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Abstract. We prove sharp end forms of Holmstedt’s reiteration theorem which are

closely connected with a general form of Gehring’s Lemma. Reverse type conditions
for the Hardy-Littlewood-Polya order are considered and the maximal elements are

shown to satisfy generalized Gehring conditions. The methods we use are elementary

and based on variants of reverse Hardy inequalities for monotone functions.

1. Introduction

Given a fixed initial pair of compatible spaces, interpolation theory provides us
with methods to construct scales of spaces with the interpolation property. The
classical methods of interpolation all share the following reiteration principle: by
iteration these constructions do not generate new spaces. Reiteration theorems
thus play a central role in these theories. In particular reiteration simplifies the
process of identification of interpolation spaces. Holmstedt’s reiteration formula,
for the real method of interpolation (cf. [Ho]), provides quantitative estimates
and plays an important role in a manifold of applications to classical analysis and
approximation theory.

Let Ā be a pair of compatible Banach spaces, 0 < θ0 < θ1 < 1, 0 < qi ≤ ∞, i =
0, 1, η = θ1 − θ0, then Holmstedt’s formula states that

K(t, f ; Āθ0,q0 , Āθ1,q1) ≈

{∫ t1/η

0

(s−θ0K(s, f ; Ā))q0
ds

s

}1/q0

+ t

{∫ ∞
t1/η

(s−θ1K(s, f ; Ā))q1
ds

s

}1/q1

.

(1.1)

Holmstedt’s formula is also valid if θ0 = 0 or θ1 = 1. For example, if θ1 = 1 we
have

(1.2) K(t, f ; Āθ0,q0 , A1) ≈

{∫ t1/(1−θ0)

0

(s−θ0K(s, f ; Ā))q0
ds

s

}1/q0

.
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In [Mi], [BMR1], [MM] a connection between Holmstedt’s reiteration formula and
Gehring’s Lemma (cf. [Ge] and [Iw] for a recent survey) was established and new
methods to prove general forms of self improving inequalities, containing Gehring’s
Lemma as a particular case, were developed in the general context of real interpo-
lation spaces. This general formulation is not only of theoretical interest but also
gives new results in the classical setting. For example, it provides new methods to
deal with the case of non-doubling measures through the use of suitable substitutes
for the maximal operator of Hardy-Littlewood (for more on this we refer to [MM].)

In this note we reverse the flow and show how certain estimates for averages, that
are naturally associated with reverse Hölder inequalities, can be used to give new
sharp reiteration formulae of Holmstedt’s type. We also apply reiteration formulae
to obtain results related to the classical theory of weighted norm inequalities.

In [Ho] one can find estimates for the constants implicit in (1.1) and (1.2).
This formulae often plays a crucial role in applications of interpolation theory to
analysis, and has been extensively studied and extended in several directions by
many authors. For detailed studies of reiteration theorems of Holmstedt type, as
well as extensive lists of references, we refer the reader to [BK], [BL], [BS], [Ni] and
[Ov].

If one becomes fuzzy about constants one can notice some slight defects of (1.1)
or (1.2), which ironically are associated with some of the best features(!) of the
formulae, namely its compactness and intuitive form. Indeed, Holmstedt’s elegant
formulation is achieved through collecting together terms with a consequent worsen-
ing of some constants of equivalence. In most applications this minor imperfection
is of little consequence if any, but it does become a crucial issue for certain prob-
lems. For example, in the theory of extrapolation developed in [JM] careful control
of the constants involved is necessary and the different terms implicit in (1.1) and
(1.2) need to be kept under separate control. For example the following reiteration
formula was obtained by Jawerth and Milman in [JM]

K(t, f ; Āθ0,q, Āθ1,q) ≈ cθ0,q

{∫ t1/η

0

(s−θ0K(s, f ; Ā))q
ds

s

}1/q

+ tcθ1,q

{∫ ∞
t1/η

(s−θ1K(s, f ; Ā))q
ds

s

}1/q

+ t−θ0/ηK(t1/η, f ; Ā),

(1.3)

where cθi,q =
(

(1− θi)θiq
′
)1/q′

, i = 0, 1.
In this note we prove an end point version of (1.3) in the spirit of Holmstedt’s

original end point formula (1.2). Let us explain in more detail what we are going
to do. Suppose that after having generated the space Āθ0,p we want to further
interpolate between (Āθ0,p, A1)η,q = Āθ1,q, and A1, with θ1 = (1 − η)θ0 + η, i.e.
η = θ1−θ0

