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Abstract. We investigate the optimization of the dual mixed volumes
{W̃i(SK), 0 ∈ SK ⊆ Dn

	
where K ⊆ Rn is a convex body, Dn the

euclidian ball and SK runs over all positions of K. When S is linear we
give necessary and sufficient conditions for K to be in extremal position
in terms of a decomposition of the identity. We consider affine problems
and we also present an approach involving parallel sections of K which
can be understood as a dual fractional Kubota formula.

1. Introduction and Notation

A large number of relevant positions of convex bodies can be characterized
as the solution of suitable defined optimization programs. These special
positions have been used in different areas of mathematics and have been
proven to be very useful tools for applications. Perhaps the first example is
the classical F. John Theorem [J] which, for a convex body K in Rn and Dn

the euclidian ball, characterizes the affine position SK that maximizes the
function vol(SK) = |SK| with the constraint SK ⊆ Dn.

In [GM], important positions of convex bodies such as, the `-position,
M -position, minimal surface area position and others, appear as solutions
of optimization problems. For instance, problems involving mixed volumes
such as min{Wi(TK) | T ∈ GL(n)} with constraint det(T ) = 1, were inves-
tigated. In this type of results, necessary and sufficient conditions are given
in terms of either a decomposition of the identity or of isotropic properties
of certain Borel measures.

More recently, in [LYZ] the extremal problem of minimizing the total Lp-
curvature was considered and it was showed that some classic problems can
be reformulated in this context. In [BR1] and [BR2], the authors started
the study of optimization programs involving dual mixed volumes with con-
straint det(T ) = 1. They obtained a complete characterization of the MM∗-
position and also of the solution of min{W̃i(TK) | T ∈ GL(n),det T = 1}
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for i ∈ (−∞, 0)∪ (n,∞), where W̃i(K) is the dual mixed volume defined as

W̃i(K) =
1
n

∫

Sn−1

ρn−i
K (u)dσ(u)

for any i ∈ R, K containing the origin (see [L1], [BR2], [Ga]) and ρK is the
radial function given by

ρK(x) = max{λ ≥ 0 : λx ∈ K}
for x ∈ Rn \ {0}. In this mixed dual volume framework, John’s theorem
can be understood as an optimization problem for W̃0(TK) with constraint
TK ⊆ Dn.

In [GMR] the authors introduced the Gauss-John position which corre-
sponds to the solution of the optimization problem W̃n+1(TK) with con-
straint TK ⊆ Dn. This is in fact the origin of this research since in that
paper the authors give necessary conditions for a centrally symmetric convex
body K to be in Gauss-John position.

In the second section of this paper we consider the optimization program
{
W̃i(TK), 0 ∈ TK ⊆ Dn, T ∈ GL(n)

}
, i ∈ R

and we investigate necessary and sufficient conditions for I, the identity, to
be the optimal solution.

By using a general optimization theorem by F. John [J], our first result
(Theorem 2.1) gives, for all indices i ∈ R, a necessary condition for K to
be in extremal position. Next, for a range of indexes we obtain sufficient
conditions and uniqueness up to orthogonal transformations (Theorem 2.4).
Depending on the index we are considering, the methods we use vary from
the simpler Lagrange multipliers technique to more delicate estimates in-
volving the Laplace-Beltrami operator.

In particular, we deduce from our results that the necessary condition
obtained in [GMR] for the Gauss-John position (i = n + 1) for a symmetric
convex body, is necessary and sufficient for general convex bodies containing
the origin.

In the third section we study the role of translations and consider, for
centrally symmetric convex bodies, the optimization of

{
W̃i(a + TK), 0 ∈ a + TK ⊆ Dn, a ∈ Rn, T ∈ GL(n)

}
.

Note that since the dual mixed volumes are not affine invariants of K and
there is no explicit formula that relates the radial functions of K and a+K,
these affine optimization problems are different from the linear ones above.
We show that affine optimization and linear optimization are equivalent
for centrally symmetric convex bodies and for a certain range of indexes.
Furthermore, we develop an alternative geometrical approach and we state
a new formula for W̃i(L) in terms of its parallel sections (see Theorem 3.4
below) with the aid of some ideas by Koldobsky in [K]. The formula is also
proved to be and extension of dual Kubota recursion formula and it is of
independent interest.
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In the last section we consider two questions that measure the distance
from the extremal positions to the euclidian ball. For K centrally symmetric,

we estimate their geometric distance and the parameter
( W̃i(Dn)

W̃i(TK)

) 1
n−i .

We denote by | · |k the k-dimensional Lebesgue measure of a subset in Rn

and for k = n we put | · |n = | · |. Notice that | · | may also represent the
euclidian norm, but the context will avoid any confusion. The rest of the
notation is standard and can be seen in [Ga], [L1] or [Sc].

2. Necessary and sufficient conditions

For any i ∈ R we consider the optimization of
{
W̃i(TK), 0 ∈ TK ⊆ Dn, T ∈ GL(n)

}
.

