unit circle. A final 

assumption is that are identically and independently distributed sequences of n 

dimension gaussian vectors with mean zero and covariance matrix: 
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where 2010 σσ ′=  is the (n-1) vector of covariances of u1t with the elements of u2t. 
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 Rewrite (1) and (2) as: 

t
*
1

*
0t uty)L(H ++= δδ      (5) 

where  and: )(),( n
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After premultiplying (5) by A(L) and using (3), we obtain: 

tt tLAAyLJ εδδδ +++= *
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If we premultiply (6) by , we obtain: 1
0
−J

t1t
**

t vy)L(ty +++= −Φλδ     (9) 
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where: 

( )220
1

0 1 hAJ ++= − *** )( δδδ     (10) 

1
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with  and . The error correction form (ECM) of the model can be 

written as: 

ii JJ 1
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and and where δ and λ are adjusted so that (9) follows from (8). In particular, we 

have: 

∑Φ=Γ ji

0αδδδ += *       (15) 

1αδλλ += *       (16) 

 Using this framework, we are going to distinguish four different testing cases with the 

term in the parenthesis being the notation used by Johansen (1995, Chapter 5) to denote 

them. 
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CASE 1: 0210 === δδδ . Variables around a constant mean; no constant and no linear 

trend in the cointegration relation (H2(r)). 

 In this case, the model is that written in (12), with: 

00 == λδ ,  and   tt yy =+

CASE 2: 00 210 ==≠ δδδ ; . Variables around a constant mean; a non-zero constant and 

no linear trend in the cointegration relation (H1
*(r)). 

)y,y(y

)(AJ
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CASE 3: 000 210 ≠=≠ δδδ ,; . Variables around a cointegrated linear trend; a non-zero 

constant and no linear trend in the cointegration relation (H1(r)).  

In this case, 

)y,y(y

))(A(J
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201
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=
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+

−
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CASE 4: 0,0;0 210 ≠≠≠ δδδ . Variables around a non-cointegrated linear trend; a non-

zero constant and a linear trend in the cointegration relation (H*(r)). 

 In this case, the model is the general model derived previously with  as defined in 

(12) and δ and λ as defined in (15) and (16), respectively. 

+
ty

 

 3.- TESTING PROCEDURES 

 In this section, we propose testing procedures for each of the four cases contemplated 

in the previous Section 2. The proof of the asymptotic properties of the proposed tests-
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statistics will be derived in the first case and then extended, without proof, to the other three 

cases. 

 CASE 1: 0210 === δδδ  

 Using the restrictions corresponding to this case, we rewrite (1) and the first relation 

of (12), respectively, as: 

t1t2t1 uyy +′= β       (17) 

∑∑
=

−

=
−− ++=

n

1i

1p

1j
t1jitij11t1t1 vyuy ∆γα∆    (18) 

 Let M1 and M2 be two models defined by the following sets of regressors: 

{ }
{ }jit

jitt

y:M

p,...,,j,n,...,iy,u:M

−

−−

∆

−==∆

2

111 1211
 

Note that under the null hypothesis, u1t-1 is an I(0) process while, under the alternative,  

u1t-1 is an I(1) process. Thus, when we compare M1 and M2 , the first model has an I(0) 

variable as the first regressor when the data are generated by the null hypothesis while M1  

has an I(1) process as the first regressor when the data are generated by the alternative 

hypothesis.  

In this paper, we develop a procedure to compare M1 to M2 such that the first regressor of 

M1 is always an I(0) process no matter which hypothesis generates the data. To that end, the 

first regressor of  M1 is defined as a sum of two terms in such a way that when the data are 

generated by the null hypothesis the first regressor is dominated by the first term while when 

the data are generated by the alternative hypothesis, this first regressor is dominated by the 

second term. 
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Let  be the vector of OLS residuals from the estimation of (17). Then, we estimate (18) 

after substituting by . Let  be the vector of OLS residuals from this model. 

