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AN EXPLICIT EXPRESSION FOR THE K,
FUNCTIONALS OF INTERPOLATION
BETWEEN L? SPACES

JESUS BASTERO*, YVES RAYNAUD AND M, Luisa REzoLA**

Introduction and Notation

When dealing with interpolation spaces by real methods one is lead to com-
pute {or at least to estimate) the K-functional associated to the couple of
interpolation spaces. This concept was first introduced by J.Pectre (see [8],
[9]) and some efforts have been done to find explicit expressions of it for the
case of Lebesgue spaces. It is well known that for the couple consisting of L!
and L on [0,00) K is given by K{¢; f, L', L>) = fot f* where f* denotes the
non increasing rearrangement of the function f.

In [7] Nilsson and Peetre computed the K-functional also between spaces
LP and L7 when 1 < p < ¢ < 0. More recently the two first named authors
obtained an explicit expression for a suitable modification of the K-functional
for the case (L7, LM) where L™ stands for an Orlicz space {see [1] ).

The aim of this paper is to answer a question raised by J. Pectre to the
authors and to extend the resuits in [1] and [7] for the more general case
of the K, -functionals between L? spaces. The notion of K, -functional was
introduced in [4] by Holmsted and Peetre obtaining also some estimates for
those functionals between general compatible couples of interpolation spaces.

We shall write L? for the Lebesgue space [P{[0,00)). For fe LP + L71 £
p<g<oo,t>0and 1 <r < oo we define the K, -functional by

Kot £) = i (llglls + £ )|RIEY

where the infimum runs over all possible decompositions f = g4 /i with g € LP
and h € LY. {Obvicusly K, will mean

Koo(t; £} = inf max{||g{l,, t]|A{ls})

Note that r = 1 corresponds to the classical definition of K- functional. The
reader is referred to [2], [3] and [9] for background on interpolation spaces.
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**Research partially supported by CAICYT, PB 85-0338
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Clearly the K, -functional defines & rearrangement invariant norm on L? + L7
equivalent to the natural one. Hence K, (t; f) = K.{t; f*} and this allows us to
resirict ourselves to non negative and nen increasing functions f € LF 4 L%,

The paper is divided into three sections and one appendix. Section I s
devoted to show the existence of extremal functions which minimize the K -
functionals. In section II we give a procedure to get such extremal functions
for the cases 1 < r < oo and finally the case r = oo 15 considered in section
IIL. In the appendix we introduce and compute the functionals K, , and K, ..
We apply these results to the isometric problem of interpolation between the
couple of spaces {LP, L9}

Let us mention that the method we use in sections II and 1II is actually a
simplified version of the calculus of variations, but we shali include some proofs
for the sake of completeness. As it happens in {1] and [7] the solutions forp =1
or p > 1 are essentially different. In the case p = 1 the extremal decomposition
of f is achieved by a horizontal slicing of the function f.

1. Existence of extremal solutions

In the sequel 1 < p < ¢ < oo and f will denote a non negative and non
increasing fixed function on [0,00). It is very easy to see that

K, {t; £) = inf (llgll5 + #7115 — g1}

where the infimun is taken over all functions g€ L2 with 0 < g < f .

Let ¢ be & non negative measurable function on [0, 00} such that § < g < f.
We define the functional ®(g; f;t;r) or smply $(g) by

()= { lglly +#71If = gll,  H1<r<oo;
o,

L max{|lgllp, 1S — glledy H 7
1t is clear that 0 € ®(g) £ oo and
K (:f) = inf {3(9)"/"0< g < fLg € LP}.
The main result of this section is the following theorem
I.1 Theorem. Let 1 < r < oo and f € LP + L%, There ezisls ¢ non
tncreasing function ¢ € LP,0 £ g < f, such that K. (4, f) = B(g)/r. If

1 < r < oo, this function g is unique end f — g 15 alse non imcreasing.

In order to prove this theorem we need several lemmas. We begin by estab-
lishing the existence of extremal solutions.
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1.2 Lemma. There ezists o function g € LP 0 < g < f, such that K. {t; f) =
P(gyt/r.

Proof: Let o be defined by a = inf {$(g);0 € g < f,9 € L?}. We can
choose a sequence (g, )n in LP such that 0 < g, < f and a = Hmy, o B(gn ).
As (f = gn)n is a bounded sequence in L% we may suppose, by passing to
subsequence if necessary, that (f — gn ) converges weakly to a function k € L.
Then {gn)}n is a weakly Cauchy sequence in L? andsow —limg, = f —h € L7,
Hence if ¢ = f — A we have

@(g) < liminf|[|ga]f, + ¢" iminf ||f — gs|l; = Im ®(g.) = o.