It is easy to see that a solution exists and that our problem is to maximize
Wi(TK) if i < n and to minimize it for i > n. Note that for i = n,
W̃i(TK) = |Dn| and there is nothing to prove.

Since W̃i(UK) = W̃i(K) for any U ∈ O(n) and any regular matrix T can
be decomposed as T = S1U = V S2 with U, V ∈ O(n) and S1, S2 symmetric
and positive definite, we can suppose that the matrix T is symmetric and
positive definite and identified with an element in Rn(n+1)/2.

Observe that 0 must actually belong to the interior of K when i > n.
Indeed, if 0 ∈ ∂K then ρK(u) = 0 at least for all u in a half sphere and so
W̃i(K) = ∞.

Theorem 2.1 (Necessary condition). Let K be a convex body such that
0 ∈ K ⊆ Dn and let i be a real number. If K is in extremal position for the
problem {W̃i(TK), TK ⊆ Dn, T ∈ GL(n)} then, there exist contact points
w1, . . . , wN ∈ ∂K ∩ Sn−1 with N ≤ n(n + 1)/2 and λ1, . . . , λN > 0 with∑N

j=1 λi = 1, such that

(2.1) I = i

∫

Sn−1

u⊗ u dµi(u) + (n− i)
N∑

j=1

λj wj ⊗ wj

where dµi(u) is the probability on Sn−1 with normalized density

dµi(u) = dµi,K(u) = ρn−i
K (u)dσ(u)/

∫

Sn−1

ρn−i
K (u)dσ(u)

and dσ(u) denotes the Lebesgue measure on Sn−1.

Proof. By using polar coordinates it is easy to check that

W̃i(TK) =
|n− i|

n
detT

∫

Ki

dx

|Tx|i ,

where Ki =
{

K, if i < n,
Rn \K, otherwise .
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Assume that K is in extremal position. It is clear that the compact
W = ∂K ∩Sn−1 must be not empty. The result can be obtained as a direct
consequence of a well known theorem of John (see [J]).

Theorem 2.2 (John). Let Ω ⊂ Rm, Ω1 ⊂ Rl be (non empty) open sets and
S ⊂ Ω1 compact. Let F : Ω → R and G : Ω× Ω1 → R be C1) functions. Let
A = {x ∈ Ω | G(x, y) ≥ 0, ∀ y ∈ S}. If F attains its minimum value at
x0 ∈ A, then there exist y1, . . . , ys ∈ S and λ0, λ1, . . . , λs ∈ R such that

• 0 ≤ s ≤ m and λ0 ≥ 0, λ1, . . . , λs > 0.
• G(x0, y1) = · · · = G(x0, ys) = 0.
• The function Φ(x) = λ0F (x)−∑s

j=1 λjG(x, yj) verifies ∇Φ(x0) = 0.

Let Ω1 = Rn and S = K. Let Ω ⊆ Rn(n+1)/2 be defined by

Ω = {T ∈ Rn(n+1)/2 |
∫

Ki

dx

|Tx|i < ∞}

and G : Ω × Ω1 → R be the function given by G(T, x) = 1 − |T (x)|2. The
set A = {T ∈ Ω | G(T, x) ≥ 0, ∀x ∈ K} is just the set of elements T ∈ Ω
such that TK ⊆ Dn. A is a compact convex set.

In the case i > n, we want to find necessary conditions for the identity I
to be an minimum of F (T ) = W̃i(TK) on A (the case i < n is the same by
just considering the function −F ).

By direct computation, it is easy to show that

• ∂G(T, x)
∂T

(I, x) = −2(x⊗ x).

• ∂F (T )
∂T

(I) = W̃i(K)I +
i− n

n

∫

Ki

(−i)
|x|i+2

(x⊗ x) dx.

So, by John’s theorem there exist y1, . . . , ys ∈ ∂K ∩ Sn−1 and λ0 ≥ 0,
λ1, . . . , λs > 0 such that

λ0

(
W̃i(K)I +

i− n

n

∫

Ki

(−i)
|x|i+2

(x⊗ x) dx

)
+

s∑

k=1

λkyk ⊗ yk = 0.

By taking trace in the equation, λ0(n− i)W̃i(K) +
s∑

k=1

λk = 0 and so, if we

write tk = λk

λ0(i−n)W̃i(K)
, we have that

s∑

k=1

tk = 1 with tk > 0 for all k and

I

i− n
− i

n

∫

Ki

x⊗ x

|x|i+2

dx

W̃i(K)
+

s∑

k=1

tkyk ⊗ yk = 0.

If we finally take polar coordinates the result in the statement of the theorem
holds. ¤

An alternative proof of Theorem 2.1 could have been made using separa-
tion theorems techniques in the spirit of [Ba].
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Remark 2.3. Recall that a Borel measure µ on Sn−1 is isotropic if there
exists c > 0 such that its inertial matrix is multiple of the identity, that is

∫

Sn−1

u⊗ u dµ(u) = cI.