1−θ0 , then, according to (1.2) applied to the pair (Āθ0,p, A1), we will have

K(t, f ; Āθ1,q, A1) ≈ cη,p,q

{∫ t1/1−η

0

[
s−ηK(s, f ; Āθ0,p, A1)

]q ds
s

}1/q

,

or alternatively we can apply (1.2) directly, i.e. use Ā as our base pair, in which
case the constant of equivalence will depend on θ1, q. In Theorem (2.11) below we
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shall prove that if θ0 = 1/p′, θ1 = 1/q′, then

K(t1−θ1 , f ; Āθ1,q, A1) ≤ cη,p,q,θ1K(t1−θ1 , f ; Āθ1,q, A1)

+ ct−
η

1−ηK(t1/1−η, f ; Āθ0,p, A1),

(HO)

with cη,p,q,θ → 0 when η → 0, that is when θ1 → θ0. In connection with the second
term in (HO) note that

t−
η

1−ηK(t1/1−η, f ; Āθ0,p, A1) = t
K(t1/1−η, f ; Āθ0,p, A1)

t1/1−η
,

and since K(s,f ;Āθ0,p,A1)

s decreases,

t
K(t1/1−η, f ; Āθ0,p, A1)

t1/1−η

≤ (1− η)1/qq1/q

{∫ t1/1−η

0

[
K(s, f ; Āθ0,p, A1)

s

]q
s(1−η)q ds

s

}1/q

= (1− η)1/qq1/q

{∫ t1/1−η

0

[
K(s, f ; Āθ0,p, A1)s−η

]q ds
s

}1/q

,

which is (by Holmstedt’s formula) again comparable with K(t, f ; Āθ1,q, A1). There-
fore the second term of (HO) will vanish when θ1 → 1, i.e. when η → 1. In other
words if constants were not an issue we could do just as well with Holmstedt’s
original formula. The decoupling that we have achieved in this fashion can be
exploited to our advantage for certain crucial estimates for functions that satisfy
reverse Hölder inequalities (cf. Example (2.7) below). The (minor) price we pay is
that we need to assume that the right hand side is finite in order to be able to use
the formula (cf. Example (2.7) for more on this.)

The proof of this result involves the use of some elementary variants of reverse
Hardy inequalities valid only for monotone functions. The connection between
reverse Hardy inequalities and Gehring’s Lemma has been noted before. For ex-
ample, in [Mi1] reverse Hardy inequalities inequalities given in [Be] and [Re] were
used to prove a variant of Gehring’s Lemma. Here we use closely related but dif-
ferent estimates (cf. (2.5) below). After completing the first draft of this paper
we realized that some cases of the modified reverse Hardy inequalities we prove
here were also contained in a paper by Franciosi-Moscariello [FM]. Moreover, these
authors also use their estimates to give a proof of the classical version of Gehring’s
Lemma. We have thus chosen to discuss this application to Gehring’s Lemma
rather briefly in Example (2.7) (cf. also [FM]). The reiteration formulae we obtain
here was conceived from a completely different point of view and seems to have
wider applicability. Indeed we should note that the generalized setting afforded
by interpolation theory has made it possible to deal with Gehring type Lemmas
for non doubling measures (cf. [MM]) by means of replacing the maximal function
of Hardy-Littlewood with maximal operators associated with packings ([AKMP],
[MM]). The same remark applies for our results in this paper.
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In retrospect, one could argue that the genesis of our argument is already present
in the first proof of the usual Hardy inequality given by Hardy himself! In fact,
if we follow mutatis mutandi the proof of Hardy’s inequality in [HLP] page 242
adapted to a finite interval (0, t), we find that the inequality contains an *extra*
term which only dissapears when t tends to infinity, namely

(1.4)(∫ t

0

Pf(x)pdx
)1/p

+
tPf(t)p

(p− 1)
(∫ t

0
Pf(x)pdx

)1/p′
≤ p

p− 1

(∫ t

0

fp(x)dx
)1/p

,

where Pf(x) = 1
x

∫ x
0
f(u)du, and f is a measurable, bounded, positive function.

The last formula should be compared with a special case of Proposition (2.1) be-
low (cf. also [FM]) from which we deduce that the following estimate holds for
decreasing f ,

(1.5)(∫ t

0

f(x)pdx
)1/p

≤
(
p− 1
p

)1/p(∫ t

0

Pf(x)pdx
)1/p

+
(

1
p

)1/p

t
1−p
p

∫ t

0

f(x)dx.

Remarks. (i) For future use note that (1.4) obviously implies the Hardy inequality
frequently applied in the literature, namely, for t > 0

(1.6)
(∫ t

0

Pf(x)pdx
)1/p

≤ p

p− 1

(∫ t

0

fp(x)dx
)1/p

.