The same arguments can be modified for r = co. B

‘Remark. Let us point ocut that the same ideas used in preceding lemma
may be applied to K.-functionals between a larger class of interpolation spaces.
Actually, if (Ag, A;) is a compatible couple of Banach spaces let us define K,
on Ag + A by

- . r T r 1;
Kot f) = inf ((lgll7, + ¢ HAlG,)
where the infimmum runs all possible decompositions f = g+ & with ¢ € Ap and

h € Ay. If we suppose that 4¢ is weakly sequentially complete, 4; is reflexive
and A3 N A} is dense in Ag, then there exist ¢ € 4y and k € A4; such that

§=g+hand K, (8 £) = (lloll, +11Al5,)"7"

1.3 Befinition. A non increasing function ¢ in L? is an extremal solution
of the functional K.(¢; f}if 0 < ¢ < f and K {t; f) = (g)V/" (K. (t; f} = ¥(g)
if = oo).

Next we will study the uniqueness of the extremal solutions.

I.4 EBemma. Leil <« v < co. If K (4 f) = @(gl)l-l‘" = @{gg)”’ , then
g1 = g2-

mtg
2

Proof: 1t is very easy to check that the function g = % also verifies

K (t; f)=®(g)"/" forall 1 < r < co. Indeed, by using Minkowski’s inequality

we have

8(6)'/" < 3 fllgall + lgally)” + (IS = gully +€l1f = gallo) "
< 5 [#t0)"/" + @(02)7] = Ko(t )

and then [lg1 + g2ll, = [loallp + lozllp, II(f — 1) +{f — g2)lle = If —gullg +
15 = g2llg.

If1 < r < cothe vectorsin ®% (|lg1|],. 8[| f — 91 1l,) 2nd (||92(1,, £11f — g2l ) are
also colinear. Since L7 is strictly convex (g > 1) we obtain that, for instance,
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F—q1 = MJ - g2) for some A = 0. Thus, ||g1]l, = Allgzll, end ®(g1) = A"8(g2)
which implies that A = 1 and consequently g; = g2.

Suppose now that r = oo. We realize that K (¢; f} = ®(g) implies that
lgll, = tiIf —glly. Indeed, i it were [|g]], > £][f —g]l,, we choose some positive
a such that the set A = {z € (0, 00); g(2) > a} has m{A) > 0. Take 0 < § smail
enough veri{ying

tf —allg < —g+8xally < llg—dxall, <|lglip

Hence ®{g — éx4) = |lg — éxall, < ®{g) and consequently K .(t; f) < ®(g).
{An analogous argument works if we suppose |igll, < H]f — gll4)-

Let g1, 92 be two functions in LF such that K (%, f) = ®{g) = ®(g2). We
may repeat the arguments used for 1 < r < oo and we obtain

Gty !
@ (2592} < Samn{lislly + el ) = ull + 1 = el
~ a(g)

We therefore have ||f —gs + f — ¢2lls = IIf — &1l + If — g21|; and then
f—a@1 = MS — g2) which also implies g; = ¢,. W

Remark. In the case r = 1 different selutions could be obtained. We realize
that if g; and g3 are two different solutions any other function g in the segment
defined by ¢; and ¢, is also a solution,

1.5 Lemma. ) f0< gL fthen0 £ g* £ f and ${g°) £ ®(g) (g* 15 the
non increasing rearrangement of g ). 1) If the funchional K (1, f) has only one
eziremal solution g then [ — g is non increasing.

Proof: i}y We apply the proposition 1 of [6] {which is also valuable in the
interval (0, 00) } and then we have

[u-ors -

This implies that [|f — ¢”||, < ||f — gll, and so &(¢*) < ®(g}.

W) If K. {t; f) = ®(¢) then g = ¢*. Thefunction g; defined by g; = f—{f—g}’
satisfies B{g,) < ®(g*) by i). Thus g; = ¢* and so f — ¢* = {f — g)* which
implies that the function f — g is non increasing. B

Remark. The lerama is also true if we consider the corresponding K, func-
tional between a couple of rearrangernent invariant function spaces.

Proof of the theorem 1.1: 1t is cbvious from the preceding lemmas. B
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II. Determination of the extremal solutions
when 1 <r < oo

The main tool for this part is the following lermma.