Now, condition (2.1) can be seen as the isotropy of a (real) measure whose
absolutely continuous part (with respect to the Lebesgue measure on Sn−1)
is idµi and its singular part is concentrated on contact points. For i = 0
(John’s theorem) we only have singular part.

Theorem 2.4 (Sufficient condition). Assume that a convex body 0 ∈ K ⊆
Dn satisfies the condition (2.1). Then,

(1) If i ∈ [−2, 0] ∪ [n + 1,+∞), K is in extremal position.

(2) If i ∈ (−∞,−2) ∪ (0, n) and the measure dµi is isotropic, K is in
extremal position.

Moreover, the position of K is unique up to orthogonal transformations.

Proof. For simplicity, we express the necessary condition (2.1) as

I = i

∫

Sn−1

u⊗ u dµi(u) + (n− i)
∫

Sn−1

w ⊗ w dν(w)

where dν is a probability measure concentrated on W = ∂K ∩ Sn−1.

This implies that, for every diagonal matrix D,

(2.2) tr(D) = i

∫

Sn−1

〈u,Du〉 dµi(u) + (n− i)
∫

Sn−1

〈ω, Dω〉 dν(ω).

Let T be a symmetric positive definite matrix such that TK ⊆ Dn. Write
T = U∗DU where U ∈ O(n) and D a diagonal matrix D = (dj) with dj > 0.
Denote UK = K1 and observe that DK1 ⊂ Dn and, moreover, that it also
verifies (2.1) and (2.2) with measures dµ̃i = dµi,K1 and dν̃ supported on
∂K1 ∩ Sn−1 (the image measure of dν under U).

Case i ≥ n + 1.
We want to show that W̃i(DK1) ≥ W̃i(K1).
By using Laplace-Beltrami operator the following identity was stated in

[BR2] (Proposition 2.2)

(n− i)
∫

Sn−1

〈5hK◦
1
(u), D−1u〉ρn−i+1

K1
(u)dσ(u) =

= tr(D−1)
∫

Sn−1

ρn−i
K1

(u)dσ(u)− i

∫

Sn−1

ρn−i
K1

(u)〈u,D−1u〉dσ(u),

where K◦
1 is the polar set of K1 and hK◦

1
(x) its support function.
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Now, Holder’s inequality for the conjugate indexes p = i−n and q = i−n
i−n−1

yields (the case i = n + 1 is a trivial equality),
∫

Sn−1

h(DK1)◦(u)ρn−i+1
K1

(u)dσ(u)

≤
(∫

Sn−1

hi−n
(DK1)◦(u)dσ(u)

) 1
i−n

(∫

Sn−1

ρn−i
K1

(u)dσ(u)
) i−n−1

i−n

.

That is,

W̃i(DK1)
1

i−n ≥ W̃i(K1)
1

i−n
−1 1

n

∫

Sn−1

h(DK1)◦(u).ρn−i+1
K1

(u)dσ(u).

By the inequality h(DK1)◦(u) ≥ 〈5hK◦
1
(u), D−1u〉 (see [Sc], p. 40) and

formula above we have

W̃i(DK1)
1

i−n ≥ W̃i(K1)
1

i−n
−1 1

n

∫

Sn−1

〈5hK◦
1
(u), D−1u〉ρn−i+1

K1
(u)dσ(u) =

= Wi(K1)
1

i−n

[
1

n− i
tr(D−1) − i

n− i

∫

Sn−1

〈u,D−1u〉dµ̃i(u)
]

.

On the other hand, by the necessary condition (2.2),

W̃i(DK1)
1

i−n ≥ W̃i(K1)
1

i−n

∫

Sn−1

〈ω, D−1ω〉 dν̃(ω).

Observe that for any D ∈ GL(n) diagonal 〈ω, ω〉2 ≤ 〈ω, Dω〉〈ω, D−1ω〉. So,

1 =
∫

Sn−1

〈ω, ω〉2 dν̃(ω) ≤
∫

Sn−1

〈ω,Dω〉 〈ω, D−1ω〉 dν̃(ω)

≤
∫

Sn−1

〈ω,D−1ω〉 dν̃(ω),

and since DK1 ⊂ Dn, we have 〈ω, Dω〉 ≤ 1. Therefore, W̃i(DK1) ≥ W̃i(K1).

Case i ∈ [−2, 0].

Clearly,

W̃i(DK1)
W̃i(K1)

= det(D)
∫

Sn−1

|Du|−i dµ̃i(u) ≤ det(D)
(∫

Sn−1

|Du|2 dµ̃i(u)
)− i

2

= det(D)
(∫

Sn−1

〈u,D2(u)〉 dµ̃i(u)
)− i

2

.
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On the other hand, by the necessary condition (2.2) and DK1 ⊆ Dn,
∫

Sn−1

〈u,D2(u)〉 dµ̃i(u) =
tr(D2)

i
− n− i

i

∫

Sn−1

〈ω, D2ω〉 dν̃(ω)

=
tr(D2)

i
− n− i

i

∫

Sn−1

|D(ω)|2 dν̃(ω)

≤ 1
i
(tr(D2)− (n− i)) ≤ det(D)2/i.

