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Abstract. For the classical Hardy-Littlewood maximal function Mf , a well known

and important estimate due to Herz and Stein, gives the equivalence (Mf)∗(t) ∼
f∗∗(t). In the present note, we study the validity of analogous estimates for maximal

operators of the form

Mp,qf(x) = sup
x∈Q

‖fχQ‖p,q

‖χQ‖p,q
,

where ‖.‖p,q denotes the Lorentz space L(p, q)-norm.

1. Introduction. The Hardy-Littlewood maximal function M plays a central role
in classical harmonic analysis, differentiation theory and PDE’s. It is well known
that the maximal operator M is of weak type (1, 1) and strong type (∞,∞) from
where it follows readily, for example using K-functionals (see [BS]), that there exists
an absolute constant C > 0 such that

(1) (Mf)∗(t) ≤ Cf∗∗(t),∀t > 0,∀f ∈ L1
loc(Rn),

where * denotes non-increasing rearrangement, and f∗∗(t) = 1
t

∫ t
0
f∗(s)ds.

Herz (cf. [H], and also [BS]) proved that the reverse inequality is also true, that
is,

(2) f∗∗(t) ≤ c(Mf)∗(t), t > 0.

Inequalities (1) and (2) contain the basic information to study M , and the oper-
ators it controls, in rearrangement invariant function spaces. We refer to [AKMP]
for a recent and exhaustive study of inequalities (1) and (2) where the underlying
measure is more general than Lebesgue measure.

Recall that the maximal operator M is defined by

Mf(x) = sup
x∈Q

1
|Q|

∫
Q

|f(t)|dt = sup
x∈Q

‖fχQ‖L1

‖χQ‖L1
.

A commonly used variant of the maximal operator, Mpf = (M |f |p)1/p, is obtained
by means of replacing L1 averages with Lp-averages. More generally Stein [S],
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in order to obtain certain end point results in differentiation theory, introduced
maximal operators associated with L(p, q) averages as follows. Let 1 ≤ p < +∞,
1 ≤ q ≤ +∞, then Stein defines

Mp,qf(x) = sup
x∈Q

‖fχQ‖p,q
‖χQ‖p,q

= sup
x∈Q

‖fχQ‖p,q
|Q|1/p

.

These operators have been also considered by other authors, for instance see [N],
[LN] and [P].

It is a basic fact of real interpolation (see [BS]) that f∗∗(t) can be obtained in
terms of the K-functional for the pair (L1, L∞) as

f∗∗(t) =
K(t, f ;L1, L∞)

t
,

where for a compatible pair of Banach spaces (X,Y ), f ∈ X + Y, t > 0,

K(t, f ;X,Y ) = inf{‖x‖X + t‖y‖Y },

and the inf runs over all possible decompositions f = x+ y with x ∈ X, y ∈ Y .
From the definition of Mp given above it follows readily, using (1), (2) and the

reiteration theorem, that

(Mpf)∗(t) ≈ t−1/pK(t1/p, f ;Lp, L∞).

Therefore one is led to ask if a similar relationship exists between (Mp,qf)∗(t)
and the corresponding K-functional for the pair (L(p, q), L∞), which is given by

K(t1/p, f ;L(p, q), L∞)
t1/p

≈ 1
t1/p

(∫ t

0

f∗(s)qsq/p−1ds

)1/q

=
c

t1/p
‖f∗χ(0,t)‖p,q.

As we shall show below the somewhat surprising answer to this question is: no! The
two cases we need to consider p < q and q < p turn out to be very different from
each other. In fact for q < p, the L(p, q) version of inequality (1) is known to hold
as can be readily seen since Mp,q is bounded from L(p, q) into L(p,∞) and from
L∞ into L∞ (cf. [S] and also [LN] for a different proof). For p < q, the validity of
the corresponding L(p, q) version of inequality (1) must be ruled out since, as it is
well known, Mp,q is not bounded from L(p, q) into L(p,∞) (cf. [S]).

Our purpose in this note is to complete these results by showing in section 2 that
the L(p, q) version of inequality (2) is true when q > p and false when q < p. In
view of these negative results it is natural to ask: what is the appropriate maximal
operator associated with the K−functional for the pair (L(p, q), L∞) so that the
corresponding version of Herz’s theorem holds? In section 3 we provide an answer
by means of finding an improvement on the operator (Mp,qf)∗.