II.1 Lemma. Let g be an eztremal solution of K (i, f) end assume supp
g=10,a], 0 <a <oo. The following assertions are irue:
1) Bither g < f a.e. onsupp f,orr=1andg=f, a.e. onsupp f.
1) Ifp > 1, etther G < g{zr) end g(z)P_'”gH;'n" =t'[f(z) — (=)0 |f -
gll;77 a.e. onsupp f, orr=1arnd g=0.
i) fp=1,a>0and g # f then a < 0o end f{z) — g(z) = constant =
AZ0 ae en[d ], where @ and A verify

a rel oo . {r‘;‘qr)—]
(/ f—a;\) = ¢"A! [a,\uf f‘f} (*)

Furthermore, if r = 1, then a < 17 { ¢ is the conjugate exponent %4—% =
1) and A = [tq’ - a]_”q”fX[a,oo)”qr
v}y If ¢ = 0, then r = 1. Moreover, if p = 1 then f € L¥ N L™ ond

17791 flloo < (11, '
viIfg=f(r=1}and p=1 then lengthsupp f = b < 19,

Proof: 1} Assume that m{z; f{z) = g(z}} > 0. Then there exists n € N
such that B, = {x € supp fi1/n < f{z) = g(z)} and m{B,) > 0. Let o be
the function defined by @(é) = ¥{gxns + (f — )xm,) for 0 € 6§ < 1/n. As
(0) = ®(g) and ¢'(0%) < 0 we necessarily have that » > 1 and f = g.

ii) Let A, = {z € supp fig(z) =0, f(a) > 1/n} and let p(§) = ®(g +6xa.)
for0<é<1/n,neN Ifr >1or f # g the same reasons as before imply that
m{A,) =0, and 30, 0 < g a.e. on supp f. Consider now any measurable sct A
contained in supp f, with 0 < m{A4) < oo . The function () = ®(g + &xa)
has its minimum in § = 0, hence (0} = 0 { note that p > 1 }. Thus

/A gl =2 alP™ = £711f — gl =9} — gl =0

and then ii) follows since 4 is arbitrary.

1i1) Let A be any compact interval contained in [0,a). Let ¢ be the function
defined by ¢(8) = @(y + 6x.4) for J§] < inf{f(z);z € A}. It is clear that '(0)
does exists and actually »'(0) = 0. Therefore we obtain

/A gl ™ = 7 11F — gl 91 — glt~* = 0.

Since this cxpression is true for any compact interval containcd in [0, q)
we deduce that f — g = constant |, ac.z € [0,a]. If A = f(z) ~ g(z), then
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g = {f = A}X[o,q) 2nd consequently a and ) have to verify the equation ().
Note that @ < oo as the function f — ¢ € Lf. If r = 1 we easily compute that

e [T

and then (19 — a)})¥ = [ ¢ which implies iii).

iv) If g = 0 is an exiremal sclution, then f € L7 . We repeat the preceding
arguments by considering now the function (8) = ®{(éx|c,a) where [c,d] €
supp f and 0 < § < f(d). Since v has the minimum in § = 0,¢'{04) 2 0 and
hence

o
. gr=1 _ rfp_ r g—1 =g
0< lim r6Hd - ) rt f FNA N

what implies that r = 1. I p = 1 we thercfore obtain 1 > #||f[|77% f(2) a.e. on
supp f.

v) If ¢ = f(r = 1) similar arguments to those appearing in iv) show v). This
concludes the proof of the lemma. W

Next we will study the case p > 1.

I1.2 In view the preceding lemma we have to consider the'class of functions
g verifying: 1) g€ LP, f —g € 19,

1)0<g < fand

£11f = glly (=) — 9@ = gl P el

a.e. on supp f.

Let A denote the class of functions satisfying i) and i1). It is very simple to
check that for them

(g) = "I|f - Il f -y = gl / fo

(flz) =9
yr!

0 < y < f(z), we sec that the following facts are true : i) If g € A, g is non
increasing. ii) A is totally ordered. Indeed, let g1, g2 be two elements in A and
write M; = {lg:|ly 7P| f —:ll277, § = 1,2. Tt is clear that My = My ( respectively
My < My) implies g5(z) = g2(z) a.e.z € suppf (respectively gi{z) > gafz) ae.
z € supp f). Furthermore, for g 2> r, the inequality g1 > g2 yields My > M.
Hence the set A has only one element which is necessarily the unique extremal
solution of K,(t; f).

Let now assume p < r < g. If § denotes the inf A we are going io prove
that § = min A and that 7 is the unique extremal solution of Kr(¢; f). Indeed,
we realize that for any two elements of A, ¢; < gz we have ®(g1} < ®{(3).