Finally, consider the following model: 

1û

1t1u − 1t1û − 1v̂

∑
−

=
−− ++=

1p

1j

*
tjt1j1t1t1 ûûû ε∆λφ∆     (19) 

 Let φ̂ be the OLS estimation of φ in (19). Assume that we define )ˆ(gˆ * φφ = , in such a 

way that when the data  are generated by the model under the null hypothesis, )ˆ(g φ behaves 

asymptotically as T , while when the data are generated by the model under the alternative 

hypothesis, )ˆ(g φ  converges to zero. This can be achieved because, as it is well known, 

under the null hypothesis, φ̂  converges to φ  at a rate equal to T , while under the 

alternative hypothesis, φ̂  converges to zero at a rate equal to T . After carrying out different 

simulation exercises, by using models similar to those employed in the Monte Carlo study 

presented in Section 4, we find that for sample sizes habitual in applied work –say T = 100 or 

T = 200- the estimates of φ̂  obtained are always negative and smaller than one in absolute 

value. Further, we find that, under the null hypothesis, the first decimal digit is different from 

zero while, under the alternative,  most of the estimates are smaller than 0.05, in absolute 

value. Of course, there is a border-line area for values of the composite null hypothesis close 

to the value under the alternative hypothesis, for which this rule is not so clear. However this 

is always the case when one is testing a null hypothesis that is composite, against an 

alternative hypothesis that is simple. 

On the basis of these results, we propose the following expression for g( • ): b2* )ˆc(ˆ φφ = , 

where, for c, we recommend a value around 20 and b is defined as: 
2)ˆc

log(
log(2

)T
φ

=b  where | | 
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denotes absolute value. For these values of b and c, given the values taken by φ̂  it is clear 

that, under the null hypothesis, we obtain 1ˆc >φ , while under the alternative hypothesis, we 

have that 1ˆc <φ . Hence, defining *φ̂  as b2)ˆc( φ , *φ̂  satisfies the limiting behaviour 

assumed for g( ). •

Consider the two following sets of regressors: 

)y,...,y,y,...,y,uûˆ(x 1pt21t21pt11t1
*
t11t1

*
t +−−+−−− ′′+=′ ∆∆∆∆φ      (20) 

)ˆ( **
ttt yuz 1∆+= φ      (21) 

where  and  are artificial generated variables with mean zero and variance . Note 

that x

*
tu *

t1u 2*σ

t has n(p-1)+1 elements and that z t has only one. It can be seen that under the null 

hypothesis, the first regressor of (20) behaves asymptotically as the first term of the sum, 

whilst when the data are generated by the alternative, the first regressor behaves 

asymptotically following the pattern of the second term. The same can be said about the 

regressor written in (21). 

If the null hypothesis holds, then note that when we project t1y∆  on the first set of 

regressors written in (20), the projection is on the same space spanned by the regressors 

under that hypothesis. On the other hand, when we project this increase on the second set of 

regressors in (21), if the data are generated by the null hypothesis, we are projecting this 

increase on a process without any structure, whilst if the data are generated by the alternative 

hypothesis we are projecting t1y∆  on itself. 

Let  be the same vector defined in (20) after dividing the first term of it by +
1x T . 

t1t1tt1 v)1(z)1(xy λλλδ∆ −++−= +    (22) 

 11



where 1δ  is the vector of the parameters of the model in (18). Notice that, under the 

alternative hypothesis, for λ = 0 , this model asymptotically becomes the model written in 

(18). The Ordinary Least Square estimator of  λ can be written as: 

( ) 1
1 yMzzMzˆ

XX ∆′′= −λ     (23) 

where z is the 1×T  vector of observations of the variable defined in (21), 

 with X being the T X)XX(XIM X ′′−= −1 ×  [n(p-1)+1] matrix of observations of the  n(p-

1)+1 elements of the vector defined in (20) and 1y∆  is the 1×T  vector of observations of 

t1y∆ . In the following theorem we derive the asymptotic properties of this estimator. 

