
A Note on L(∞, q) Spaces and
Sobolev Embeddings
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ABSTRACT. We prove a sharp version of the Sobolev embedding
theorem using L(∞, n) spaces and we compare our result with
embeddings due to Hansson, Brézis-Wainger and Malý-Pick.

1. INTRODUCTION

Sobolev embedding theorems play a fundamental role in PDEs and have been
intensively studied in the literature. In particular, the limiting cases of the Sobolev
embedding theorem have been considered by many authors. Among the extensive
list of contributions we mention here [22], [20], [11], [7], [16], [1], [21], [8],
[15], as well as the references therein.

While the limiting results obtained in [11] and [7] are optimal1 (cf. [11], [8]),
it turns out to be possible to improve on these results by means of replacing the
limiting spaces with limiting inequalities ([15]). This idea is, of course, a familiar
one in analysis and, in particular, in interpolation theory (cf. [6], [4], [19]) as well
as extrapolation theory (cf. [13]).

In this paper we introduce a new scale of spaces (conditions) that interpolate
between L∞ and the space weak-L∞ of Bennett-DeVore-Sharpley [4]. We show
that the L(∞, q) spaces are natural target spaces for sharp endpoint Sobolev em-
bedding theorems, even for domains with infinite measure. Moreover, we show
that when |Ω| < ∞, L(∞, n)(Ω) is contained in the Hansson-Brézis-Wainger
space. We also show that L(∞, n) coincides with the space introduced in [15],
also in the context of extreme Sobolev embeddings.

In what follows given an open domain Ω ⊂ Rn and a r.i. space X(Ω), we
denote by W 1,X

0 (Ω) the closure of C∞0 (Ω) with the seminorm
∥∥∇f∥∥X . We started

our work on sharp limiting Sobolev theorems in [2]2 where we observed that (cf.

1At least within the class of rearrangement invariant spaces.
2However, for editorial reasons, the final version of the paper [3] did not include Sobolev embed-

ding theorems.
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[2, Example 13.12, page 94])

(1.1) W 1,L(n,∞)
0 (Rn) ⊂ L(∞,∞)(Rn).

Here L(n,∞)(Rn) is the classical Lorentz space weak-Ln(Rn), and L(∞,∞)(Rn)
is the Bennett-DeVore-Sharpley space weak-L∞(Rn)3 defined by (cf. [4])

L(∞,∞)(Rn) = {f :
∥∥f∥∥L(∞,∞) = sup

t
{f∗∗(t)− f∗(t)} < ∞}.

More generally, (1.1) also holds if we replace Rn by an open domain Ω ⊂ Rn:

(1.2) W 1,L(n,∞)
0 (Ω) ⊂ L(∞,∞)(Ω).

The proof of (1.1)-(1.2) is an easy consequence of the following lemma and well
known properties of symmetric spherical decreasing rearrangements.

Lemma 1.1. (cf. [1]) Suppose that f is a smooth function equal to its symmetric
spherical decreasing rearrangement, and zero at infinity. Then

(1.3) f∗∗(t)− f∗(t) ≤ βn(
∣∣∇f∣∣)∗∗(t)t1/n,

where βn4> 0 is independent of f .

Proof. See Appendix. ❐

In this note we show that similar considerations lead to an optimal embedding
theorem for the usual Sobolev space W 1,n

0 (Ω) = W 1,Ln
0 (Ω).

2. L(∞, q) SPACES

According to the usual definition of the scale of Lorentz spaces (cf. [6]) we have

L(∞, q) =
{0} if q ≠∞ ,

L∞ if q = ∞ .

In fact, if q < ∞, we readily see that

|E| > 0 ⇒ ‖χE‖∞,q = ∞.

We are thus led to use an idea introduced in [4]: we replace f∗∗ (or f∗) by the
quantity f∗∗ − f∗ in the definition of the norm of L(∞, q).

3L(∞,∞) is not a linear space and ‖·‖L(∞,∞) is not a norm.
4In fact βn = (nγ1/n

n )−1, where γn =measure of the unit ball in Rn.
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Definition 2.1. Let (Ω, µ) be a sigma finite measure space and let q > 0. We
define

∥∥f∥∥L(∞,q)(Ω) =
{∫ |Ω|

0
(f∗∗(t)− f∗(t))q dt

t

}1/q

,

L(∞, q)(Ω) = {f :
∥∥f∥∥L(∞,q)(Ω) <∞}.