It will be convenient for us to work in the more general context of r.i. spaces.
Indeed the added generality does not complicate the proofs and helps one to see
better how the geometrical properties of the L(p, q) spaces intervene in the analysis
of the cases q > p or p > q.
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2. As usual, a Banach space (X, ‖.‖X) of real-valued, locally integrable, Lebesgue
measurable functions on Rn is said to be a r.i. space if it satisfies the following
conditions:

i) If g∗ ≤ f∗ and f ∈ X, then g ∈ X with ‖g‖X ≤ ‖f‖X , (f∗ denotes the non
increasing rearrangement of the function f).

ii) If A is a Lebesgue measurable set of finite measure, then χA ∈ X.
iii) 0 ≤ fn ↑, supn∈N ‖fn‖X ≤ M , imply that f = sup fn ∈ X and ‖f‖X =

supn∈N ‖fn‖X .

For each r.i. space X on Rn, a r.i. space X on I = (0,+∞) is associated such
that f ∈ X if and only if f∗ ∈ X and ‖f‖X = ‖f∗‖X (see [BS]).

The fundamental function of a r.i. Banach space X is defined by

Φ(t) = ΦX(t) = ‖χ[0,t)‖X , t > 0.

We will denote by M∗(X) the space of all measurable functions for which

‖f‖M∗(X) = sup
t∈I

ΦX(t)f∗(t) <∞.

The function ‖.‖M∗(X) is a quasinorm on M∗(X).
For any measurable function f such that fχQ ∈ X, we define the maximal

operator

MXf(x) = sup
x∈Q

‖fχQ‖X
‖χQ‖X

,

where the supremum is taken over all cubes Q ⊂ Rn which contain x with sides
parallel to the coordinate axes.

Since a conditional expectation operator is a norm one projection in any r.i.
space, it is clear that for any cube Q we have

‖
(

1
|Q|

∫
Q

f

)
χQ‖X ≤ ‖fχQ‖X ,

and therefore, Mf ≤ MXf , where as usual Mf is the classical Hardy-Littlewood
maximal function.

Definition. Let X be a r.i. space and let φ : [0,+∞) −→ [0,+∞) an increasing
bijection. X is said to satisfy an upper φ-estimate (resp. lower φ-estimate) if
there exists a constant M < +∞ such that for every choice {fi}ni=1 of functions in
X with disjoint supports,

‖
n∑
i=1

fi‖X ≤Mφ

(
n∑
i=1

φ−1(‖fi‖X)

)
,

respectively

‖
n∑
i=1

fi‖X ≥Mφ

(
n∑
i=1

φ−1(‖fi‖X)

)
.

In the special case when φ(t) = t1/p we recover the well known notions of lower
and upper p-estimates (see [LT]).



4 JESÚS BASTERO, MARIO MILMAN AND FRANCISCO J. RUIZ

Theorem 1. Let X be a r.i. space with fundamental function Φ. If X satisfies
a lower Φ-estimate, then MX : X −→ M∗(X) is a bounded operator. In other
words, there exists C > 0 such that for all f ∈ X we have

sup
t

Φ(t)(MXf)∗(t) ≤ C‖f‖X .

As a consequence,

(MXf)∗(t) ≤ C

Φ(t)
‖f∗χ(0,t)‖X , ∀t > 0.

Proof. Let f ∈ X, in terms distribution functions we have to prove that

Φ(|{x : MXf(x) > λ}|) ≤ C

λ
‖f‖X , λ > 0.

Let Ω = {x : MXf(x) > λ}. Using the definition of MX and a standard covering
lemma (cf. [BS], pg. 118), it is possible to choose a countable family F of cubes
{Q}i∈J with pairwise disjoint interiors and such that

|Ω| ≤ 4n
∑
i∈J
|Qi|,

‖fχQi‖X
‖χQi

‖X
> λ,∀i ∈ J.

Moreover, if Q ∈F then,

Φ(|Q|) < ‖(f
λ

)χQ‖X , |Q| < Φ−1(‖(f
λ

)χQ‖X).

Therefore, using that Φ(5t) ≤ 5Φ(t) and the lower Φ-estimate, we get

Φ(|Ω|) ≤ 5Φ

(∑
i∈J

Φ−1(‖(f
λ

)χQi
‖X)

)
≤ 5M‖

∑
i∈J

(
f

λ
)χQi

‖X ≤
5M
λ
‖f‖X .