 THEOREM 1: Assume that the DGP is given by (1) and (2) with 

0210 === δδδ and that the disturbances follow the same stochastic properties commented 

on in the previous section. Then: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎯→⎯ 2*

2

2*

11

d ,T
v'vlimp

NˆT
σ
σ

σ
λ                                           (24) 

PROOF: See the Appendix. 

 

Thus, we propose the following statistic to test for cointegration: 

 21
111

/
X

X*

)zMz(s
v̂v̂yMzJ

′
′−∆′

=      (25) 

where s2 is the OLS estimated residual variance of the regression of t1y∆ on  and in 

(22). 

+
tx tz

 The asymptotic properties of this statistic under both hypotheses are as follows: 

 THEOREM 2: under the null hypothesis that there is one cointegration relation, we 

have: 
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)1,0(NJ d* ⎯→⎯  

Proof: See the Appendix 

THEOREM 3: Under he alternative hypothesis that there is no cointegration relation, it 

holds that: 

∞⎯→⎯*J  

Proof: See the Appendix 

CASE 2: 00 210 ==≠ δδδ ; . 

Here, we follow using the same testing procedure, but adopting it to the new 

restrictions. In particular, a constant is included in (17) and (18), while in (18) and (19) we 

use ( ) +
−′− 11 tŷβ̂  instead of . This same change is introduced in (20), where we define x11 −tû t. 

Taking into account these modifications, we redefine the J-test written in (25) and the null 

hypothesis is rejected when the value of this statistic is over the critical point corresponding 

to a Standard Normal distribution once the nominal size is chosen. 

 CASE 3: 000 210 ≠=≠ δδδ ,; . 

 Since, in this case, the linear trends of the two variables are cointegrated, the testing 

procedure is the same as that commented on for Case 2. 

 CASE 4: 0,0;0 210 ≠≠≠ δδδ . 

 The modifications to be introduced in this case are as follows: a constant and a linear 

trend should be included in (17) and (18), while in (18) and (19) we use (13) to define u1t-1. 

Introducing these changes in (25), the new J-test is obtained and the corresponding critical 

region is derived from the Standard Normal distribution. 
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By using the triangular form of the  system of Phillips (1991) and Phillips and 

Loretan (1991), the extension of the testing procedure just commented to situations whith 

more than one cointegration relation is straightforward. 

 

4. MONTE CARLO STUDY 

     This section is dedicated to presenting the results from a Monte Carlo simulation study. 

Considering a model with two variables, we analyze the behaviour of the test proposed in this 

paper  for the four cases introduced in the previous sections. 

     Two broad approaches have been followed in the literature in order to evaluate the 

performance of different cointegration testing procedures using Monte Carlo analysis. The 

first, based on a transformation of the model into a “canonical form”, can be seen, for 

example, in Toda (1994,1995) and in Hubrich et al. (2001); the second, with a DGP close to 

what can be regarded as a “structural form”, has been used in Haug (1996), who follows the 

same framework used in Gonzalo (1994), among others. In this section, we assume a model 

close to this second approach. 

     In the study, we test for the null hypothesis that the rank of the cointegration space is one, 

as against the alternative hypothesis that the rank is zero, i. e., H0: r = 1 against H1: r = 0. 

We assume that the data are generated by the following model: 

 

t1t210t1 uyty +++= βδδ      (26) 

t2t2 uy =∆       (27) 

with 

t12t1121t111t1 uuu ερρ ++= −−      (28) 

t21t222t2 uu ερδ ++= −      (29) 
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and ~N(0, iid
t2
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⎠

⎞
⎜⎜
⎝

⎛
=

ε
ε
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 Note that if we define  and t1t1 uw = t2t2 uw = , this model is the same as that in Toda 

(1994, 1995) and Hubrich et al. (2001). 