(ii) One can further see the *reiterative* character of Hardy’s original inequality
by means of letting Ppf = (Pfp)1/p, in (1.4) to obtain

PpPf(t) +
Pf(t)p

(p− 1) (Pp(Pf)(t))p/p
′ ≤

p

p− 1
Ppf(t).

With this notation (1.5) can also be rewritten as

Ppf(t) ≤
(
p− 1
p

)1/p

Ppf(t) +
(

1
p

)1/p

Pf(t).

These inequalities are associated with the pairs of spaces (L1, L∞) and (Lp, L∞)
and *propagate* naturally through the Lp scale as we have outlined above.

The plan of the paper is as follows. In section 2 we prove the reverse Hardy
inequalities and reiteration formulae we have just outlined. In section 3 we show
how the K functional can be used to bridge between certain classes of weights
associated with Hardy type operators and Calderón’s operator and reverse Hölder
inequalities (cf. [AM], [Mu1], [BR], [BMR]..) which were briefly outlined in our
previous work on this subject [BMR1]. In section 4 we show how the interpolation
theoretic framework we have developed leads to an explicit connection between
reverse Hölder inequalities and the Hardy-Littlewood-Polya (HLP) order. It is well
known that the HLP order is preserved by convex functions and reversed by concave
functions, we show that maximal elements that satisfy a reverse HLP condition for
concave functions must satisfy a generalized reverse Hölder inequality. This fact is
in turn connected to the classical theory of real interpolation of Calderón and the
method of orbits (cf. [Ov] and [MO], and the references therein.)
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2. Reverse Hardy inequalities and sharp reiteration formulae

The following result is a reverse Hardy inequality in the spirit of Hardy’s original
proof of his inequality (cf. also [FM] Lemma (3.4).)

Proposition 2.1. Let f be a non negative measurable function in (0,∞).
i) If f is non increasing, 0 < α <∞ and p > 1, then

(∫ t

0

xp(1−α)f(x)p
dx

x

)1/p

≤
(
α

∫ t

0

x−αp
(∫ x

0

f(y)dy
)p

dx

x

)1/p

+
(

1
p

)1/p

t−α
∫ t

0

f(x)dx.

(2.2)

ii) If tf(t) is non decreasing, 0 < β <∞ and p > 1, then

(∫ ∞
t

xpβf(x)p
dx

x

)1/p

≤
(
β

∫ ∞
t

xβp
(∫ ∞

x

f(y)
dy

y

)p
dx

x

)1/p

+
(

1
p

)1/p

tβ
∫ ∞
t

f(x)
dx

x
.

(2.3)

Proof. In order to prove (2.2) we assume that f is continuous (the general case
follows by an easy approximation argument). Pick ε > 0 small enough, then inte-
grating by parts we find,∫ t

ε

x−αp
(∫ x

ε

f

)p
dx

x
= − t

−αp

αp

(∫ t

ε

f

)p
+

1
α

∫ t

ε

x−αp
(∫ x

ε

f

)p−1

f(x)dx.

Let ε→ 0, then by the monotone convergence theorem, and taking into account

that since f is non increasing we have
∫ x

0

f ≥ xf(x), we get

∫ t

0

x−αp
(∫ x

0

f

)p
dx

x
+
t−αp

αp

(∫ t

0

f

)p
≥ 1
α

∫ t

0

x−αp (xf(x))p−1
f(x)dx,

which readily implies (2.2).
To prove of (2.3) we can also assume that f is continuous. Let N be large,

integrating by parts we find∫ N

t

xβp

(∫ N

x

f(y)
dy

y

)p
dx

x
= − t

βp

βp

(∫ N

t

f(y)
dy

y

)p

+
1
β

∫ N

t

xβp

(∫ N

x

f(y)
dy

y

)p−1

f(x)
dx

x
.

Let N tend to ∞, then taking into account that if tf(t) is non decreasing we have∫ ∞
x

f(y)
dy

y
=
∫ ∞
x

f(y)y
dy

y2
≥ f(x),
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now the proof proceeeds in the same fashion as the proof of (2.2).
Note that (2.3) can also be obtained from (2.2) by means of a change of variables:

take the non increasing function f(1/t)/t in (2.2) and let x = 1/y.

Remarks. (i) If we let α = p−1
p in (2.2) then we get

(∫ t

0

f(x)pdx
)1/p

≤
(
p− 1
p

)1/p(∫ t

0

Pf(x)pdx
)1/p

+
(

1
p

)1/p

t
1−p
p

∫ t

0

f(x)dx.

