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Abstract. In this note we prove the p-convex analogue of both Caratheodory’s
convexity theorem and Gluskin’s theorem concerning the diameter of Minkowski com-
pactum.

Throughout this note X will denote a real vector space and p will be a real
number, 0 < p < 1. A set A C X is called p-convex if \z + uy € A, whenever
z,y € A, and A\, u > 0, with AP + u? = 1. Given A C X, the p-convex hull of A is
defined as the intersection of all p-convex sets that contain A. Such set is denoted
by p-conv (A). A (real) p-normed space (X, || -||) is a (real) vector space equipped
with a quasi-norm such that ||z + y[|P < ||z|” + ||y[|?,Vx,y € X. The unit ball of a
p-normed space is a p-convex set and will be denoted by Bx.

We denote by MP the class of all n-dimensional p-normed spaces. If X,Y € M?
the Banach-Mazur distance d(X,Y) is the infimun of the products ||T'||-||T!||, where
the infimun is taken over all the isomorphisms 7" from X onto Y. We shall use the
notation and terminology commonly used in Banach space theory as it appears in
[Tmcz).

The problem we are concerned about is an aspect of the local structure of finite
dimensional p-Banach spaces. The well known theorem of Gluskin gives a sharp
lower bound of the diameter of the Minkowski compactum. In [G]] it is proved that
diam(M}) > en for some absolute constant c. Our purpose is to study this problem
in the p-convex setting. In [Pe], T. Peck gave an upper bound of the diameter of MZ?,
namely, diam(MP) < n?/P~1 We will show that such bound is optimum (Theorem
2). When proving it, in order to compute some volumetric estimates, it will be
necessary to have the corresponding version for p < 1 of Caratheodory’s convexity
theorem (Theorem 1).

The results of this note are the following;:

Theorem 1. Let A C R" and 0 < p < 1. For every z € p-conv (A),z # 0
there exist linearly independent vectors {P;... Py} C A with k < n, such that
x € p-conv {P; ... P;}. Moreover, if 0 € p-conv (A), there exits {P; ... Py} C A with
k <mn+1 such that 0 € p-conv {P; ... P}.

and
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Theorem 2. Let 0 < p < 1. There exits a constant C, > 0 such that for every
n € N
Cpn?*P~ < diam(MP) < n?/P~1,

Observe that Theorem 1 looks stronger than Caratheodory’s one in the sense
that we get £ < n and only &k < n + 1 can be assured for p = 1 (see [Eg], pg 35). It
will be clear that this is not such since vector 0 plays a particularly special role.

We begin by recalling the main property of p-convex hulls. It is probably known
but since we have not found it in any reference we sketch its proof.

Lemma 1. Let A C X. The p-convex hull of A coincides with the set of all finite
sums Y A\;x; where x; are taken from A (possibly with repetition), \; > 0 and
0< Y A <1,

Proof. Straighforward arguments show that p-conv (A) coincides with the set of all
finite sums > N\jz;, 2; € A, A\; > 0 and > A\ = 1. Now, we only have to prove that
every non zero element z of the form x = >0 | Ny, z; € A, Y A < 1 can be
written as © = >~ uiyi, i € A, Y1 uf = 1. Suppose A1 # 0. Write A\; = Zle Bi,
with §; > 0. We have 7 AP < S8 8P 57 AP < ELPAR £ NP T s
now clear, by a continuity argument, that we can find £ and 8; > 0, 1 < i < k,
such that A\; = Zle B; and Zf:l B+ 3", A = 1. The representation z =

Zle Bizi + > iy Niw; does the job. ///

Remark. Observe in particular says that for every 0 # z € X, p-conv {z} = (0,z] =
{Az;0 < A < 1}. This situation is rather different from the case when p = 1.

Proof of Theorem 1. Let x € p-conv (A), z # 0. Let N be the smallest integer
so that x in the p-convex hull of a subset {Pj,..., Py} of A. Consider the set of

all (a;) > 0 with z = YN o;Pi, 0 < Y of < 1. Minimize Y, of on this
set and denote the optimum by (A;). Clearly A; > 0, for all i« = 1,..., N. Suppose
{P1,..., Py} are linearly dependent; then there exists nontrivial coeficients (u;) so
that 27{11 wiP; = 0. If § > 0 is small enough all the coefficients \; + tu; > 0 and

the function ¢(t) = Zﬁil(}\i + tp;)P defined for t € (—6,6) has a minimum in ¢ = 0,

which contradicts the fact that the second derivative of ¢(t) is negative.
If 0 € p-conv (A) then 0= SN NP, Pe A, A\ >0, Viand S0 AP = 1. We
can suppose P ... P, linearly independent with m < n. We consider Zn:f NP =