The parameter values are as follows: 
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     All programmes have been written in GAUSS and all simulations are performed on a 

PENTIUM-III PC. For each Monte Carlo simulation we generate 10,000 series of length 

T+20. As in Haug, we start at 00,1 =y , 00,2 =y , u1 0 0, =  and u2 0 0, = , and then discard the 

first 20 observations to eliminate start-up effects. The RNDN function in GAUSS with a 

fixed seed has been used in order to generate the pseudo-normal variates ε1,t  and ε 2,t and  

and . We have generated   as an N(0, ) with =1, 5, with the results being robust 

with respect to those two values. 

*
t1u

*
tu *

t1u 2*
1σ 2*

1σ

  Some of the results from CASE 1 are presented in Table I, corresponding to three 

sample sizes, (T = 100, 200 and 500). For each sample size and a combination of values of 

the parameters on the left hand side, the values in this table give the probability of rejection 

of the null hypothesis that the cointegrating rank is 1. Notice that for values of (ρ11 +ρ12) 
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smaller than one, the values in the table give the empirical size, while for (ρ11 +ρ12) = 1, these 

values give account of the power. A 5% nominal size has been used in all cases. 

 

TABLE I 

 

 From an examination of the values, we can appreciate that the empirical size is close 

to the nominal size, even for small sample sizes. The power, although not very high in small 

samples, increases as expected, as the sample size increases. Moreover, the results are robust 

with respect to changes of  ρ0 , ρ2 and , i = 1, 2. 2
iσ

 The results for CASE 2 are presented in Table II. As  in the previous case,  they make 

clear that the empirical size is close to the nominal 5% size in almost every case. Further, 

they appear to cofirm that when (ρ11 +ρ12) = 1, the power is rather low for small sample sizes. 

However, the power increases as the sample size grows and approach unity when T = 500. 

TABLE II 

 

 The same conclusions are derived from Table III, CASE 3, and Table IV, CASE 4: 

empirical size close to the 5% nominal size and low power for samples around T = 100; 

however, this power increases as the sample size grows, although at a slower rate than in the 

two previous cases:  

TABLE III 

TABLE IV 
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5.- CONCLUSIONS 

 This paper has been dedicated to deriving a test procedure for testing cointegration that,  

under the null hypothesis, follows a Standard Normal distribution. To that end, we have considered 

four alternative specifications, depending on the form adopted by the deterministic terms. 

 The test procedure has been based on the comparison of  the form adopted by a relation of  

the Error Correction Form, under the null hypothesis that there is one coitegration relation, with 

respect to the form adopted by that relation when it is assumed that there is no cointegraion. Since 

the form corresponding to the case with cointegration has one regressor that behaves as an I(0) 

process under the null hypothesis, and as an I(1) process under the alternative hypothesis, we have 

defined a new set of regressors in which one of them is defined in terms of the sum of the two 

elements in such a way that the I(0) character of the regressor is maintained no matter which 

hypothesis generates the data. 

 By using these new set of regressors, we have derived the cointegration testing procedure 

in Section 3 and it has been shown that the procedure, under the null hypothesis, follows a 

standard Normal distribution. 

 In the closing section of the paper, we have considered the results from some Monte-Carlo 

simulations. For a wide range of values of the parameters of the model, it has been shown that the 

proposed test has a good performance, both in terms of how close the empirical size is to the 

nominal size, and in terms of the high power values. 
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APPENDIX      

First, some preliminary results, useful when proving the three theorems, are collected 

in the following lemma. 