Due to the cancellation afforded by f∗∗ − f∗, the L(∞, q) spaces defined
in this fashion are nontrivial. For example, if f = χE , then f∗∗(t) − f∗(t) =
(|E|/t)χ(|E|,∞)(t), and therefore

‖χE‖L(∞,q) =
(

1
q

)1/q

.

Once again we remind the reader that, in general, the L(∞, q) spaces we have just
defined are not linear spaces, and that ‖.‖L(∞,q) is not a norm.

The L(∞, q) spaces form a scale of conditions that interpolate between L∞ =
L(∞,1) (see (5.1) below) and weak-L∞ = L(∞,∞).

Our embedding theorem can be now stated as follows

Theorem 2.2. Let Ω be an open domain in Rn. Then

W 1,n
0 (Ω) ⊂ L(∞, n)(Ω).

Proof. Suppose first that |Ω| < ∞. Let f ◦ denote the symmetric spherical
decreasing rearrangement of f . Recall that f ◦ is defined by

(2.1) f ◦(x) = f∗(γn |x|n),

where γn = measure of the unit ball in Rn, and f∗ is the usual non-decreasing
rearrangement of f 5. Suppose first that Ω = B is a ball with measure |Ω|, and let
f ∈ W 1,n

0 (Ω) be such that f = f ◦. Rewrite (1.3) as

f∗∗(t)− f∗(t)
t1/n ≤ βn(

∣∣∇f∣∣)∗∗(t).
Raising to the power n, and then integrating, it follows that

(2.2)
∥∥f∥∥L(∞,n)(Ω) ≤ c ∥∥∇f∥∥Ln(Ω) .

Now we dispense with the extra assumptions and prove (2.2) in general. Let Ω̃
be the ball centered at the origin with

∣∣∣Ω̃∣∣∣ = |Ω|. Let f ∈ W 1,n
0 (Ω). Since

5For the properties of symmetric spherical rearrangements we refer to [17].
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the operation f → ∣∣f∣∣ does not increase the Sobolev norm (cf. [16]) we may
assume without loss of generality that f ≥ 0. By the Pólya -Szegö symmetrization
theorem (cf. [17, page 12]) we have that f ◦ ∈ W 1,n

0 (Ω̃), and

(2.3)
∥∥∇f ◦∥∥Ln(Ω̃) ≤ ∥∥∇f∥∥Ln(Ω) .

Moreover, it is well known, and plain from (2.1), that f ◦ is equimeasurable with
f and therefore

(2.4) (f ◦)∗ = f∗.

It follows from the first part of the proof (applied to f ◦) that

(2.5)
∥∥f ◦∥∥L(∞,n)(Ω̃) ≤ c ∥∥∇f ◦∥∥Ln(Ω̃) .

But inserting (2.3) and (2.4) in (2.5) we obtain∥∥f∥∥L(∞,n)(Ω) = ∥∥f ◦∥∥L(∞,n)(Ω̃) ≤ c ∥∥∇f ◦∥∥Ln(Ω̃) ≤ c ∥∥∇f∥∥Ln(Ω) .
The argument if |Ω| = ∞ is the same; the only change needed is that in this caseΩ̃ = Rn. Thus (2.2) holds in general concluding the proof. ❐

Remark 2.3. It is of interest for future applications (cf. Remark 5.5) to
streamline the method of proof of Theorem 2.2 as follows. We note that the
proof of Lemma 1.1 in the Appendix together with the argument of Theorem 2.2
yields the following variant of (1.3): if f ∈ C∞0 (Ω),

f∗∗(t)− f∗(t) ≤ βn(∇f ◦)∗∗(t)t1/n.

Morever, using the version of the Pólya -Szegö principle one can find in [9, (4.4),
page 66], we get

f∗∗(t)− f∗(t)
t1/n ≤ βn(∇f)∗∗(t).

Therefore, raising the previous inequality to the power n, integrating, and then
applying Hardy’s inequality, we get

∥∥f∥∥L(∞,n)(Ω) ≤ n
n− 1

βn
∥∥∇f∥∥Ln(Ω) .