(2.4)
(ii) In order to deal with Lp norms on (0,∞) observe that if we let t → ∞ in

(2.4) we obtain the following inequality due to Bennett [Be] and Renaud [Re]

‖f‖p ≤
(
p− 1
p

)1/p

‖Pf‖p . (2.5)

(iii) Applying part i) of Proposition (2.1) to the non increasing function f∗, with
exponent q/p (instead of p) and parameter α = 1 − (p/q) we obtain the following
result (cf. [FM] Lemma (3.4)) (∫ t

0

f∗(x)qdx
)p/q

≤
(
q − p
q

)p/q (∫ t

0

(
1
x

∫ x

0

(f∗)p
)q/p

dx

)p/q
+
(
p

q

)p/q
t
p
q−1

∫ t

0

f∗(x)pdx. (2.6)

Example (2.7) Using Herz’s inequality (cf. [BS]) for the maximal operator of
Hardy and Littlewood it is well known (cf. [Mi] and the references therein), and
easy to see, that if a given positive function f satisfies the usual assumptions of
Gehring’s Lemma (cf. [Ge]), then its nonincreasing rearrangement f∗ also satisfies
a reverse Hölder inequality of the same order. In this context we can take as our
starting point the existence of a constant M such that for some 1 < p <∞, ∀t > 0,
it holds (

1
t

∫ t

0

f∗(x)pdx
)1/p

≤ M

t

∫ t

0

f∗(x)dx. (2.8)

Let q > p and assume that f∗ ∈ Lq, we combine (2.7) and (2.8) and the usual
Hardy inequality (1.6), to obtain(∫ t

0

f∗(x)qdx
)p/q

≤ C
(
q − p
q

)p/q ( 1
q − 1

)p(∫ t

0

f∗(x)qdx
)p/q

+
(
p

q

)p/q
t
p
q−1

∫ t

0

f∗(x)pdx. (2.9)

where C is a constant independent of p and q.
If we choose q sufficiently close to p so that

C

(
q − p
q

)p/q ( 1
q − 1

)p
< 1,
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we can move the first summand in (2.9) to the left hand side and we get(
1
t

∫ t

0

f∗(x)qdx
)1/q

≤ Cp
(

1
t

∫ t

0

f∗(x)pdx
)1/p

, (2.10)

and we have obtained the self improving property of reverse Hölder inequalities for
f∗.

There is a process of approximation that is needed to remove the extra assump-
tion that f∗ ∈ Lq. This is done as follows (cf. [Iw]). Let f be a positive, measurable,
locally integrable function defined on a cube Q0 ⊂ Rn. Let fs, 0 < s ≤ 1, be defined
by

fs(x) =
1
|Q0|

∫
Q0

f((1− s)x+ sy)dy,

for x ∈ Q0.
It is clear that fs ∈ C(Q0) ⊂ Lq(Q0), for all s ∈ (0, 1), and for all q ≥ 1 and it

also follows readly that for f ∈ Lp(Q0),

‖f − fs‖Lp(Q0) → 0,

when s→ 0. It is also easy to see that if f satisfies a reverse Hölder inequality then
so does fs. We leave the details to the interested reader.

We now give a proof of (HO).

Theorem 2.11. Let Ā = (A0, A1) be a pair of Banach spaces, and let a be an
element in A0 + A1. Suppose that 1 ≤ p < q < ∞ and let θ0 = 1/p′, θ1 = 1/q′,
where p′ and q′ are the corresponding conjugate exponents. Then if a ∈ Āθ0,p∩Āθ1,q,

K(t, a, Āθ1,q, A1) ≤ cθ1

(
1
t

∫ t

0

(
K(x, a;A)

x

)q
dx

)1/q

≤ cθ1 leqC
(
p

q

)1/q
K(t1/p, a; Āθ0,p, A1)

t1/p

+ C

(
q − p
q

)1/q
(

1
t

∫ t

0

(
K(x1/p, a; Āθ0,p, A1)

x1/p

)q
dx

)1/q

.

where cθ1 is bounded away from 0 or 1, and C is an absolute constant independent
of p and q.

Proof. The first inequality is simply Holmstedt’s formula (1.2). Then we apply the
proposition (2.1) to the function (K(x, a;A)/x)p with exponent q/p and parameter
α = 1− (p/q). We get(∫ t

0

(
K(x, a;A)

x

)q
dx

)p/q
≤ C

(
p

q

)p/q
t−1+p/q

∫ t

0

(
K(x, a;A)

x

)p
dx

+ C

q − p
q

∫ t

0

(∫ x

0

(
K(y, a;A)

y

)p
dy

)q/p
dx

x

p/q

.
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Next, since (∫ t

0

(
K(x, a;A)

x

)p
dx

)1/p

≤ CK(t1/p, a; Āθ0,p, A1)

we obtain the result.