LEMMA1: Let the DGP be (1)-(2) with 0,0,0 210 === δδδ . Then: 

(i)  t1
p

t1 uû ⎯→⎯

(ii)  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎯→⎯′ −−

1110

0100p1
2

1
1 Qq

qq
QXHXH

(iii)  QXXH p*
1

1
2 ⎯→⎯′−

(iv) is OzXH 1
2 ′−

p(1) 

(v)  )1(OzzM p
p

x +⎯→⎯

(vi) 2*p
X2 zMz

T
1 σ⎯→⎯′  

where H1 and H2 are, respectively: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

− )1p(n

2/1

1 I0
0T

H  and  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

− )1p(n

2/3

2 TI0
0T

H
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 and where Q is a square matrix of constants of order n(p-1)+1,  is the matrix of 

observations of the regressors in (18) and δ

*
1X

1 is the vector of n(p-1)+1 parameters of these 

regressors. 

PROOF:  

(i) Write as: tû1

t2t1t2t1t1 y)ˆ(uyˆyû βββ −−=−=  

where β̂  is the Ordinary Least Square estimator of  β: 
∑

∑=
t2

t2t1

y
yy

β̂ . Since, when the 

variables are cointegrated, ( β̂ -β) is Op(T-1), then the result follows. 

(ii) Let X be partitioned as )Xx(X 10= , where x0 is the 1T ×  vector of 

observations of the first element of  xt and X1 is the )1p(nT −×  matrix of observations of 

the rest of elements of xt. The term on the left hand side of (ii) can be written as: 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

′

′′

=′ −−

T
XX

T
Xx

T
xx

XHXH
11

2/3
10

2
00

1
2

1
1    (A.1) 

The convergence of the (1,1)  element of this matrix is: 

∑ ∑ ∑ −− ++=
′ *

t11t1
*

2
2*
t12

2
1t1

2*
22

00 uûˆ2
T
1u

T
1ûˆ

T
1

T
xx

φφ  

and, since, as we have already stated, Tˆ 2* ≈φ and T≈*φ̂  (asymptotically), by using (i) we 

have that: 

00
p

2
00 q)0(

T
xx

1
=⎯→⎯

′
γ     (A.2) 

which is the variance of u1t. 
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 The asymptotic convergence of the i-th generic element of 2/3
10

T
Xx′

 is, for i = 1, 2, ...,n 

and j = 1,...,p-1: 

)1j(
T

yu

yu
T

1yûˆ
T

1yx
T

1

i,1 yu
pjit1t1

p
jit

*
t2/3jit1t1

*
2/3jitt02/3

−⎯→⎯

⎯→⎯+=

∑

∑∑∑

−−

−−−−

∆γ
∆

∆∆φ∆
  (A.3) 

With respect to the convergence of the ij-th element of 
T

XX 11′ , we have that: 

)jk(
T

yy
li y,y

pkltjit −⎯→⎯∑ −−
∆∆γ

∆∆
   (A.4) 

(iii) The left hand side term of this expression can be written as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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T
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23
0

23
110

1
1

2    (A.5) 

 The convergence of 2/3
1,10

T
ux −′

 is as follows: 

00
p

1t1
*
t12/31t11t1

*
2/3 quu

T
1uûˆ

T
1

⎯→⎯⎟
⎠
⎞

⎜
⎝
⎛ + ∑∑ −−−φ   (A.6) 

using (i) and the fact that Tˆ* ≈φ . 

The convergence of 2/3
0

T
Yx ∆′

 and 
T

YX ∆′1 is straightforward, because YX 1 ∆=′ . 

(iv) We have that: 

1
1

2
**1

2
1

2 yXHuXˆHzXH ∆φ ′+′=′ −−−    (A.7) 

 Note that 

1
1

21
*
1

1
211

*
1

1
21

1
2 vXHXXH)vX(XHyXH ′+′=+′=′ −−−− δδ∆   (A.8) 
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 Using (iii), the first term on the right hand side converges to Qδ1. The second term 

can be written as: 

0
VXT

vûˆT
vXH p

11
1

t11t1
*2/3

1
1

2 ⎯→⎯
⎟
⎟

⎠
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−
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− ∑φ    (A.9) 

 With respect to the first term of the right hand side of (A.7), we have: 

0
1

11
223

1
2 ⎯→⎯⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
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 Since, by (i), and 1t1
p