This proves the first part of the theorem. The proof of the second part is a routine
argument in interpolation theory. Indeed, since MX is a bounded operator on L∞,
we have that, ∀t > 0,

K(Φ(t),MXf,M
∗(X), L∞) ≤ CK(Φ(t), f,X, L∞).

Now, we recall that the left hand side of this inequality is equivalent to

sup
s≤t

(MXf)∗(s)Φ(s),

while the right hand side is equivalent to

‖f∗χ(0,t)‖X ,

(see [BR]), and the result follows.
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Theorem 2. Let X be a r.i. space with fundamental function Φ. If X satisfies
an upper Φ-estimate, then there exists and absolute constant C > 0 such that
∀f ∈ X, t > 0 we have

(MXf)∗(t) ≥ C

Φ(t)
‖f∗χ(0,t)‖X .

Proof. Fix f ∈ X, t > 0. Let α = (MXf)∗(t) and Ω = {x : MXf(x) > α}.
Following [BS], pgs. 122-123, we can choose a sequence of dyadic cubes {Q}i∈J
with pairwise disjoint interiors, which covers Ω, and such that∑

i∈J
|Qi| ≤ C|Ω| ≤ Ct,

‖fχQi
‖X

‖χQi‖X
≤ α,∀i ∈ J.

Then, we decompose
f =

∑
i∈J

fχQi + h = g + h.

Using the upper Φ-estimate, we get

‖ g
α
‖X ≤MΦ

(∑
i∈J

Φ−1(‖f
α
χQi
‖X)

)

≤MΦ

(∑
i∈J

Φ−1(Φ(|Qi|))

)
≤ CΦ(t).

Thus,
‖g‖X ≤ C(MXf)∗(t)Φ(t).

On the other hand, since f ≤Mf ≤MXf a.e., we have

‖h‖∞ ≤ (MXf)∗(t).

Then using [BR] and the definition of the K-functional we obtain
1

Φ(t)
‖f∗χ(0,t)‖X =

1
Φ(t)

K(Φ(t), f,X, L∞) ≤ C(MXf)∗(t).

We now turn to study the case when X = L(p, q) is a Lorentz space, in this case
the fundamental function of X is Φ(t) = t1/p. We shall need the following

Lemma. Let p ∈ (1,+∞), then
i) If 1 < p ≤ q ≤ +∞ then L(p, q) satisfies an upper p-estimate.

ii) If 1 ≤ q ≤ p, L(p, q) satisfies a lower p-estimate.

Proof. Recall that, in terms of the distribution function, an expression equivalent
to the L(p, q)-norm can be given as follows

‖f‖p,q =
(∫ ∞

0

(λf (s))q/psq−1ds

)1/q

,

with the usual modification when q = +∞. Given a sum f =
∑
fi where the fi

have disjoint supports, it is clear than

λf (s) =
∑

λfi(s).

Therefore in the case q < ∞ the corresponding lower and upper p-estimates con-
cern only the interchange of sums and integrals and can be obtained easily using
Minkowski’s vector-valued inequality, while the case q = +∞ is even simpler.
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Corollary. Let p ∈ (1,+∞), then
i) If 1 < p ≤ q ≤ +∞, then there exists a constant C > 0 such that ∀f ∈ X, t > 0,

(Mp,qf)∗(t) ≥ C

t1/p

(∫ t

0

f∗(s)qsq/p−1ds

)1/q

(with the usual modification if q = +∞).
ii) If 1 ≤ q ≤ p, then there exists a constant C > 0 such that ∀f ∈ X, t > 0,

(Mp,qf)∗(t) ≤ C

t1/p

(∫ t

0

f∗(s)qsq/p−1ds

)1/q

.

We now focus on the validity of the reverse inequalities which correspond to
those stated in the previous Corollary. We remark that, as we mentioned in the
introduction, under the conditions of i), the corresponding reverse inequality cannot
be true. Our next completes this result by showing that the reverse inequality in
ii) is not true either. Since there is no loss of generality we shall work in dimension
one.

Theorem 3. There exists a function f defined on R for which
∫ t

0
f∗(x)x1/p−1dx =

∞ for all t > 0 while (Mp,1f)∗(t) <∞, for all t > 0.

Proof. Let

h(x) =
∞∑
k=1

2k/p

k
χ[2−k,2−k+1)(x), x > 0.

Since

h(x) ≥ C x−1/p

| log x|
, 0 < x < 1/2,

it is clear that ∫ t

0

h(x)x1/p−1dx = +∞,∀t > 0.