The last inequality is a consequence of a linealization of Holder’s inequality
for negative exponents. Indeed, let a1, . . . , an > 0 and p > 0. The two
following facts are elementary
( 1

n

n∑

j=1

a−p
j

)−1/p
≤

( n∏

j=1

aj

)1/n
and 1− 1

p
(x− 1) ≤ x−1/p, x > 0.

As a consequence we have that

1− 1
p

( 1
n

n∑

j=1

a−p
j − 1

)
≤

( n∏

j=1

aj

)1/n

and the result follows by taking p = −i/n, aj = d
2n/i
j , 1 ≤ j ≤ n.

Case i ∈ (∞,−2) ∪ (0, n).

We use once again the fact that if a Borel measure dµ on Sn−1 is isotropic,
then U(dµ), its image measure under U ∈ O(n) is also isotropic. This
implies that, as in the previous cases, we can restrict ourselves to D diagonal
matrices such that DK ⊆ Dn.

If DK ⊆ Dn then
∫

Sn−1

|Dω|2 dν(ω) ≤ 1 and so, by the necessary condi-

tion (2.2) and since dµi is isotropic, it is enough to show

W̃i(DK)
W̃i(K)

=
( n∏

j=1

dj

)∫

Sn−1

|Du|−idµi(u) ≤ 1

under the (weaker) constraint
n∑

j=1

d2
j ≤ n. This function has a maximum

value but, by differentiating, it cannot be attained at interior point.

It remains to study max{W̃i(DK)
W̃i(K)

} under the constraint
n∑

j=1

d2
j = n. By

the AM-GM inequality,
( n∏

j=1

d2
j

)1/n
≤ 1

n

( n∑

j=1

d2
j

)
≤ 1 so,

n∏

j=1

dj ≤ 1. Hence,

it suffices to show g(D) =
∫

Sn−1

|Du|−idµi(u) ≤ 1 under the constraint
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n∑

j=1

d2
j = n. By using Lagrange multipliers we get that every extreme point

satisfies
−i

∫

Sn−1

|Du|−i−2u2
jdµi(u) = 2λ

for all j = 1, . . . , n and some λ ∈ R. Therefore,

g(D) =
∫

Sn−1

|Du|−idµi(u) =
n∑

j=1

d2
j

∫

Sn−1

|Du|−i−2u2
jdµi(u) =

2λn

−i
.

Hence,∫

Sn−1

|Du|−idµi(u) = n

∫

Sn−1

|Du|−i−2u2
jdµi(u) (for each j)

=
∫

Sn−1

|Du|−i−2
n∑

j=1

u2
jdµi(u)

=
∫

Sn−1

|Du|−i−2dµi(u).

If i < −2 by Holder’s inequality (p = −i/(−i− 2) > 1) we get that
∫

Sn−1

|Du|−i−2dµi(u) ≤
(∫

Sn−1

|Du|−idµi(u)
)1+2/i

=
(∫

Sn−1

|Du|−i−2dµi(u)
)1+2/i

,

which implies
(∫

Sn−1

|Du|−i−2dµi(u)
)−i/2

≤ 1 and therefore g(D) ≤ 1.

If i ∈ (0, n) we take p = (−i − 2)/(−i) > 1 and we use again Hölder
inequality to obtain that

∫

Sn−1

|Du|−i dµi(u) ≤
(∫

Sn−1

|Du|−i−2dµi(u)
)−i/(−i−2)

=
(∫

Sn−1

|Du|−idµi(u)
)−i/(−i−2)

,

which implies g(D) =
∫

Sn−1

|Du|−idµi(u) ≤ 1.

The uniqueness (up to orthogonal transformations) is obvious in all cases
due to the consequences of having an equality in the corresponding inequal-
ities. ¤
Remark 2.5. In the particular case when K is the unit ball of a 1-symmetric
norm, both the absolutely continuous and the singular parts are isotropic,
it verifies the necessary condition (2.1) for all i and so K is in extremal
position for all indexes in theorem 2.4.
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3. From the linear problem to the affine problem for
centrally symmetric convex bodies

The results in the previous section characterize, for a range of indexes,
the position of a convex body that is the solution of certain linear problem.
Since the dual mixed volumes are not affine invariant one can wonder if we
can also characterize the solution of a affine extremal problem of the type

max{W̃i(a + TK); 0 ∈ a + TK ⊆ Dn, a ∈ Rn, T ∈ GL(n)} (i < n),

min{W̃i(a + TK); 0 ∈ a + TK ⊆ Dn, a ∈ Rn, T ∈ GL(n)} (i > n).

By making use of John’s theorem it is possible to state some necessary
conditions of the extremal positions but, in general, we can’t prove that they
are sufficient. Despite this inconvenience, if K is centrally symmetric we go
further and prove that, for positive indexes, the linear extremal problem and
the affine one have the same solution.