1t1 uû −− ⎯→⎯ 2*φ̂ asymptotically behave as T, the first term of 

(A.10) converges to the same limit as ∑ −
*
t1t1 uu

T
1 . Further, since this expression is an 

scalar martingale difference sequence, by using Proposition 7.8 in Hamilton (1994) we 

obtain: 

( )2*
t1t1

d*
t1t1

2*2/3 )uu(E,0NuûˆT −−
− ⎯→⎯∑φ    (A.11) 

 The same line of reasoning can be used for the asymptotic distribution of the lower 

n(p-1) elements of (A.9). 

Using the results about the convergence of (A.8) and (A.10), the proof follows. 

(v)   We can write: 

( ) zXHXHXHXHzzX)XX(XzzM 1
2

11
2

1
1

1
1

1
X ′′−=′′−= −−−−−−  

Using (ii) and (iv) and the fact that: 

*
1

p1
1 XXH ⎯→⎯−     (A.12) 

the result again follows. 

 (vi) This last result follows in a straightforward manner from the previous result. By 

using (v) we have that: 
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and, by the form adopted by z, that: 
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PROOF OF THEOREM 1 

 The estimator of  λ in (23) can be written as: 

1X2

1

X2 yMz
T
1zMz

T
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Note that, by using (ii) and the results in (iv) and (A.12), we obtain: 
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Hence, 1X yMz
T
1 ∆′ converges to the limit of: 
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 Further, note that 1vz
T
1 ′  converges to the limiting distribution of 

T
vu t1

*
t∑  plus σ2. 

Since  and  are independent with variances σ*
tu t1v ∗2 and σ2, respectively, the application of 

the central limit theorem permits us to conclude that: 

( 2*2dt1
*
t ,0N
T

vu
σσ⎯→⎯ )∑    (A.16) 

 Combining all these results, we obtain: 
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 By using (vi), the result is: 
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PROOF OF THEOREM 2: 

 We have: 
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By using (vi) and the fact that, under the null hypothesis, 21111 σ⎯→⎯
′

⎯→⎯
′ pp

T
vv

T
v̂v̂ and 

, the proof follows. 2p2s σ⎯→⎯

 

PROOF OF THEOREM 3 

 Here, the proof follows because, under the alternative hypothesis, 1X yMz
T
1 ∆′  and 

T
v̂v̂ 11′  converge to different limits, and  furthermore,  because 0s p2 ⎯→⎯ t1y∆ is projected on 

itself. 
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TABLE I: CASE 1: 0210 === δδδ  

SIZE AND POWER OF THE TEST WHEN THE COINTEGRATION RANK IS r = 1 (ρ12 =0, 

0.2) OR  r =0 (ρ12 = 0.5); ( AND  5,1,5.0 2
111 === σβρ )12

2 =σ

ρ12 ρ2 ρ0 T = 100 T = 200 T = 500 

0 0.1 -0.9 0.117 0.052 0.052 
  0 0.080 0.053 0.054 
  0.9 0.065 0.049 0.053 
 0.3 -0.9 0.112 0.053 0.053 
  0 0.080 0.053 0.054 
  0.9 0.064 0.049 0.053 
0.2 0.1 -0.9 0.056 0.051 0.052 
  0 0.055 0.050 0.055 
  0.9 0.057 0.048 0.053 
 0.3 -0.9 0.056 0.051 0.053 
  0 0.055 0.050 0.054 
  0.9 0.056 0.049 0.053 
0.5 0.1 -0.9 0.289 0.489 0.804 
  0 0.438 0.693 0.886 
  0.9 0.282 0.494 0.806 
 0.3 -0.9 0.245 0.420 0.738 
  0 0.455 0.708 0.881 
  0.9 0.245 0.426 0.734 
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TABLE II: CASE 2: 00 210 ==≠ δδδ ; . 