(2

- i P;. If we apply the first part of the proof to & = Z:’:{l \is 1P, sP =

1=m-+2
ST we obtain Y7, 3P = — S, NP, with 307 37 < 1. Hence 0 € p-
convex envelope of N —1 points. Repeat the argument until reaching a representation
of length <n + 1. /]/

Next we are going to prove Theorem 2. The proof follows Gluskin’s original ideas.
We first introduce some notation. S”~! will denote the euclidean sphere in IR" with
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its normalized Haar measure p1,,_1 and Q will be the product space S" " 1x ). x§"~!
endowed with the product probability IP. If K C IR", |K| is the Lebesgue measure
of K. f A= (Py,...,P,) C Q, we write Q,(A) = p-conv {£e;,£P; | 1 < i < n},
being {e;};-; the canonical basis of IR". We denote by | - ||, (4) the p-norm in R"
whose unit ball is Q,(A).

We only need to prove that for some absolute constant C, > 0, there ex-
ist A, A" € Q such that simultaneously both [|T|q,(4)—q,a)) > C,n'/P=1/2 and
1T g, a)—0,4) = C,n'/P=1/2 hold for any T € SL(n) (that is, any linear iso-
morphism in R" with det 7' = 1).

Straightforward argument shows that it is enough to see that for any A’ € Q,
P{A€Q] |T]q,a)—q,m) < Cpnt/P=1/2for some T € SL(n) } < 1.

Fix A" € Q, t > 0, and write Q(A/,t) = {A e Q | ||T||QP(A)_)QP(A/) <
t for some T € SL(n)}.

The proof of the following lemma is analogous to the one in the case p =1 (see
[Tmez], §38).

Lemma 2. Let A’ € Q and t > 0.
i) There exists a tP-net N(A',t) in {T € SL(n) | [T len—q, (ary <t} with respect
to the metric induced by || - [, (4 of cardinality
2 p

|Qp(AN)]"

2
|N(A/,t)| < (Sl/pnl/p—l/Q)n
{T € SL(n) | [IT]leg—ey < 1}

ii)
A C | {AcQlITP)llg, ) <27t VP, € A}
TEN (A1)

iii) Given T € SL(n),

2 A "
P{AER| TPl ) <2770, 9P, € 4) < (2rgy” (L20])
£y

Proof of Theorem 2: Numerical constants are always denoted by the same letters C
(or O, if it depends only on p) although they may have different value from line to
line. Using consecutively the three preceding lemmas we have for every A’ €  and
t>0,

|@p(A)["

P(QUA 1)) < (Cyptnt/P=1/2)n°
( ) : |Beg|™ - [{T € SL(n) [ |Tleg—ep < 1}

It is well known that for some absolute constant C' > 0, (see [Tmcz]), we have
{T € SL(n) [ Tlleg—ey <13[ = C™ [Beg|™
Let A = {P,...P,}. By Theorem 1, Q,(A") C Up—conv {Pe,,---, P, }

where the union runs over the (47?) choices of {Py,}", C {te;,£P;,1 < i <
n}. Since ||P;|l2 = 1 and |[p-conv {Px,,..., P, }| is equal to |det [Pg,,...,Px,]| -
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|p-conv {eq,...,en}|, we get |Qp(A")] < (4:) g < C’gn_"/:2_” for some constant

C, (see [Pi], pg 11). Hence, IP(Q(A',t)) < (Cptn'/2=Y/P)""If we take a suitable
1

t > 0, we can assure ]P(Q(A', t)) < 3 and the result follows. ///

Remark. With straighforward variations in the proof we can state the following
result: Given 0 < p < 1 and 0 < a < 1, there exists a constant 0 < C(p,a) < 1
such that for any natural number N we can find two aN-dimensional quotients of
Eév having Banach-Mazur distance greater than or equal to C(p,a)N?/P~1,

Remark. Given a p-normed space X and p < ¢ < 1, we define the g-Banach envelope
of X as the g-normed space, X7, whose unit ball es the g-convex envelope of the unit
ball of X. It is easy to see that d(X, X?) < d(X,Y) for any n-dimensional g-normed
space Y (see [Pe],[G-K]). Theorem 1 shows that d(X,X?) < n*/P~1/9. Indeed, for
every € Bxa,||z||xa = 1 there exist Py,..., P, € By such that z = Y ;" | \; P,
with \; > 0,300, A < Land 1< |lzflx < 300, A [|Bil[% < 300, AY < /P71 by
homogeneity we achieve the result. Now it is easy to see that if X,Y are the spaces
appearing in Theorem 2, then d(X,X?) > C,n'/P~V4 d(Y,Y?) > C,n'/P~1/9 and
d(X9,Y?) > Cyn?7t. In particular, for ¢ = 1, d(X, X*) > C,n*/P~1 | d(Y, Y1) >
Cpn/?~t and d(X1, YY) > Cpn.
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