Using the strictly decreasing function h defined by A{y) = r
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Let g be defined by g(z) = inf{g(z);g € A} € L? (L* is order continuous,
see [B]). Define o = ig&”gﬂp and let {g,)» be a sequence in A such ihat
g

llgilly < oo € |gnllp € ..... = @. Therefore g1 > g2 > .. Zgn = .20
Since £||f — galll < ¥{gn) £ B{g:)} we have that g = limg, € L? and
f — go € L%. By passing to the limit in I1.2. it is easily checked that gy € A ,
too. Eventually we conclude that §=go € A. B

We summarize all these facts in the following theorem

I1.3 Theorem. The case p > 1.

i) If r > q then the closs A has only ome element which is the unigue
extremal solution of K (t; f).
1) If p < r < g then the least element of A 15 the unigue extremal solution
of Kr{t; F).
i) If 1 < r < p we know that the unigue extremal solution of K.(t; f) is an
element of A.
iv] If 1 = r < p the solulions verify the equaiion

tf(z) — g lglp ™" = gl= IS —gll3™ (*)

Now g could be equal to O or f. Furthemore the solution s unique except
if f = AX[o,a)- In this case t = a'/P7V/ and K\(t; ) = Aa®/P.

Moreover in the four cases, if ¢ i3 an extremal solution we heve

lfr 1{:'"
K,(t;f)=|tg||;—<ﬂ”(] fg"‘) :tllf—gllé“”"(/ f(f—g)“‘l) -

Proof: We only have to prove the last part of iv). If g, # g, are extremal
solution of K(¢; f} then all the points of the segment [g1,42] are extremal
solutions. Sc we may suppose g; #0 # gy and f — g, £#0# f — ¢». Since L7
and L7 are strictly convex spaces the same reasons appearing in the lemma .4
say that g1 = ags , f — g1 = b{f — gz) for positive a,b . Therefore f = cga,
for some ¢ > 1, and thus £g;(2)? % = [|gz||¢ ' ){gzl[2~ a.e. on supp f. Hence
F=MXjoa), A2 0and t = al/r-l/7. =

I1.4 Let us now consider the case p = 1. We shall denote by b =length of
supp f < co. As i appesars in lemma IL.1., the extremal solutions of K.{¢; f),
g, have the following expression ¢ = (f — AjXjo,q WithC < a < oo . [fa >0
then A verifies the equation I1.1-ii)-{#). We define the function H(a, A) by

H{a,)) = Uf - a,\) T e [a,\ﬁ + '/ﬂqu](rm_l (r> 1)

oo {i/g3—-1
H(a,\)=1-tx"! [a,\q-g-f f'i’]

a
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for0<a<bh0<Agifff,r>land0<i<oo,r=1 Haisa
fixed positive number the function H{a, A) is strictly decreasing in the variahle

1
A and H(a,0) > 0. On the other hand, H(a,—f fl<Ointhecaser > 1,
a fo

and for r = 1 limy oo H{a,A) < 0 if and conly if ¢ < t¢'. Hence, the equation
H(a, )} = 0 has only one solution A = A, for any 0 < ¢ £ b {case r > 1) and
for any 0 < @ < min{t?,b} (case r = 1),

When a = b and r =1 the corresponding equation H{a,A} = 0is then 1 =
61/9-1 and so, this equation has solution if and only if t¢ = b. Furthermore,
if ¢ is an extremal solution of the functional Ky (f; f) with ¢ = b, then b < oo,
¢ = b, Ky(t; £ = || f]l: (21l the functions f — X are extremal solutions of the
functional for § < A < f{b7) } and H(b, f(#)) = 0. In order to determinate the
possible exiremal solutions ¢ we only have to check the value of 2 equal to the
length of supp ¢. The main tool for computing this value ¢ 1s the following
lemma

I1.5 Lemma. Let g be an extremal solution of K. (t; [} and let [0,qa] =
supp ¢, & > 0. Then flat) < A, < fla™).

Proof: Since g = (f — Xa)X[o,q) = 0 we find A, < fla7). I A, < fla™), we
would have A, < f{z) for all z € (g,¢). By considering the auxiliary function
p(8) = (g + bx[a,q) defined for 0 < & < A,, we easily would check that

9Wﬁ)=ﬂ1f—ﬂE1] (A== fm) <0
a

and, consequently, g would not be extremal solution for the functional K (¢; f)
which contradicts our assumption. Hence the lemma follows,

I1.6 Remark. As an immediate consequence of Lemma IL5. we have to
study the set 7 = {z € (0,}; H{z, f{z 7)) < ¢ < H(=z, f{z*))}, because the
length of the support of the possible non null solutions belongs to I. Then we
define the function F(z} = H(z, f(r)} defined for 0 < ¢ < b. The following
properties will allow us to compute easily the extremal solutions of K, (¢; f).