3. COMPARISON WITH CLASSICAL EMBEDDINGS

Let Ω be an open domain in Rn with |Ω| < ∞. In [11], and independently, and
by different methods in [7], it was shown that

(3.1) W 1,n
0 (Ω) ⊂ Hn(Ω),
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where6

Hn(Ω) = {f :
∥∥f∥∥Hn(Ω) =

∫ |Ω|
0

 f∗∗(s)

1+ log
|Ω|
s


n

ds
s


1/n

<∞}.

Moreover, Hansson [11] (cf. also [8]) has shown that Hn(Ω) is the optimal target
space in the class of rearrangement invariant spaces.

We now show that if we give up on the requirement that the target space be
a linear space, and frame the limiting Sobolev embeddings in terms of rearrange-
ment invariant inequalities, then the L(∞, q) classes give sharper results7.

Theorem 3.1. L(∞, n)(Ω) ⊂ Hn(Ω), n > 1.

Proof. We shall first obtain an a priori estimate and prove that, if f is bounded
(which in particular implies that f ∈ Hn(Ω)),
(3.2)

∥∥f∥∥Hn(Ω) ≤ n
n− 1

∥∥f∥∥L(∞,n)(Ω) + c(|Ω| , n)∥∥f∥∥L1(Ω) ,

where c(|Ω| , n) > 0 is a constant independent of f . We shall then extend (3.2)
by a limiting argument.

We will integrate by parts. To this end we observe that since f is bounded,
f∗∗(t)→ ∥∥f∥∥L∞(Ω) as t → 0. Therefore

(3.3) lim
t→0

f∗∗(t)n
1(

1+ log
|Ω|
t

)n−1 = 0.

6The weight w(s) = (1 + log(|Ω|/s))−ns−1 satisfies the Ariño-Muckenhoupt condition: for all
0 < t < |Ω|, ∫ |Ω|

t

(
t
s

)n
w(s)ds ≤ c

∫ t
0

(
t
s

)n
w(s)ds.

It follows that (cf. [3])

∥∥f∥∥Hn(Ω) ≈

∫ |Ω|

0

 f∗(s)

1+ log
|Ω|
s


n

ds
s


1/n

.

7In Remark 5.3 we give a different proof connected with the use of Hardy operators (cf. [3]).
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Now,

∥∥f∥∥nHn(Ω) =
∫ |Ω|

0

 f∗∗(s)
1+ log |Ω|

s

n ds
s

(3.4)

= −1
1−n

∫ |Ω|
0
[f∗∗(s)]nd

((
1+ log

|Ω|
s

)1−n)

= −1
1−n[f

∗∗(s)]n
(

1+ log
|Ω|
s

)1−n∣∣∣∣∣
|Ω|
0

+ 1
1−n

∫ |Ω|
0

(
1+ log

|Ω|
s

)1−n
d
(
f∗∗(s)n

)
.

We estimate the integrated term first. It follows from (3.3) that

−1
1−n[f

∗∗(s)]n
(

1+ log
|Ω|
s

)1−n∣∣∣∣∣
|Ω|
0

= lim
s→|Ω|

−1
1−n[f

∗∗(s)]n
(

1+ log
|Ω|
s

)1−n

+ lim
s→0

1
1−n[f

∗∗(s)]n
[

1+ log
|Ω|
s

]1−n

= 1
n− 1

[f∗∗(|Ω|)]n = 1
n− 1

(
1
|Ω|

∫ |Ω|
0
f∗(s)ds

)n
.

Now, since we obviously have

∫ |Ω|
0
f∗(s)ds ≤ c(|Ω| , n)∥∥f∥∥Hn(Ω) ,

it follows that, (with c representing a different constant at each appearance)

(3.5) lim
s→|Ω|

−1
1−n[f

∗∗(s)]n
(

1+ log
|Ω|
s

)1−n
≤ c(|Ω| , n)∥∥f∥∥n−1

Hn(Ω) ∥∥f∥∥L1(Ω) .