We start with a simple observation that shows that the origin plays an
special role for symmetric convex bodies.

Lemma 3.1. Let L ⊆ Dn, symmetric with respect to a point a ∈ Rn. Then,
(i) L− a ⊆ Dn

(ii) ∂(L− a) ∩ Sn−1 6= ∅ implies that a = 0.

Proof. Let x ∈ L. Since 2a− x ∈ L, by the convexity and symmetry of Dn

we have x− a = x/2 + (x− 2a)/2 ∈ Dn.
Let x ∈ L such that x− a ∈ ∂(L− a) ∩ Sn−1. Then,

1 = |x− a| ≤
∣∣∣x
2

∣∣∣ +
∣∣∣∣
x− 2a

2

∣∣∣∣ ≤ 1

and so this forces x− 2a = λx, for some λ ≥ 0 and |x| = |x− 2a| = 1 which
means λ = 1 and a = 0. ¤

In the next proposition the first assertion in the previous lemma will
allow us to reduce the affine problem to the comparison of W̃i(TK) and
W̃i(a+TK). The second one will imply that the extreme values are attained
only when a = 0.

Proposition 3.2. Let K ⊆ Rn be a centrally symmetric convex body. Then,
(i) If i > n,

min{W̃i(TK); TK ⊆ Dn}
=min{W̃i(a + TK); 0 ∈ a + TK ⊆ Dn}.

(ii) If 0 ≤ i < n,

max{W̃i(TK); TK ⊆ Dn}
=max{W̃i(a + TK); 0 ∈ a + TK ⊆ Dn}.
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Proof. (i) If we let 0 ∈ a + TK ⊆ Dn, in order to prove that

W̃i(a + TK) ≥ min{W̃i(TK); TK ⊆ Dn, T ∈ GL(n)}
it is enough to show W̃i(a+TK) ≥ W̃i(TK), since, by Lemma 3.1., a+TK ⊆
Dn implies TK ⊆ Dn.

If 0 is not an interior point of a + TK, W̃i(a + TK) = +∞ ≥ W̃i(TK),
while if 0 is an interior point, since f(x) = xn−i is a convex function on
(0, +∞),

W̃i(a + TK) =
1
n

∫

Sn−1

1
2
ρn−i

a+TK(u) +
1
2
ρn−i

a+TK(−u) dσ(u)

≥ 1
n

∫

Sn−1

(
1
2
ρa+TK(u) +

1
2
ρa+TK(−u)

)n−i

dσ(u),

but if we denote by Eu the 1-dimensional subspace given by u ∈ Sn−1, then
ρa+TK(u) + ρa+TK(−u) = (a + TK) ∩Eu. Therefore, since TK is centrally
symmetric and by the 1-dimensional Brunn-Minkowski inequality, we get
that

W̃i(a + TK) ≥ 1
n

∫

Sn−1

( |(a + TK) ∩ Eu|
2

)n−i

dσ(u)

≥ 1
n

∫

Sn−1

( |TK ∩ Eu|
2

)n−i

dσ(u)

=
1
n

∫

Sn−1

ρn−i
TK (u) dσ(u) = W̃i(TK).

(ii) As before, it is enough to prove that if 0 ∈ a + TK ⊆ Dn, then

(3.3) Wi(a + TK) ≤ Wi(TK).

Recall that

Wi(a + TK) =
n− i

n

∫

TK

dx

|x− a|i
so the inequality (3.3) is a direct consequence of the following lemma, since
dµ(x) = χTK(x)dx is symmetric and log-concave and the function | · |−i is
quasiconcave (and so unimodal, see [Bh]).

Lemma 3.3. Let µ be a symmetric log-concave measure on Rn and let f
be a unimodal function on Rn (i.e. a function which is an increasing point-
wise limit of positive linear combinations of indicator functions on centrally
symmetric convex in Rn, see [Bh]), then

∫

Rn

f(x− a)dµ(x) ≤
∫

Rn

f(x)dµ(x)

for all a ∈ Rn.
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Proof of the Lemma. It is well known that µ(a + D) ≤ µ(D) for any
a ∈ Rn and D a centrally symmetric bounded convex set in Rn. Since f is
unimodal we have

fm(x) =
Nm∑

j=1

am,jχDm,j (x) ↑ f(x)

for all x ∈ Rn, where am,j > 0, Dm,j are symmetric bounded convex sets for
m = 1, 2, . . . and j = 1, 2, . . . , Nm. It is now clear that∫

Rn

fm(x− a)dµ(x) ≤
∫

Rn

fm(x)dµ(x)

and therefore the monotone convergence theorem gives the result.
¤

3.1. A geometric tomography approach. Taking into account the proof
of the case i > n in proposition 3.2, we wonder if an alternative geometrical
argument involving sections (in the spirit of the geometric tomography)
could be used for proving (3.3) in the range 0 < i < n.

The answer is affirmative when i ∈ (n− 1, n) and i = 1, . . . , n− 1 simply
by computing central sections while for the other values of i > 0 we need to
deal with averages of parallel sections. Let us describe this approach in this
subsection.