I1.7 Lemma. The following properties are true:
1) F(.) is non decreasing. Ferthermore if F(21) = Flzo) with 2, < x2
then f i3 constant in the closed interval [z1, 2]
ity F(z7) = H(z, f(z7)) and F{z*) = H(z, f(z7)).
1) If 21 < 22, H{xy, f{z1)) £ H(zz, f(z2))-
iv) I is either emply or an inlerval and the function f s constant on ils
interior. Purthermore I = {z; F(z2~) < 0 < F(zh}}.

Proof: i} Let z; < 12 be two positive numbers, Since f is non decreasing we
have that

e2f(as) - 11f(en) < flaafer =) < [
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and therefore

[ [ 1-ni)] e [ 1-ms)]

If » > ¢ it is also clear that

mf(e)+ [ T2 () 4 (22— ) () 4 / °° I °° 1

z

Hence

flmy? [Ilf(zl}q + /:qu} e > flag)?? [ng(ze}? + /:j fe](rm '

In the case 1 £ v < ¢ we realize that

e |t + [ ] T

i

fy™! irl +/°° (f(il))q-irfq)—l

>

r g3(rfp)-1
flaz)™! _xl + ( (m) _ >
faa) [ + ( >

f(xl)) I
)

f(xz)"—l :_7_-2.;.] ( . {riq)-1

and thus the first part of i} is proved. If F{z,) = F(zz) and r > 1 we have, In
particular, that

naf(a) =0 fa) = [ 12 (@ - e)f(@) + (@ - D(e)
for an_‘],' z, 71 < # < 22. Then f{z) = f(x1) = f(z;) and f is constant in

£ ] 2
Suppose now that r = 1, then we find f (f(f )) = xg—1, and therefore
I

we have that f is also constant in [z1, z2].

it) This property s easily computed from the special expression defining the
function FY{.}.

i) H{zy, f(z1)) = zl_igu F(z) < lim F(z) = H(z, f(z3 )}

-_412
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iv) Let 21,72 be two different point of I, z1 < ;. By applying ii) we find
that H{z, f(z)) = 0 for all z; < z < 72, Then the sct [ is an interval and

consequently f is constant in I. The last assertion in iv)is a conse(ﬁzence of

Hi}, W .
I1.8 Remark. If we denote by g. the function g: = {(f — A.}Xo,»), Where A,

is the unique solution of H(z,A) = 0, then g. = (f — f(2)}X[o.gq for all z €1.

Hence g, is the same function and therefore ®(y,) is constant for all z € 7.

I1.9 Theorem.

i) If F(O¥) 2 0 then r = 1,9 = O is the unique exiremal solution of
the functional Ki. In this case f € LINL*, |[f|l, & [1f]loct?? and
Ko(ts £) = 11l ,

8) Ifr = 1,limgg+ Fz) £ 0 then b < 19 and g = f is estremal solution
of the functional. Now Ky (t; f) = ||flh

i) If either r = 1 and limy o+ < 0 or r > 1 and Hm,_ - F(z) > 0 there
ezists on unigue eztremal soluiton g for the functional K (i; f). This
function g 15 defined by g = {f — A)Xjo,q where a =inf I (I #8). The
number A is the unique salution of H{a,A\) =0 end f(a¥) < A < f(a™).
The expression for K {t; f} s

Kt f)= {(Laf —a)\)r+t' (a/\? +/awf<r‘>w]

Proof: This is a consequence of the preceding results, namely, I1.1-1i1},iv}), v},
1.4, 1.7 and I[.8. W

Remark. i) When r = 1 and F{z) < O for all z < & then & < t¢ and f is
the unique extremal solution of the functional. If F(z) = 0 for all z € [a, 4],
then the function g = {f — A)x[e,4 is also extremal solution for the functional
(X is the corresponding solution of the equation H{e,A) = 0}.

it) The fact that the extremal solutions for the K, -functional between L and
L? arc horizontal slicings of f could be extended to the more gencral case of the
functional K.(t; f,L1,L), 1 < r, where L is a strictly convex rcarrangement
invariant space on [0,00). Indeed, if ¢ is an extremal solution, ¢ and f — g are
non increasing (see 1.2, 4 and 1.5). Then {xz; f(z)—g(z} >0} = [0,0). fe <2
we have flz) —g{z) > ¢ on [0,¢€) for some ¢ > 0. For every point x € [0,¢)
there exists an interval J, such that z beloags to J; and g is constant on J; .
If this were not true let

1 zte
fe = FX[z—¢,z 44" + (E/ g) X[z =c,z+¢]