Remark. Recall that for the pair (Lp, L∞), 1 ≤ p <∞, we have (cf. [BL]),

K(t1/p, a, Lp, L∞) ≈
{∫ t

0

a∗(s)pds
}1/p

.

Thus given a compatible pair of Banach spaces A = (A0, A1), for any a ∈ A0 +A1,
we can consider K(t1/p, a; Āθ,p, A1)/t1/p as a generalized p average. In this con-
text one can formulate reverse Hölder conditions in a very natural way and extend
Example (2.7) in a substantial way. In particular one can formulate and prove a
generalized version of Gehring’s Lemma (cf. [Mi], [BMR1]). In the last quoted
papers the self improving properties associated with reverse Hölder conditions are
obtained using Holmstedt’s classical formula (1.2) to arrive to elementary differen-
tial inequalities from which certain monotonicity properties follow. These mono-
tonicity conditions can be expressed in several different ways. On the one hand,
as we shall discuss in detail in the next section, they are related to properties of
weights associated with Calderón operators (cf. [BR], [BMR]), and the literature
quoted therein.) Monotonicity conditions can be also formulated using the theory
of indices for submultiplicative functions as has been done in cf. [MM]. The new
reiteration formula (HO) can also be used in this context as we have indicated in
Example (2.7). Moreover, combining the results in this paper with those in [MM]
we can prove Gehring type results for measures that do not satisfy doubling condi-
tions. Interestingly, the key step in our approach for non doubling measures which
is to consider maximal operators associated with packings (cf. [AKMP], [MM]) was
suggested by the K functional method.

3. Reverse Hölder inequalities and Mp weights

In this section we explicitly show how the K functional provides also a way
to bridge the theories for classes of weights associated with Hardy or Calderón
operators and the Ap classes of Muckenhoupt.

We begin by recalling the definitions of certain classes of weights. Let 1 < p <
∞, we say that a non negative locally integrable function on (0,∞) satisfies the
condition Mp (resp. Mp) if there exists a constant C such that(∫ ∞

t

w(x)
xp

dx

)1/p(∫ t

0

w(x)−p
′/pdx

)1/p′

≤ C, (Mp)

(∫ t

0

w(x)dx
)1/p

(∫ ∞
t

w(x)−p
′/p

xp′
dx

)1/p′

≤ C. (Mp)

For p = 1 the classes M1 or M1 consist of those weights such that

Qw(t) ≤ Cw(t) ∀t > 0 (M1)
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or
Pw(t) ≤ Cw(t) ∀t > 0. (M1)

We shall only need elementary forms of reverse Hölder inequalities which are asso-
ciated to the classes M1 and M1 (cf. [BMR], [BMR1] and also [MM].)

w ∈M1 =⇒ ∃ε > 0 3 t−εw(t) ∈M1, (3.1)

w ∈M1 =⇒ ∃ε > 0 3 tεw(t) ∈M1, (3.2)

where ε depends on the weight w.
For monotone weights, we have the following result

Lemma 3.3.

(1) If w is a non increasing weight, then w satisfies Mp, for all 1 < p <∞.
(2) If xw(x) is a non decreasing, then wα satisfies Mp, for all 1 ≤ p <∞ and

for all 0 < α < 1

Proof. (1) Let t > 0

(∫ ∞
t

w(x)
xp

dx

)1/p(∫ t

0

w(x)−p
′/pdx

)1/p′

≤ w(t)1/p

(∫ ∞
t

dx

xp

)1/p

w(t)−1/p

(∫ t

0

dx

)1/p′

≤ C

(2) Let t > 0. Since x < t implies that xαw(x)α ≤ tαw(t)α we have

(∫ t

0

w(x)αdx
)1/p

(∫ ∞
t

w(x)−αp
′/p

xp′
dx

)1/p′

≤ tα/pw(t)α/p
(∫ t

0

dx

xα

)1/p

t−α/pw(t)−α/p
(∫ ∞

t

xαp
′/p

xp′
dx

)1/p′

≤ C.

The proof for p = 1 is even easier.

Given a compatible pair of Banach spaces A = (A0, A1) , for any a ∈ A0 + A1,
we can consider K(t, a;A)/t as a weight. Note that since K(t, a;A) increases and
K(t, a;A)/t is decreasing, Lemma (3.3) shows that K(t, a;A)/t ∈Mp, ∀p ∈ (1,∞)
and (K(t, a;A)/t)α ∈M1, ∀α ∈ (0, 1).