Since the function f(x) = xn−i is concave we could proceed for i ∈ [n −
1, n) as in the case (i) in proposition 3.2.

Let i = 1, . . . , n − 1. If dµ denotes the Haar measure on the Grassman
manifold G(n, n− i) of all (n− i)-dimensional subspaces of Rn and dµE the
Haar measure on the sphere in the subspace E ⊆ Rn, it is easy to check
(see, for example [Ga], [L2], [GV]) that

W̃i(a + TK) = Cn

∫

G(n,n−i)

∫

Sn−1∩E
ρn−i

a+TK(u) dµE(u) dµ(E)

= Cn

∫

G(n,n−i)
|(a + TK) ∩ E|n−i dµ(E),

where Cn is a renorming constant. This formula is known as the dual Kubota
formula. By Brunn-Minkowski inequality and since K is centrally symmet-
ric, |(a + TK) ∩E|n−i ≤ |TK ∩E|n−i and so this fact would directly imply
that

W̃i(a + TK) ≤ Cn

∫

G(n,n−i)
|TK ∩ E|n−i dµ(E) = W̃i(TK).

In order to go further with other indexes we first prove the formula (3.4)
that relates the dual mixed volumes W̃i(L) and the parallel sections of L.
This is shown to be an extension of dual Kubota formula for the range i < n
and it has an independent interest.

We need to introduce some notation. Consider the orthogonal group
O(n) equipped with its normalized Haar measure dν. We identify each
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U ∈ O(n) with the n-tuple (ξ1, . . . , ξn) of orthonormal vectors in Rn such
that Uej = ξj , j = 1 . . . n, where (ej) is the canonical basis in Rn. We denote
by Uk = (ξ1, . . . , ξk) the n×k matrix composed by the k first columns of U .

For 1 ≤ k ≤ n, L ⊂ Rn a star body, U ∈ O(n) and s = (s1, . . . , sk), we
denote,

AL
Uk

(s) =
∣∣∣L ∩ (s1ξ1 + . . . skξk + {ξ1, . . . , ξk}⊥)

∣∣∣
n−k

.

For k = n this definition should be understood as a characteristic function,
that is, AL

Un
(s) = 1 if

∑
sjξj ∈ L and AL

Un
(s) = 0 otherwise.

Theorem 3.4. Let L ⊂ Rn be a star body and let i ∈ R and k ∈ N with
i < k ≤ n, k ∈ N. Then

(3.4) W̃i(L) = c(n, k, i)
∫

Rk

(∫

O(n)
AL

Uk
(s) dν(U)

)
ds

|s|i

where c(n, k, i) =
(n− i)

n

Γ(k
2 )Γ(n−i

2 )

Γ(n
2 )Γ(k−i

2 )
.

Proof. Observe that, since the function AL
Uk

is of bounded support and i < k,
the right hand side integral is finite.

Assume that U ∈ O(n). By Fubini’s theorem is clear that
∫

Rk

AL
Uk

(s)
ds

|s|i =
∫

Rn

|(〈x, ξ1〉, . . . , 〈x, ξk〉)|−i χL(x)dx.

Now, again by Fubini’s theorem,
∫

O(n)

∫

Rk

AL
Uk

(s)
ds

|s|i dν(U) =
∫

O(n)

∫

L
|(〈x, ξ1〉, . . . , 〈x, ξk〉)|−i dx dν(U)

=
∫

L

dx

|x|i
∫

O(n)

∣∣∣∣
(
〈 x

|x| , ξ1〉, . . . , 〈 x

|x| , ξk〉
)∣∣∣∣
−i

dν(U).

By the orthogonal invariance of dν and 〈·, ·〉, the inner integral is independent

of x, that is,
∫

O(n)
|(〈e, ξ1〉, . . . , 〈e, ξk〉)|−i dν(U) is constant on e ∈ Sn−1. If

we denote this integral as I(k, n) we have thus proved so far that

I(k, n)
n

n− i
W̃i(L) =

∫

Rk

(∫

O(n)
AL

Uk
(s) dν(U)

)
ds

|s|i .

Since the formula above holds for any L we consider L = Dn. Clearly,
W̃i(Dn) = |Dn|. On the other hand, ADn

Uk
(s) is independent of ξ1, . . . , ξk and

ADn
Uk

(s) = χDk
(s)(1− |s|2)n−k

2 |Dn−k|.
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Therefore,
∫

Rk

(∫

O(n)
AL

Uk
(s) dν(U)

)
ds

|s|i = |Dn−k|
∫

Dk

(1− |s|2)n−k
2

ds

|s|i .

And, by integrating in polar coordinates and ϕ being normalized, this is
equal to

k|Dk| |Dn−k|
(∫ 1

0
rk−1−i(1− r2)

n−k
2 dr

)
.

By direct computation,
∫ 1

0
rk−1−i(1−r2)

n−k
2 dr =

1
2
β(

n− k

2
+1,

k − i

2
) and

so, c−1(n, k, i) =
k|Dk| |Dn−k|

2|Dn| β(
n− k

2
+ 1,

k − i

2
).