To estimate the second term of (3.4) we note that

d
(
f∗∗(s)n

) = n(f∗∗(s))n−1(f∗∗(s))′ ds

= n(f∗∗(s))n−1 [f∗(s)− f∗∗(s)]
s

ds.
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Thus,

(3.6)
1

1−n
∫ |Ω|

0

(
1+ log

|Ω|
s

)1−n
d(f∗∗(s)n)

≤ n
1−n

∫ |Ω|
0

(
1+ log

|Ω|
s

)1−n
(f∗∗(s))n−1 [f∗(s)− f∗∗(s)]

s
ds

≤ n
n− 1

∫ |Ω|
0

 f∗∗(s)

1+ log
|Ω|
s


n

ds
s


(n−1)/n (∫ |Ω|

0
[f∗∗(s)− f∗(s)]nds

s

)1/n

,

where in the last step we used Hölder’s inequality with exponents n/(n − 1),n.
Inserting (3.5) and (3.6) in (3.4) we find

∥∥f∥∥nHn(Ω) ≤ n
n− 1

∥∥f∥∥n−1
Hn(Ω) ∥∥f∥∥L(∞,n)(Ω) + 1

n− 1
c(|Ω| , n)∥∥f∥∥n−1

Hn(Ω) ∥∥f∥∥L1(Ω) .
Thus we have proved that for all bounded functions

(3.7)
∥∥f∥∥Hn(Ω) ≤ n

n− 1
∥∥f∥∥L(∞,n)(Ω) + 1

n− 1
c(|Ω| , n)∥∥f∥∥L1(Ω) .

To prove the inequality (3.7) in general we use an approximation argument. We
may assume without loss of generality that f ≥ 0, f ∈ L(∞, n)(Ω). Let

fk(x) = f∗
(

1
k

)
χ{f>f∗(1/k)} + f(x)χ{f≤f∗(1/k)} ,

then fk ↑ f a.e.. Moreover, since f∗k (t) = min{f∗(t), f∗(1/k)} we readily see
that

(i) f∗k (t) ↑ f∗(t) a.e.,
(ii) f∗∗k (t)− f∗k (t) ≤ f∗∗(t)− f∗(t), and

(iii) f∗k (t) ≤ f∗(t).
By (ii),

∥∥fk∥∥L(∞,n)(Ω) ≤ ∥∥f∥∥L(∞,n)(Ω) ,
and by (iii)

∥∥fk∥∥L1(Ω) ≤ ∥∥f∥∥L1(Ω) .
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Thus, by the monotone convergence theorem, we get∥∥f∥∥Hn(Ω) = lim
k→∞

∥∥fk∥∥Hn(Ω)
≤ lim
k→∞

sup{c ∥∥fk∥∥L(∞,n)(Ω) + c(|Ω| , n)∥∥fk∥∥L1(Ω)}
≤ c ∥∥f∥∥L(∞,n)(Ω) + c(|Ω| , n)∥∥f∥∥L1(Ω) .

Therefore (3.7) holds in full generality, which concludes the proof of the the-
orem. ❐

4. COMPARISON WITH THE MALÝ-PICK CONSTRUCTION

In [15] Malý and Pick consider (nonlinear) spaces defined as follows

MPn(Ω) = {f : f∗
(
t
2

)
− f∗(t) ∈ Ln

(
dt
t

)
(0, |Ω|)},

and show that if |Ω| < ∞, then8

W 1,n
0 (Ω) ⊂ MPn(Ω).

The connection with the L(∞, q) spaces is given by the following result:9

Theorem 4.1. L(∞, n)(Ω) =MPn(Ω).
Proof. The result will follow from the following pointwise estimates

(4.1) f∗
(
t
2

)
− f∗(t) ≤ 2(f∗∗(t)− f∗(t)),

for all t ∈ (0, |Ω|) and

(4.2) f∗∗(t)− f∗(t) ≤ 1
t

∫ t
0

(
f∗

(
s
2

)
− f∗(s)

)
ds +

(
f∗

(
t
2

)
− f∗(t)

)

for all t ∈ (0, |Ω|). Indeed, from (4.1) it immediately follows that∥∥f∥∥MPn(Ω) ≤ 2
∥∥f∥∥L(∞,n)(Ω) .