In (cf. [Mi], [BMR1]) the self improving properties of weights satisfying reverse
Hölder conditions were obtained by means of showing monotonicity conditions of
the type described by (3.1) and (3.2) for the corresponding K functionals, thus
at this level reverse Hölder inequalities imply M1. We shall now ellaborate more
explicitly the converse: M1 conditions imply the usual reverse Hölder inequalities.

It will be convenient to organize things around averages and tie the values of the
θ and q parameters although this is not necessary.
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Definition 3.4. Let A = (A0, A1) be a compatible pair of Banach spaces. An
element a ∈ A0 + A1 will be called left-Gehring (respectively right-Ghering)
if the non increasing function K(t, a;A)/t verifies the condition M1 (respectively
M1). We shall say that a is Gehring if it is simultaneously left and right-Gehring.

Remark. An element a is Ghering if and only if the corresponding weight function
w(t) = K(t, a;A)/t is a quasipower. In fact, we have the following inequalities

Sw = Pw +Qw ≤ Cw ≤ CPw ≤ CSw,

where the second inequality holds because w is non increasing and the constant C
is the sum of the constants appearing in the definitions of M1 and M1.

For the converse note that if w is a quasipower, then w ∈ L1 + L∞ and w is a
Gehring element for the pair (L1, L∞).

The relationship of all this with reverse Hölder inequalities is now given by

Proposition 3.5. Let a be an element in A0 +A1. Then,
(1) a is left-Gehring if and only if there exists p0 > 1 such that a ∈ Āθ0,p0+A1,

where 1 = (1/p0) + θ0, and

K(t1/p0 , a; Āθ0,p0 , A1)
t1/p0

∼ K(t, a;A)
t

.

(2) a is right-Gehring if and only if there exists p1 > 1 such that a ∈ A0 +
Āθ1,p1 , where θ1 = 1/p1, and

K(t1/p1 , a;A0, Āθ1,p1) ∼ K(t, a;A).

(3) a is Gehring if and only if there exist p0, p1 > 1, with 1 < (1/p0) + (1/p1)
such that a ∈ Āθ0,p0 + Āθ1,p1 , where 1 = (1/p0) + θ0, θ1 = 1/p1, and

K(tθ1−θ0 , a; Āθ0,p0 , Āθ1,p1) ∼ t−θ0K(t, a;A).

Under these conditions we shall say that p0 (resp. p1) is a left-exponent (resp.right-
exponent) of the element a.

Proof.
(1) Suppose that a is left-Gehring.The nonincreasing function K(t, a;A)/t satisfies
the condition (M1) and therefore satisfies (3.1) for some ε. Consequently, by the
embedding properties of the Lp,q spaces, with p0 = 1/1− ε, we have,(

1
t

∫ t

0

(
K(x, a,A)

x

)p
dx

)1/p

≤ CK(t, a, A)
t

, (3.6)

for all t > 0. Let θ0 be such that 1 = (1/p0) + θ0, then Holmstedt’s formula (1.2)
implies that

K(t1/p0 , a; Āθ0,p0 , A1) ≤ Cp0

(∫ t

0

(
K(x, a;A)

xθ

)p0
dx

x

)1/p
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= Cp0

(∫ t

0

(
K(x, a;A)

x

)p0
dx

)1/p0

≤ Cp0t−1/p0
K(t, a, A)

t
.

The reverse inequality follows readily from Holmstedt’s formula and the fact that
K(t, a;A)/t is non increasing.

For the “only if part” observe that by Holmsted’s formula, (3.6) is equivalent
with the hypothesis. Therefore, since 1 averages are dominated by p averages it
follows that K(t, a;A)/t satisfies the condition (M1).

(2) The proof is very similar to the preceeding one, using (3.2) and Holmstedt’s
formula.

(3) It is an easy consequence of (1), (2) and the fact that Holmstedt’s formula (1.1)
can be rewritten as

K(tθ1−θ0 , a; Āθ0,p0 , Āθ1,p1) ∼ K(t1−θ0 , a;Aθ0,p0 , A1) + t−θ0K(tθ1 , a;A0, Aθ1,p1).

Remark. Holmstedt’s formula has the following classical application: Let A =
(A0, A1) and denote by X an intermediate pair, say X = (Āθ0,p0 , Āθ1,p1). Tak-
ing a, b ∈ A0 +A1, then

K(t, b, A) ≤ CK(t, a, A), ∀t > 0 ⇒ K(t, b,X) ≤ CK(t, a,X), ∀t > 0 (3.7)

For Gehring elements we can reverse assertion (3.7).