Finally, recall that |Dm| = πm/2

Γ(1 + (m/2))
and β(a, b) =

Γ(a)Γ(b)
Γ(a + b)

, a, b > 0

to simplify c(n, k, i). ¤

The following corollary shows that, as i → k−, we recover the formula
for W̃k(L) in terms of the central sections of L, that is, the dual Kubota
formula (see [L2], [GV]).

Corollary 3.5. Let L ⊂ Rn be a star body, i < k ≤ n− 1, k, n ∈ N. Then,

lim
i→k−

c(n, k, i)
∫

Rk

(∫

O(n)
AL

Uk
(s) dν(U)

)
ds

|s|i = cn,k

∫

G(n,n−k)
|E ∩ L|n−k dµ(E)

Proof. Let φ be C1)-function of compact support on Rk. Then, by integrating
in polar coordinates,

1
Γ

(
k−i
2

)
∫

Rk

φ(s)
|s|i ds =

1
Γ

(
k−i
2

)
∫ ∞

0
rk−1−i

∫

Sk−1

φ(rθ) dσ(θ) dr.

Denote Φ(r) =
∫

Sk−1

φ(rθ) dσ(θ) which is also C1)-function of compact sup-

port on R. By integration by parts we have

1
Γ

(
k−i
2

)
∫ ∞

0
rk−1−iΦ(r) dr =

1
(k − i)Γ

(
k−i
2

)
∫ ∞

0
rk−iΦ′(r) dr.

Now, since lim
i→k−

(k − i)Γ(
k − i

2
) = 2,

lim
i→k−

1
Γ

(
k−i
2

)
∫

Rk

φ(s)
|s|i ds =

1
2
σ(Sk−1)φ(0).

And so, by an approximation argument we have that

lim
i→k−

∫

Rk

(∫

O(n)
AL

Uk
(s) dν(U)

)
ds

|s|i = cn,k

∫

O(n)
AL

Uk
(0) dν(U).
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Now, by the integration formula in [K] Lemma 1 which is consequence of
the conditional expectation theorem,

∫

O(n)
AL

Uk
(0)dν(U) =

∫

G(n,k)
dµ(E)

∫

ξ1,...,ξk∈E
AL

Uk
(0)dν(Uk)

where dν(Uk) is the Haar measure in O(k). Finally, since AL
Uk

(0) = |L ∩
{ξ1, . . . , ξk}⊥|n−k and the uniqueness properties of dµ
∫

O(n)
AL

Uk
(0)dν =

∫

G(n,k)
|L ∩ E⊥|n−kdµ(E) =

∫

G(n,n−k)
|L ∩H|n−kdµ(H).

¤

Remark 3.6. Let f be a (say) continuous non-negative function on Sn−1. Let
i ∈ R, k ∈ N as in 3.4. Consider the set L = {x ∈ Rn; f̃(x) ≥ 1}, where f̃
denotes the (i−n)-homogeneous extension of f on Rn\{0}. L is clearly a star
shaped body and its corresponding radial function is ρL(u) = f(u)1/(n−i),
for all u ∈ Sn−1. Then, by the same arguments as in the proof of theorem
3.4,

∫

Sn−1

f(u)dµ(u) = c(n, k, i)
∫

Rk

(∫

O(n)
AL

Uk
(s)dν(U)

)
ds

|s|i .

Moreover, by taking limits as in 3.5 and integrating in polar coordinates we
recover the formula

∫

Sn−1

f(x)dµ(x) = cn,k

∫

G(n,n−k)
|L ∩H|n−kdµ(H)

=
∫

G(n,n−k)
dµ(H)

∫

Sn−1∩H
f(x) dµH(x),

which in particular also implies the recursion dual Kubota formula ([Ga],
[L2], [GV]).

We return to the inequality (3.3). Let 0 < i < k ≤ n− 1. Now it is clear
that W̃i(a + TK) ≤ W̃i(TK) since

W̃i(a + TK) = cn,k,i

∫

O(n)

(∫

Rk

Aa+TK
Uk

(s)
ds

|s|i
)

dν(U)

= cn,k,i

∫

O(n)

(∫

Rk

ATK
Uk

(s)
ds

|s− bU |i
)

dν(U)

where bU = (〈a, ξ1〉, . . . , 〈a, ξk〉) for any U(ξ1, . . . , ξn) ∈ O(n). Since the
function ATK

Uk
(s) is even and log-concave by Brunn-Minkowski inequality,

we easily deduce (3.3).
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4. Further remarks.

The results in section 2 allow us estimate two parameters that measure
the distance between the extremal positions and the euclidian ball.

For K, L ⊂ Rn, their geometric distance is defined as

dG(K,L) = inf{ab | 1
a
K ⊆ L ⊂ bK, a, b > 0}.