To prove the opposite inequality note that the Hardy operator

Pf(t) = 1
t

∫ t
0
f(s)ds

8Note that our embedding theorem does not require the measure to be finite.
9For the case q = ∞ see [19].
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is bounded on Ln(dt/t) (cf. [12, page 246])10. In terms of the operator P the
inequality (4.2) can be rewritten as

f∗∗(t)− f∗(t) ≤ P
(
f∗

(
s
2

)
− f∗(s)

)
(t)+

(
f∗

(
t
2

)
− f∗(t)

)
.

Thus ∥∥f∥∥L(∞,n)(Ω) ≤ (‖P‖Ln(dt/t)→Ln(dt/t) + 1
)∥∥f∥∥MPn(Ω) .

It remains to prove (4.1) and (4.2). To prove (4.1) we rewrite it as

(4.3) f∗
(
t
2

)
+ f∗(t) ≤ 2f∗∗(t).

Now

2f∗∗(t) = 2
t

∫ t
0
f∗(s)ds

≥ 2

[ 1
2

t/2

∫ t/2
0
f∗(s)ds +

1
2

t/2

∫ t
t/2
f∗(s)ds

]

≥ f∗(t/2)+ f∗(t),
and (4.3) follows.

To show (4.2) note that

f∗∗(t) = 1
t

∫ t/2
0
f∗(s)ds + 1

t

∫ t
t/2
f∗(s)ds

≤ 1
t

∫ t/2
0
f∗(s)ds + 1

2
f∗(t/2)

= 1
2t

∫ t
0
f∗(s/2)ds + 1

2
f∗(t/2)

gives

2f∗∗(t) ≤ 1
t

∫ t
0
f∗(s/2)ds + f∗(t/2).

Therefore,

f∗∗(t)− f∗(t) ≤ 1
t

∫ t
0
f∗(s/2)ds − f∗∗(t)+ f∗(t/2)− f∗(t)

= 1
t

∫ t
0
(f∗(s/2)− f∗(s))ds + f∗(t/2)− f∗(t),

as we wished to show. ❐

10Alternatively note that the weight 1/t satisfies the Mn condition of Muckenhoupt (cf. [3]).
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5. FINAL REMARKS

As far as we are aware, the L(∞, q) spaces studied in this paper have not been
considered explicitly or systematically in the literature except in the case q = ∞,
cf. [4], and [19] and its references, and the case q = 1, which was considered in
[10]. In this respect we note that in [10] it is claimed11 (cf. Theorem 4.1) that∫ 1

0
(f∗∗(t)− f∗(t))dt

t
<∞⇒ f ∈ VMO.

However, since (see the proof of Theorem 3.1)

−(f∗∗(t))′ = f∗∗(t)− f∗(t)
t

we see that as sets

(5.1) L(∞,1)(0,1) = L∞(0,1).
Remark 5.1. Although our proof of the Sobolev embedding theorem breaks

down at n = 1, the L(∞,1) spaces still give the correct embedding spaces in
dimension one. This breakdown occurs because, starting from

f∗∗(t)− f∗(t)
t

≤ f ′∗∗(t)

and integrating, we only get

∥∥f∥∥L(∞,1) ≤ ∥∥∥f ′∗∗∥∥∥L1
=
∥∥∥f ′∥∥∥

L(LogL)
.

On the other hand an elementary application of the fundamental theorem of cal-
culus gives

W 1,1
0 (0,1) ⊂ L∞(0,1),

which agrees with (5.1). It should be noted that the equivalence with the Hn
spaces also breaks down at n = 1.

11We note in passing that another condition in [10]∫ 1

0

f∗∗(t)− f∗(t)
f∗∗(t)

dt
t
<∞

can be also be recognized as ∫ 1

0
d[−(lnf∗∗(t))] <∞

which ends up being

ln

( ∥∥f∥∥L∞∥∥f∥∥L1(dt)

)
<∞.

This form could be useful in interpolation theory.
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Remark 5.2. Our proof of Theorem 3.1 follows closely the proof of (3.1)
given by one of us many years ago. Since that proof was never published it seems
of interest to present it here since it may also suggest a method to prove Gagliardo-
Nirenberg inequalities in the extreme cases.