Corollary 3.8. Let a be a left-Gehring element with left-exponent p0 (respectively
right-Ghering with exponent p1 or Gehring with exponents (p0, p1)). Denote by X
the pair (Āθ0,p0 , A1), (respectively (A0, Āθ1,p1) or (Āθ0,p0 , Āθ1,p1)). Suppose that b
is any other element in A0 +A1 such that

K(t, b; X̄) ≤ C1K(t, a; X̄) ∀t > 0.

Then,
K(t, b;A) ≤ C2K(t, a;A) ∀t > 0.

Proof. We shall only deal with the case X = (Āθ0,p0 , A1), the remaining cases can
be proved in a similar way.

We use once again Holmstedt’s formula. Indeed, since the function K(t, b;A)/t
is non increasing, we have

K(t1/p, b;A) ≤ t(1/p)−1

(∫ t1/p

0

(
K(x, b;A)

xθ

)p
dx

x

)1/p

≤ Cpt(1/p)−1K(t, b; Āθ0,p0 , A1)

≤ CpC1t
(1/p)−1K(t, a; Āθ0,p0 , A1)

≤ CK(t1/p, a;A).

as we wished to show.
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4. Hardy-Littlewood-Polya Order

Recall that given f and g positive, measurable functions on Rn we say that f ≺ g
if ∫ t

0

f∗ ≤
∫ t

0

g∗,

for all t > 0, where f∗ denotes the non increasing rearrangement of f . The order
relation of Hardy-Littlewood-Polya [HLP] appears naturally in different contexts.
In interpolation theory it was used by Calderón and Mityagin (cf. [Ca], [BS])
to characterize all the interpolation spaces between L1 and L∞. Indeed if A =
(L1, L∞), then relation f ≺ g is equivalent to K(t, f ;L1, L∞) ≤ K(t, g;L1, L∞),
for all t > 0.

The HLP order is preserved by convex functions (cf. [HLP]):

f ≺ g ⇒ ϕ(f) ≺ ϕ(g)

for all convex function ϕ.
We consider the following question: What happens when the HLP order is re-

versed?
The last remark shows that f ≺ g implies fp ≺ gp, for all p > 1. Corollary (3.8)

will allow us to reverse this relation for left-Gehring elements.

Proposition 4.1. Suppose that g ∈ L1 + L∞ is a left-Gehring element with left-
exponent p. Let f be another function in L1 + L∞ such that fp ≺ gp, then f ≺ g.

Proof. Note only that (
∫ t

0
fp)1/p ∼ K(t1/p, f ;Lp, L∞) and the proof follows readily.

Next we shall prove that this property is essentially only satisfied by left-Gehring
elements!

We shall say that a compatible pair of Banach spaces satisfies the hypothesis
(H) if

∀t0 > 0, ∃b0 ∈ A0 +A1 3 K(t, b0;A) = min{t, t0} ∀t > 0. (4.2)

Proposition 4.3. Let A be a compatible pair of Banach spaces satisfying the condi-
tion (H). Denote by X the pair (Āθ0,p0 , A1), (resp., (A0, Āθ1,p1) or (Āθ0,p0 , Āθ1,p1)).
Let a be an element in A0 +A1 such that, for all b ∈ A0 +A1 satisfying K(t, b;X) ≤
C1K(t, a;X) < ∞ for all t > 0, it follows that K(t, b;A) ≤ C2K(t, a;A), for all
t > 0, i.e. is maximal. Then a is a left-Gehring element (resp. right-Gehring or
Gehring).

Proof. We consider first the case X = (Āθ0,p0 , A1). Let t0 > 0 fixed. Let b0 ∈
A0 ∩ A1 such that (4.2) holds. Let λ > 0. Then, by Holmstedt’s formula (1.2) we
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have

K(t1/p0 , λb0;Aθ0,p0 , A1) ≤ C

(∫ t

0

(
K(x, λb0;A)

xθ0

)p0
dx

x

)1/p0

= Cλ

(∫ t

0

(
min{x, t0}

x

)p0
dx

)1/p0

= Cλ

(∫ t

0

(
P (χ[0,t0])(x)

)p0
dx

)1/p0

(by Hardy’s inequality)

≤ Cλ
(∫ t

0

(
χ[0,t0](x)

)p0
dx

)1/p0

= Cλmin{t, t0}1/p0 .

If we now take

λ0 =

(
1
t0

∫ t0

0

(
K(x, a;A)

x

)p0
dx

)1/p0

,

then

K(t1/p0 , λ0b0; Āθ0,p0 , A1) ≤ C min{t, t0}1/p0
(

1
t0

∫ t0

0

(
K(x, a;A)

x

)p0
dx

)1/p0

.