=

1fr

Since L is strictly convex g # g, would imply ®(g.) < ®{g) what contradicts
our assumption on g. Eventually an argument of compactness implies that the
function g is constant on [0, ), for all b < ¢ and so, on [0, a).
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II1. The case r = co

It is straightforward to establish that Koo(f; f) = lim K.(¢; f}. This expres-

sion would allow us to obtain the equation for the functional K., by pass-
ing io the limit In the corresponding extremal solutions for K,(t; f). We
prefer to compute directly the solution by using again the caleulus of vari-
ations. We already know that if ¢ is the extremal solution for K, then

Keol(t: f) = llgil, = 2Ilf — gllg > 0-
The following lemma is the crucial tool for determining the solution when
p>1,

I11.1 Lemma. Letp > 1, and let g be an eziremal solution of the funclional
Koo{t; ). Then 8 < g{z) < f(z) and

(1)~ o)™ = Pl [ (£ - o)
a.e. x ensupp f.

Proof: Let A and B two disjoint measurable sets of pesitive and finite mea-
sure, contained in supp ¢. The equation

llg +éxa + pxall, = HIf — (g +8xa + uxs)lly

defines § as an implicit function é = é(x) in a neighbourhood of § = p = 0; we
therefore have

g0y = _ Jo Lol 7a"™" +UIf — glly™*(f - g¥1)

Lo [Ngll 97— 4411 — gli™%(S - 9]

Consider now the function @{u} = |lg + dxa + pxpll,- Since this function is
¢ and has a minimum in p = 0 we find

0= = sl [50) [ @+ [ 7]

By an easy computation we obtain
L =g fpf— )
Jag™ Jper!
As this equality is true for any couple of disjoint measurable sets in supp g, we
deduce that there exists a constant A such that {f —g)7 ! = Ag?P™} | ae. on

supp ¢. lf we would take A C supp g and B C (supp f\ supp g) and repeat all
the arguments we would get that

Ju=o [omi= [om [(1-ar -0

Therefore f = ¢ a.e. on B which implies that supp ¢ = supp f, and that
concludes the lemma. W

We can setile the case p > 1
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II1.2 Theorem. There czisis o unique extremal solution of the correspond-
ing functional K o(t; f). This funclion is the unique element whick verifies :

0<g<f,
(f—g)"!

gr?

= llgll5? f o(f —gp
ee.c on supp f and |lal, = HIf = gll,-

Proof: Let A be the class of functions in LP verifying: 0 < g < f,

— gyt
Y=l gt [otr=op

gr!

a.c.x on supp f and ||g|l, = | f — gllq The same arguments appearing in 11.2.
prove that 4 is a totally ordered set in LP. But ¥ g, < g, are two elements

in A, we have [l < llozlly = H1f = a2lly < tllf — arlly = llgslly and then
g1 = g2. This proves the theorem. #

Next we will study the case p = 1, For that we need the {oliowing

1I1.3 Lemma. Lei ¢ be an ezfremal solubion of Koo(t; f}, p = 1. If supp
g =[0,a] then 0 < & < 00, f —¢ = A a.e. on [0,q], where X is the unique
solution of the equation

/:f—a)\ :z[a;\ufﬂwfq]w
ond f(a*) < M(a™).

Proof: We begin by repeating the same arguments which appear in the proof
of lemma IIL1. We have to take A and B in [0, a] far enough from ¢, in order
to ensure that the corresponding auxiliary functions we use are defined in a
neighbourhood of 4 = 0. We obtain that f —g = A a.e. r on [0,4] {we do not
know yet if A > (; in any case it is clear that 0 < a < 00 ). Since g = (f=A)X(s,q]
and ||gils = ||f — ¢llp, the constant X has to verify the equation before stated
that obviously has only one solution.

It is easy to see that @ £ A € f{a™). The moare delicate part is to prove
the inequality A > f(a*), which actually implies A > 0 { indeed, A = 0 would
say that supp f =suppg, f = ¢ = 0 ). Suppose that 0 < A € f{at) . We
may assume A < f(z}for all r € [a,a+ ¢] . We denote by I, = [0,¢] and by
I = |a,a + ¢ { € is small enough so that I+ C [0,¢]). The equation

llg + pxr, +8xrll = tf — (g + pxn + 6xn)lly

defines § as am nnplicit function of 1, & = §(u), whenever u € [uo,0] and
&(p) € [0,80) ; besides § € C¢(p0,0] . { A special form of the classical implicit
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function theorem has to be applied {or the case when the conditions are required
in the boundary of the domain. The proof may be adapted from the classical
one ). Now

e(14¢|f - glii=oasY)
e+ ti|f — glly e [T fot

The function {p) = {lg + pxrn, + 8x1,||: verifies »'(07) > 0. Hence g would
not be extremal solution of the functional and thus the lemma is proved. H