Proof of (3.1), n > 1. The arguments given during the course of the proof of
Theorem 2.2 show that it is enough to consider the case where Ω is a ball centered
at the origin. Moreover, we may assume that f = f ◦, and f is bounded. By using
arguments similar to those of theorem 3.1 combined with Hölder’s inequality we
obtain

∫ |Ω|
0

 f∗(s)

1+ log
|Ω|
s


n

ds
s

≤ n
1−n

∫ |Ω|
0

 f∗(s)

1+ log
|Ω|
s


n−1 (

d
ds
f∗(s)

)
ds

= n
1−n

∫ |Ω|
0

 f∗(s)

1+ log
|Ω|
s


n−1

s1/n−1
(
d
ds
f∗(s)

)
s1−1/n ds

≤ n
n− 1


∫ |Ω|

0


 f∗(s)

1+ log
|Ω|
s


n−1

s1/n−1


n/(n−1

ds


(n−1)/n

×
(∫ |Ω|

0

(∣∣∣∣ dds f∗(s)
∣∣∣∣ s1−1/n

)n
ds
)1/n

.

Now observe that f = f ◦ implies that we can write

∥∥∇f∥∥Ln(Ω) = cn
(∫ |Ω|

0

(
− d
ds
f∗(s)s1−1/n

)n
ds
)1/n

.

Inserting this into our chain of estimates we see that we have shown

∫ |Ω|
0

 f∗(s)

1+ log
|Ω|
s


n

ds
s
≤ n
n− 1

cn

∫ |Ω|
0

 f∗(s)

1+ log
|Ω|
s


n

ds
s


(n−1)/n ∥∥∇f∥∥Ln(Ω) ,

and the result follows. ❐
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Remark 5.3. Using the theory of weights it is possible to give a more con-
ceptual proof of Theorem 3.1 that could be of interest in generalizations involv-
ing weighted spaces. The proof that follows uses the theory of weighted norm
inequalities for the Hardy operator Pf(t) = (1/t)

∫ t
0 f(s)ds and its adjoint

Qf(t) = ∫∞
t f (s)ds/s. It will be convenient to deal with weighted norm in-

equalities in a separate lemma.

Lemma 5.4. Let 1 ≤ p < ∞, and suppose that (w, ν) is a pair of weights
satisfying the following condition: there exists C > 0 such that for all 0 < t < 1,

(5.2)

(∫ t
0
w(x)dx

)1/p (∫ 1

t

ν(x)−p′/p

xp′
dx

)1/p′

≤ C.

Then

∥∥f∗∗∥∥Ln((0,1),w(s)ds) ≤ c ∥∥f∗∗ − f∗∥∥Ln((0,1),ν(s)ds) +
(∫ 1

0
w
)1/n ∫ 1

0
f∗.

Proof. Consider the operator Q defined by

Qf(t) =
∫ 1

t

f (s)
s

ds.

From (5.2) it follows that (cf. [16, page 45]),

Q : Lp
(
(0,1), ν(x)dx

)→ Lp((0,1),w(x)dx).

The connection between Q and f∗∗ − f∗ can be seen from the following easily
verified identity (cf. [2, Lemma 13.9, page 90])

(P +Q)f(t) = QPf(t)+
∫ 1

0
f(s)ds,

which implies

(5.3) Pf(t) = Q(P − I)f (t)+
∫ 1

0
f(s)ds.

If we apply (5.3) to f = f∗, we get

f∗∗(t) = Pf∗(t) = Q(f∗∗ − f∗)(t)+
∫ 1

0
f∗(s)ds.

Thus,

∥∥f∗∗∥∥Ln((0,1),w(s)ds) ≤ ∥∥∥Q(f∗∗ − f∗)∥∥∥Ln((0,1),w(s)ds)+
(∫ 1

0
w
)1/n ∫ 1

0
f∗(s)ds.
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It follows that for any pair of weights that satisfies (5.2) for p = n, we have

(5.4)
∥∥f∗∗∥∥Ln((0,1),w(s)ds) ≤ c ∥∥f∗∗ − f∗∥∥Ln((0,1),ν(s)ds) +

(∫ 1

0
w
)1/n ∫ 1

0
f∗.