Consider two cases: if t ≤ t0, then since the function (K(x, a;A)/x)p0 is non
increasing P ((K(x, a;A)/x)p0) is also non increasing and therefore

(
1
t0

∫ t0

0

(
K(x, a;A)

x

)p0
dx

)1/p0

≤

(
1
t

∫ t

0

(
K(x, a;A)

x

)p0
dx

)1/p0

.

If on the other hand t0 < t then,

(∫ t0

0

(
K(x, a;A)

x

)p0
dx

)1/p0

≤

(∫ t

0

(
K(x, a;A)

x

)p0
dx

)1/p0

.

Therefore for all t > 0 we have

K(t1/p0 , λ0b0; Āθ0,p0 , A1) ≤ C

(∫ t

0

(
K(x, a;A)

x

)p0
dx

)1/p0

≤ CK(t1/p0 , a; Āθ0,p0 , A1).

Therefore by hypothesis we have

K(t, λ0b0;A) ≤ C ′K(t, a;A),
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for all t > 0. In particular if we take t = t0 we get(
1
t0

∫ t0

0

(
K(x, a;A)

x

)p0
dx

)1/p0

t0 ≤ C ′K(t0, a;A).

and this is true for all t0. Therefore by Proposition (3.5) a is left-Gehring with
left-exponent p0.

The case X = (A0, Āθ1,p1) is dual and the arguments are similar.
We finally consider the case X = (Āθ0,p0 , Āθ1,p1). Let b such that

K(t, b; Āθ0,p0 , A1) ≤ C1K(t, a; Āθ0,p0 , A1) <∞

for all t > 0. Since θ0 < θ1, by the reiteration theorem we have

Āθ1,p1 = (Āθ0,p0 , A1)η,p1 ,

with (1− η)θ0 + η = θ1. Holmstedt’s formula implies that

K(t, b; Āθ0,p0 , Āθ1,p1) ∼ t

(∫ ∞
1/η

(
K(x, b; Āθ0,p0 , A1)

xη

)p1 dx
x

)1/p1

which leads to

K(t, b; Āθ0,p0 , Āθ1,p1) ≤ C1K(t, a; Āθ0,p0 , Āθ1,p1),

for all t > 0. By hypothesis we must have K(t, b;A) ≤ C2K(t, a;A), for all t > 0.
We now can apply the first part of this proposition to deduce that a is left-Gehring.
In a similar way we conclude that a is right-Gehring as well, and the result follows.

Remarks. (i) We now show that pairs of Lp spaces or more generally pairs of re-
arrangement invariant spaces verify condition (H) (cf. [BR]). Indeed, suppose that
A0 and A1 are rearrangement invariant spaces (r.i. spaces) such that the function

φ0/φ1 : (0,∞) −→ (0,∞)

is onto, where φi(t) = ‖χ[0,t]‖Ai (i = 0, 1), is the fundamental function of Ai.
Indeed, by taking conditional expectations, it follows readly that

K(t, χ[0,t0];A) = inf
0<a<1

aφA0(t0) + t(1− a)φA1(t0)

= min{φA0(t0), tφA1(t0)}

= φA1(t0) min{φA0(t0)
φA1(t0)

, t},

and we only need to find one point t1 such that φ0(t1)/φ1(t1) = t0.
(ii) We can understand these results in the framework of Calderón pairs. We

define the orbit spaces OrbA(a) = {Ta}, where a ∈ A0 + A1 and T runs over all
bounded operators from A0 → A0 and A1 → A1 (cf. [Ov]).
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Let X be the pair (Āθ0,p0 , A1), (resp., (A0, Āθ1,p1) or (Āθ0,p0 , Āθ1,p1)). It is clear
that if a ∈ X then

OrbX(a) ⊇ OrbA(a).

On the other hand, supposing that A is Calderón pair, Corollary 3.8. says that if
a is a left-Gehring (resp., right-Gehring or Gehring) element with left-exponent p0

then
OrbX(a) = OrbA(a).

For pairs A satisfying condition (H) and supposing that X = (Āθ0,p0 , A1) is a
Calderón pair we can prove the reverse statement, i.e., OrbX(a) = OrbA(a) implies
that a is a left-Gehring element.

Indeed, let b an element such that K(t, b;X) ≤ C1K(t, aX), for all t > 0. Then
there exists an operator T such that Ta = b and T : X → X, so b ∈ OrbX(a) and
therefore we can find another operator S bounded from A0 → A0 and A1 → A1

satisfying Sa = b. We achieve K(t, b;A) ≤ CK(t, b;A), for all t > 0 and hence, by
Proposition 4.3., a is a left-Gehring element.
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