§(07) = -

Consider the function

H(a=)‘)=[f-a)\—t[a,\u/aqu]”“

a

fora>0,0£ 2 < 1 f . The situation now is similar to that appearing
a.fo
when r < co . The following facts could be deduced in the same way. Fixed
1 a
a >0, H{a,.) 15 a strictly decreasing function. Clearly H{a, E/ fi<0. Ha
0

is the length of supp of g, extremal solution, H{a,0) > 0 and so, ¢ > ap where
o is the unique positive real such that ||fxjo,a01ll1 = | £ X[20,001lg-

In general a < b implies that H{a, f(a™)) € H{a, F{a®)) < H{b, f(b7)).
Hence we define the non empty interval I = {x € (as, 00} H{z, f(z7)) 20 <
H{z, f(z*))}. It is easily checked that inf I = min] > ap. Eventually we get
the solution as follows

I11.4 Theorem. The case p = 1. There ezists ¢ unique cziremal solution
of the fumctional Koo(t; f). The function g 45 defined by ¢ = (f — A)x(0.0)
where ag < & = minl < co and A i3 the solution of H{a, A} = 0. Moreover

flat)y <A< fla™) and
a o 1Y
Kt )= [ f—aA::[a,\u[ f"‘] "
a a

Appendix

In this part we introduce the functionals K, and K, ; and we compute them
for any function f € LP 4+ L9, Next we compare the monotonicity relations asso-
ciated to these functionals (see definitions below} and eventually, we shall give a
new characterization of the (1,X,; . }-monotenicity in terms of an interpolation
theorem.

Recall that a Banach space X is said to be an intermediate space between LP
and LY i X is continuously embedded between P and L?je. LPNLY — X —
L? + L', An intermediate space X is sald to be an inferpolation space with
respeet to (LP, L9} if any lincar operator T € L{LP)NL(L?) is also bounded cn
X (L{A) denotes the space of bounded lincar operators on the Banach space
A, see [2] and [3] for more information).

Next r,s will be two fixed real 1 €7,5 < oo and t > 0.
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A.1. Definitions. i} Let f be c non negative non increasing function in
Lr + L¢
Kro(t £1 L7, L%) = Ky o{t; £) = mi(llgll; + ¢)|A]l)

where the infimum i3 defined over ¢l possible decompositions of f =g+ h, g €
L? and h € L%, The functional K, , ts defined in a similar way bul considering
only disjointly supported funciions

Kol £ L8, 19) = Koyt F) = inf (1lgll + £11B113)

gah=0

1) Ar intermediate space X 13 {C, K, . )-monotone {respec. (C, K, ;)-monotone)
if given f € X, g € LP+ LY such that K, J{t; f} > K, (1, ) (respec. K ao{t; f} >
K.t g)) for alit > 0, then g € X end ||gl|x < C|fllx-

If » = p, s = ¢ we have the K, ,-functional used by Sparr {cf. [11]) which
is nothing but the L-functional appearing in [10]. We begin by stating the
results corresponding to the K, ;-functional and we will not prove the theorems
because the proofs are similar to the previous ones.

A function g € L? is an extremel solution for K, .(t; fY f K, (t; f) = llgli} +
tHf — glls-

We consider first the case p > 1. Let A be the class of the functions g which
verify: 1) g € LP, f — g € L2, ii} For almost every = € suppf,0 < g < f and

ra(@ P S = glli™ = ts(f(z) — 9(=))" " liglls ™
A is a totally ordered set.

A.2. Theorem.

1) If s > g end v = p, A kas only one element which is the unigue exiremal
solution of the funclional K, ,(¢; f}
ii) If s > r > p, the function ¢ = min A is the unique cxtremal solution of

K6 5)

iii) In the other cases there exisis an estremal solution g of K, ,(1; f), such
that g € A. This eztremnal solution i3 unique except whenr =5 =1,f =
Axpo,p) and t = b1/P72a,

In the three cases
Kot fr= E ”g”;_P/g}?-—l[f ~(1- E)g]
=tJ|f —gll;? /(f ) FE g ;)g]

where g is the exivemal selution of the funclional
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We consider now the case p = 1. Let 5 be the length of support of f (£ o0).

We define the function F : (0,5) — R by
Flzy=r (lzf - mf(x))r_l — st |z + f: (f({c))q]””*l

This function is non decreasing and censtant in the intervals where f is con-
stant.