Now, we want to distribute the values of h(x) in a convenient form. Let A1 =
[a1, b1] = [0, 2−1], A2 = [a2, b2] = [b1 + 22, b1 + 22 + 2−2] and, in general, Ak =
[ak, bk] = [bk−1 + 2k, bk−1 + 2k + 2−k], k ∈ N. Let

f =
∞∑
k=1

2k/p

k
χAk

.

It is clear that the rearrangement of f is the function h. In order to estimate its
maximal function, we need the following facts which have straightforward proofs
(in what follows Q stands for an interval in R):
i) If Q ∩Ai 6= ∅ for i = k, k + 1, . . . l, l > k, then

‖fχQ‖p,1
|Q|1/p

≤ 2l/p

l

‖χAk∪···∪Al
‖p,1

2l/p
≤ 1
l
.

ii) Let bk < x < ak+1. If Q = [z, x] with z ∈ Ak, then

‖fχQ‖p,1
|Q|1/p

≤ 1
k|x− ak|1/p

.
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iii) Let bk < x < ak+1. If Q = [x, y] with y ∈ Ak+1, then

‖fχQ‖p,1
|Q|1/p

≤ 1
(k + 1)|bk+1 − x|1/p

.

iv)

x− ak < 1⇐⇒ 1
k|x− ak|1/p

>
1
k
.

x− ak <
(k + 1)p

(k + 1)p + kp
(bk+1 − ak)⇐⇒ 1

k|x− ak|1/p
>

1
(k + 1)|bk+1 − x|1/p

.

x− ak < bk+1 − ak −
kp

2k(k + 1)p
⇐⇒ 1

(k + 1)|bk+1 − x|1/p
<

1
k
.

From facts i)-iv), it is easy to see that for k large enough, the following estimates
hold

Mp,1f(x) =
2k/p

k
, x ∈ Ak,

Mp,1f(x) =
1

k|x− ak|1/p
, bk < x < ak + 1,

Mp,1f(x) ≤ 1
k
, ak + 1 < x < bk+1 −

kp

2k(k + 1)p
,

Mp,1f(x) ≤ 1
(k + 1)|bk+1 − x|1/p

, bk+1 −
kp

2k(k + 1)p
< x < ak+1.

Now, given s > 0 , we choose k0 such that sk0 > 1. From above estimates, if
Mf(x) > s and x > bk0 we have that

x ∈
⋃
k>k0

(
Ak ∪ (bk, bk +

1
kpsp

) ∪ (ak+1 −
1

(k + 1)psp
, ak+1)

)
.

On the other hand, if we take y0 < 0 such that
k0∑
k=1

2k/p

k(|y0|+ 21 + · · ·+ 2k)1/p
< s,

then Mp,1f(x) ≤ Mp,1f(y0) < 1
k < s, ∀x < y0. In other words, we have obtained

the estimate

λMp,1f (s) ≤ |bk0 − y0|+
∞∑
k0+1

(
1
2k

+
1

spkp
+

1
sp(k + 1)p

)
<∞.

Moreover, lims→∞ λMp,1f (s) = 0, and therefore

(Mp,1f)∗(t) <∞, ∀t > 0.

Remark. The counterexample given above can be easily extended to the case 1 ≤
q < p since we have

Mp,qf(x) = (Mr,1(fq)))1/q, r = p/q.

2. We recall that a mapping τ from Rn into Rn is said to be a measure-preserving
transformation if, whenever A is a Borel subset of Rn, the set τ−1(A) is also Borel
set, and |τ−1(A)| = |A|.
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Theorem 3. Let X be a r.i. space. Then, there exists an absolute constant C > 0
such that for any function f ∈ X + L∞,

c inf
τ

(MX(f ◦ τ))∗(t) ≤ 1
φ(t)
‖f∗χ[0,t]‖X ≤ C sup

τ
(MX(f ◦ τ))∗(t)

for all t > 0, where τ runs through all measure-preserving transformations.

Proof. We begin by proving the second inequality. Fix t and f . We can suppose
that α = 1

Φ(t)‖f
∗χ[0,t]‖X > 0. Without loss of generality, we can also suppose that

f is Borel measurable. Then, there exists a Borel set B in Rn such that |B| = t
and satisfying

{x ∈ Rn; |f(x)| > f∗(t)} ⊆ B ⊆ {x ∈ Rn; |f(x)| ≥ f∗(t)}.