SIZE AND POWER OF THE TEST WHEN THE COINTEGRATION RANK IS r = 1 (ρ12 =0. 

0.2) OR  r =0 (ρ12 = 0.5); ( AND 5,1,5.0 2
111 === σβρ )12

2 =σ )1( 0 =δ  

ρ12 ρ2 ρ0 T = 100 T = 200 T  = 500 

0 0.1 -0.9 0.081 0.052 0.052 
  0 0.075 0.050 0.048 
  0.9 0.058 0.050 0.049 
 0.3 -0.9 0.061 0.052 0.052 
  0 0.061 0.050 0.047 
  0.9 0.058 0.050 0.048 
0.2 0.1 -0.9 0.054 0.050 0.052 
  0 0.058 0.050 0.048 
  0.9 0.056 0.049 0.048 
 0.3 -0.9 0.054 0.051 0.052 
  0 0.056 0.050 0.048 
  0.9 0.055 0.048 0.049 
0.5 0.1 -0.9 0.205 0.469 0.897 
  0 0.195 0.465 0.901 
  0.9 0.198 0.459 0.899 
 0.3 -0.9 0.193 0.468 0.895 
  0 0.197 0.466 0.900 
  0.9 0.195 0.457 0.902 
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TABLE III: CASE 3: 0,0;0 210 ≠≠= δδδ  

SIZE AND POWER OF THE TEST WHEN THE COINTEGRATION RANK IS  

r = 1 (ρ12 =0. 0.2) OR  r =0 (ρ12 = 0.5); ( AND5,1,5.0 2
111 === σβρ )12

2 =σ )1,1( 21 == δδ  

ρ12 ρ2 ρ0 T = 100 T = 200 T = 500

0 0.1 -0.9 0.085 0.054 0.054 
  0 0.080 0.053 0.048 
  0.9 0.062 0.050 0.048 
 0.3 -0.9 0.061 0.053 0.053 
  0 0.063 0.052 0.048 
  0.9 0.061 0.049 0.049 
0.2 0.1 -0.9 0.055 0.054 0.054 
  0 0.059 0.052 0.048 
  0.9 0.059 0.049 0.049 
 0.3 -0.9 0.055 0.051 0.052 
  0 0.057 0.051 0.048 
  0.9 0.058 0.050 0.049 
0.5 0.1 -0.9 0.219 0.472 0.883 
  0 0.194 0.453 0.886 
  0.9 0.208 0.462 0.882 
 0.3 -0.9 0.198 0.466 0.884 
  0 0.202 0.458 0.887 
  0.9 0.198 0.448 0.881 
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TABLE IV: CASE 4: 0,0;0 210 ≠≠≠ δδδ  

SIZE AND POWER OF THE TEST WHEN THE COINTEGRATION RANK IS 

 r = 1 (ρ12 =0. 0.2) OR  r =0 (ρ12 = 0.5); ( AND  5,1,5.0 2
111 === σβρ )12

2 =σ

)1,1,1( 210 === δδδ  

ρ12 ρ2 ρ0 T = 100 T = 200 T = 500

0 0.1 -0.9 0.069 0.056 0.054 
  0 0.082 0.053 0.048 
  0.9 0.059 0.049 0.048 
 0.3 -0.9 0.060 0.053 0.053 
  0 0.066 0.052 0.048 
  0.9 0.060 0.049 0.048 
0.2 0.1 -0.9 0.056 0.056 0.054 
  0 0.060 0.053 0.048 
  0.9 0.057 0.049 0.048 
 0.3 -0.9 0.055 0.052 0.053 
  0 0.057 0.052 0.048 
  0.9 0.057 0.049 0.049 
0.5 0.1 -0.9 0.123 0.270 0.788 
  0 0.089 0.242 0.793 
  0.9 0.091 0.247 0.790 
 0.3 -0.9 0.095 0.254 0.787 
  0 0.090 0.242 0.793 
  0.9 0.090 0.241 0.786 
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