❐

Proof of Theorem 3.1. Without loss of generality we suppose that |Ω| = 1.
By computation it is readily verified that the pair of weights

w(s) =
(

1+ log
1
s

)−n
s−1, ν(s) = s−1

satisfies (5.2)12. Therefore we may apply the previous lemma. In our case (5.4)
takes the form ∥∥f∥∥Hn(Ω) ≤ c

(∥∥f∥∥L(∞,n)(Ω) + ∫Ω ∣∣f∣∣
)
,

concluding the proof. ❐

Remark 5.5. It is interesting to point out the role that the full scale of L(∞, q)
spaces plays in the borderline case of the Sobolev embedding theorem. Using the
method of proof Theorem 2.2 (see also Remark 2.3) we can easily prove13

(5.5) W 1,L(n,q)
0 (Ω) ⊂ L(∞, q)(Ω), 1 ≤ q ≤ ∞.

The case q = n corresponds to Theorem 2.2, while q = ∞ corresponds to (1.2).
We also note that if q = 1, (5.5) gives

W 1,L(n,1)
0 (Ω) ⊂ L(∞,1)(Ω) = L∞(Ω),

another important borderline case of the Sobolev embedding theorem obtained in
[7] by a different method.

Proof. The only modification to the proof of Theorem 2.2 that is needed
is to observe that the Pólya -Szegö principle holds for Lorentz spaces (this is a
consequence [9, (4.4), page 66]). Alternatively we can use the proof given in
Remark 2.3 without changes. ❐

Remark 5.6. Suppose that |Ω| <∞, and let 1 ≤ p ≤ q ≤ ∞. Then,

L(∞,1)(Ω) ⊂ L(∞, p)(Ω) ⊂ L(∞, q)(Ω) ⊂ L(∞,∞)(Ω),
and the inclusions are strict.

12note that
∫ 1
0 w < +∞.

13We are grateful to Jie Xiao who asked about the validity of (5.5) after the first version of our
paper was circulated.



1228 JESÚS BASTERO, MARIO MILMAN & F.J. RUIZ BLASCO

Proof. Both end point inclusions are trivial (for example recall that L(∞,1)(Ω)
= L∞(Ω)). The corresponding inclusion for 1 < p < q < ∞ can be seen by ob-
serving that, in view of Theorem 4.1 and [15], we have

∫ |Ω|
0

(
f∗

(
t
2

)
− f∗(t)

)q dt
t
∼

∞∑
k=1

(
f∗

( |Ω|
2k

)
− f∗

( |Ω|
2k−1

))q
.

The fact that the inclusions are strict can be seen using the following family of
functions kindly suggested to us by the referee. Let fα(x) = (x logα 1

x )
′, x ∈

(0, e−1),0 < α ≤ 1. Then it is readily seen that fα > 0, f∗α = fα, and f∗∗α (t)−
f∗α (t) = α logα−1(1/t). Therefore, for 1 < q < ∞, fα ∈ L(∞, q) iff α < 1/q′,
and f1 ∈ L(∞,∞). ❐

6. APPENDIX

See [1] and also [14]. Since f = f ◦ we can write (using polar coordinates, i.e.,
∇f(s) = ∇f(|s|))

f∗(t) = f ◦
( t

γn

)1/n
 = ∫∞

(t/γn)1/n

∣∣∇f(s)∣∣ ds
so that

f∗∗(t) = 1
t

∫ t
0

∫∞
(r/γn)1/n

∣∣∇f(s)∣∣ ds dr
= f∗(t)+ γ

−1/n
n

nt

∫ t
0
s1/n

∣∣∣∣∣∣∇f
( s

γn

)1/n
∣∣∣∣∣∣ ds

= f∗(t)+ γn
t

∫ (t/γn)1/n

0
sn
∣∣∇f(s)∣∣ ds

= f∗(t)+ 1
nt

∫
|y|≤(t/γn)1/n

∣∣y∣∣∣∣∇f(y)∣∣dy
≤ f∗(t)+ 1

nt

(
t
γn

)1/n ∫
|y|≤(t/γn)1/n

∣∣∇f(y)∣∣ dy
≤ f∗(t)+ 1

n

(
t
γn

)1/n (
1
t

∫ t
0
(
∣∣∇f∣∣)∗(s)ds) .

Therefore

f∗∗(t)− f∗(t) ≤ t1/n

nγ1/n
n

(
∣∣∇f∣∣)∗∗(t),
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as we wished to show.
Acknowledgment. We are very grateful to the referee for his/her careful review

and for many suggestions to improve our paper.
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