Now, given a cubeQ0 with measure t it is always possible to find a bijective measure-
preserving transformation τ such that τ(Q0) = B (except perhaps null measurable
subsets of Q and B) (This statement can be readily proved using [R], pgs, 315, Th.
15.2, Th. 15.13, see also [W] for the one dimensional case.) That is, we can find a
measure-preserving transformation τ (which, of course, depends on f and t) such
that

(f ◦ τ)χQ0 = fχB a.e.

Then,
‖(f ◦ τ)χQ0‖X
‖χQ0‖X

=
‖fχB‖X

Φ(t)
=
‖f∗χ[0,t]‖X

Φ(t)
.

If we take Q1 = 2Q0, the cube with equal center and double the side of Q0, then
since Φ(|Q1|) ≤ 2nΦ(t), we have

‖(f ◦ τ)χQ1‖X
‖χQ1‖X

≥ α

2n
>

α

2.2n

Therefore, MX(f ◦ τ)(x) > α
2.2n for all x ∈ Q1 and

|{s ∈ (0,∞); (Mx(f ◦ τ))∗(s) >
α

4.2n
}| ≥ |Q1| = 2n|Q0| > t.

Thus,
(MX(f ◦ τ))∗(t) >

α

4.2n
,

and the second inequality is proved.
It remains to prove the first inequality. Let t > 0 and suppose, as we may, that

α = 1
Φ(t)‖f

∗χ[0,t]‖X > 0 ( since otherwise f = 0). By repeating the arguments as
before we find the same Q0, Q1 and τ .

We are going to estimate MX(f ◦ τ)(x) for x /∈ Q1. Let Q a cube such that
x ∈ Q. If Q ∩Q0 = ∅ then

‖(f ◦ τ)χQ‖X
‖χQ‖X

≤ f∗(t) ≤
‖f∗χ[0,t]‖X

Φ(t)
= α.
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If Q ∩Q0 6= ∅ then there exists a cube Q̄ ⊆ Q ∩Q1 such that |Q0| = |Q̄|. Thus

‖(f ◦ τ)χQ‖X
‖χQ‖X

≤
‖(f ◦ τ)χQ\Q0‖X

‖χQ‖X
+
‖(f ◦ τ)χQ∩Q0‖X

‖χQ‖X

≤ f∗(t)
‖χQ\Q0‖X
‖χQ‖X

+
‖(f ◦ τ)χQ0‖X
‖χQ0‖X

≤ f∗(t) + α ≤ 2α.

Therefore,
|{x ∈ Rn;M(f ◦ τ)(x) > 3α}| ≤ |Q1| = 2nt,

and so
(M(f ◦ τ))∗(2nt) ≤ 3α.

In particular, if we apply the preceding argument to t0 = t/2n < t we find τ0 for
which

(M(f ◦ τ0))∗(t) = (M(f ◦ τ0))∗(2nt0) ≤ 3
1

Φ(t0)
‖f∗χ[0,t0]‖X

≤ 3
2n

Φ(t)
‖f∗χ[0,t]‖X = 3.2nα,

and the desired inequality follows by taking infimum.

Corollary 2. Let p ∈ (1,+∞), then
i) If 1 ≤ q ≤ p,

sup
τ

(Mp,q(f ◦ τ))∗(t) ∼ 1
t1/p

(∫ t

0

f∗(s)qsq/p−1ds

)1/q

ii) If 1 < p ≤ q ≤ ∞,

inf
τ

(Mp,q(f ◦ τ))∗(t) ∼ 1
t1/p

(∫ t

0

f∗(s)qsq/p−1ds

)1/q

.

Proof.
i) One inequality follows directly from the Corollary to Theorem 2. To prove the

reverse inequality we note that since f and f ◦ τ have the same distribution
MX(f ◦ τ) is a bounded operator from X into M∗(X) and from L∞ into L∞.
Therefore, (see proof of theorem 1)

(Mp,q(f ◦ τ))∗(t) ≤ C 1
t1/p

(∫ t

0

f∗(s)qsq/p−1ds

)1/q

,

and the result follows taking the supremum over all τ .
ii) As in the previous proof one inequality comes again from Theorem 2, while the

other follows from

(Mp,q(f ◦ τ))∗(t) ≥ C 1
t1/p

(∫ t

0

(f ◦ τ)∗(s)qsq/p−1ds

)1/q

where the constant C is independent of τ (see proof of Theorem 2).
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