Theorem 4.1. Let K ⊆ Dn be a centrally symmetric convex body and i 6= n
and assume that K is in extremal position for the functional W̃i(TK). Then

an,iDn ⊆ K ⊆ Dn,

where

(4.5) an,i =





1√
n−i

for i < 0,√
1−i
n−i for 0 ≤ i < 1,

1√
n

(
Γ(n

2 )Γ( i−n+1
2 )√

π Γ( i
2)

)1/(i−n)

for i ∈ (n,∞).

Proof. By Theorem 2.1, K verifies

In = i

∫

Sn−1

u⊗ u dµi(u) + (n− i)
N∑

j=1

λj wj ⊗ wj .

Let y ∈ K◦. Then |〈y, wj〉| ≤ 1, for all 1 ≤ j ≤ N and so

1
n− i

∫

Sn−1

(|y|2 − i|〈u, y〉|2) dµi(u) ≤
N∑

j=1

λj = 1.

If 0 ≤ i < 1, we have
1− i

n− i

∫

Sn−1

|y|2dµi(u) ≤
N∑

j=1

λj = 1, which implies

|y| ≤
√

n− i

1− i
and so

√
1− i

n− i
Dn ⊆ K ⊆ Dn.

If i < 0, we have in this case 1 ≥ 1
n− i

∫

Sn−1

|y|2dµi(u) =
|y|2
n− i

and

1√
n− i

Dn ⊆ K ⊆ Dn.

If i > n, use the inequality |〈y, wj〉| ≤ |y|, for all 1 ≤ j ≤ N and so

1
n− i

∫

Sn−1

(|y|2 − i|〈u, y〉|2) dµi(u) ≤ |y|2
N∑

j=1

λj = |y|2

or equivalently, (i− n + 1)|y|2 ≥ i

∫

Sn−1

|〈u, y〉|2dµi(u).
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Since ρK(u)−1 = ‖u‖K ≥ |〈u, y〉| we have
∫

Sn−1

|〈u, y〉|2ρK(u)n−idσ(u) ≥
∫

Sn−1

|〈u, y〉|i−n+2dσ(u)

=
2π

n−1
2 Γ

(
i−n+3

2

)

Γ
(

i+2
2

) |y|i−n+2.

Assume that K1 is John position for K. Then 1√
n

Dn ⊆ K1 ⊆ Dn and
1/
√

n ≤ ρK1(u) ≤ 1, for all u ∈ Sn−1. Thus

W̃i(K) ≤ W̃i(K1) ≤
(

1√
n

)n−i

|Dn|

and therefore
∫

Sn−1

|〈u, y〉|2dµi(u) ≥ (
√

n)n−i

n|Dn|
2π

n−1
2 Γ

(
i−n+3

2

)

Γ
(

i+2
2

) |y|i−n+2

≥ n(n−i)/2(i− n + 1)Γ
(

n
2

)
Γ

(
i−n+1

2

)

π
1
2 iΓ

(
i
2

) |y|i−n+2.

Hence, |y| ≤ √
n

( √
π Γ

(
i
2

)

Γ
(

n
2

)
Γ

(
i−n+1

2

)
)1/(i−n)

and the result follows.

¤

Finally, the second parameter is
( W̃i(Dn)

W̃i(TK)

) 1
n−i , a natural extension of

the volume ratio (i = 0), for the extremal position of K. It turns out that
the estimate using John’s position provides sharp upper bound, being the
reason that for unit balls of 1-symmetric norms all positions coincide.

Proposition 4.2. Let K ⊆ Rn a centrally symmetric convex body and i 6= n.
There exists position TK ⊆ Dn such that

1 ≤
( W̃i(Dn)

W̃i(TK)

)1/(n−i)
≤ √

n.

Proof. We consider TK ⊆ Dn the maximal volume (i = 0) position of
K contained in Dn. It is well known that 1√

n
Dn ⊆ TK ⊆ Dn, which is

equivalent to 1√
n
ρDn(x) ≤ ρTK(x) ≤ ρDn(x)∀x ∈ Rn \ {0} and so,

1 ≤
( W̃i(Dn)

W̃i(TK)

)1/(n−i)
≤ √

n.

¤

Remark 4.3. For a range of indexes we can prove that these bounds are
sharp for K = Bn

1 the `n
1 -ball. Indeed, it is clear that Bn

1 ⊆ Dn satisfies
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(2.1) and a standard computation gives

W̃i(K) = |Dn|
2n/2Γ

(
n
2 + 1

)

n2
i−2
2 Γ

(
i
2

) E

∥∥∥∥∥∥

n∑

j=1

gjej

∥∥∥∥∥∥

i−n

1

where the gj ’s are i.i.d. normalized Gaussian variables. Fix p = i − n ≥ 1.
By Hölder’s inequality,

E

∥∥∥∥∥∥

n∑

j=1

gjej

∥∥∥∥∥∥

p

1

≥ np (E|g1|)p .

Now, by using Stirling’s formula it is easy to see that, asymptotically in n,

W̃i(K) ≥ Cpnp/2|Dn|,
which this gives the result.
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