A.3. Theorem.
1y fF(0Yy>0thenr =1, f € IPNL™ and ts||f||m||fl|;_? < 1, Moreover

g = 0 i3 the unigue exiremal solution of the funclionel end Ky ,(t; f) =
£

i) If s = 1 and F(z) < 0 for all z < b, then f € L}, r||f]l; Y7 < ¢,
(b < oo} and g = f is the unigue eziremal solution of the functional
Ke ol £y = /110 ,

i) If s= 1 aend F(z) =0 for all 2 € {a,b], @ < b, thenr =1, t = b1/¢
and g = f is extremal solution. Also the function g = (f — f(@))x[e,q
is eztremal selution of the funciional Now Ky (4 F) =|1flli = llgll: +
f1f — gll,.

iv) In the other cases there exisis only one extremal solubion g = (f —
A)X[o,a], where a = sup{z € [0,8]; F(z7) < 0} and A 15 the unique

solution of the equation
3 g
f
a+/ﬂ (/\

r ’ —aA r_lzst
7=

sfg—1

Now

& r b sfq
I{r,s(t;f}=r(£ f—a)\) +t{a}xq+-/fq]

Next we are going to compute the K. ,-functional we introduced before. By
definmition

Kes(t; f) =it [|fxallp + il xacllg,

where the infimum runs over all subsets 4 C suppf. The main result now is
the following

A.4. Theorem. If f € LP 4+ L7 the K, , functional kas the fellowing ez-

PTESSION

Koalti £) = min_lFxpally +Hlf Xtz colly
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Proof: We shall prove the theorem in three steps. To start with we shall
establish the theorem for simple functions.
Siep 1. Suppose that f = Z a;x1, where a; > ... > ay > 0, Ij’s are pairwise
=1
disjoint intervals with length([;} = m; > 0. It is quite clear that K. (t; f) =
n

mezg p(z), being = = (21,...,2,), O = H[U, m;| and p the continuous function
I
i=1

] /p n sfq
ple) = (Z af:c,-) + ¢ (z al{m; — r,)) .

=1

defined by

Let T = (%1, ..., Tn} & minimum of this function p in C. If T EC then g—(:c) =

0, for all 1 < { < n. Easy computations would imply that ¢; = ... = a, which
is a contradiction. Thus T € 8C and, for instance, we may assume that there
exists § (1 € j < n)such that T; = ¢; with £; = 0 or = m;. Now we consider
the function

'ﬁ(Il,---s1‘j—1;£;‘+1s--w$n) = ‘P(:‘:h'"vrj—liejsxj‘l-lv"':zn)

defined for ¢ € x; € my, 1 # j. This function 3 attains its minimum in
(Tt Tj—1,Zj+1,---, En ). Repeating the argument we would obtain that there

exists another coordinate j' such that T = £5 {£; = 0 or m;+) and so on.
Eventually we cbtain that there is a natural number &, 1 < k < n, such that
T = {fy, ., x—1,Ths Lkg1, .., £n) where each £; = 0 or m; and T; is equal to §

or my, or a solution of the equation in z: a—w({fl, vl bk, Eny =10
Tk

In order to precise the exact form of T we realize that f T = (0,...,0) or
= (m1 , -y Ty } the proof of the Step 1 would be finished. So, we may suppose
96 {0, O} and T # (my,...,m,}. Let 4 be the well defined positive number

rg[yn, 2Tl

A= #fg—1
pst (L0, al(mi —E)]""

Let A be the set A = {i;af ? > 4}. The following lemma is the main tool
in the preof of this step.

A.5. Lemma. The set A£ 0. If ko = max A then

F=(my, ., My—1,Fkg, 0, .-, 0},
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il (T} = 0 otherwise.

ax_:m

where Ty, = my, if af. * > A and

Proof: We know that T = (41, ..., 84_1,Fx,lky1, -, fn) forsome b 1 < k < n.
If 7 # k let k be the real function defined by

R(y) = @1y o B oo Ty rer ).
As {; = 0 (respectively £; = m;) implies that A'(0*) > 0 {respec. B(m]) <0)
it is easy to check that £; = 0 (respec. = m;) implies that ag_” < A (respec.
aE_" > A). In the same way , if Tt = 0 then o] ® < A, if T = my then
ai 7 > A and otherwise a]F = A.

As T # (0,..,0) the set A # §. Hence if j < ko (respcc. j > kg) the
corresponding j-th coordinate has to be m; (respec. (). Finally we only have
to consider the different values of g4, with respcct to 4 and this concludes the
proof of the lemma. W

By applying the lemma we have that K, ,(t; f) = ¢||f(l; or Kro{t; £} = IfII;

or

ko rip
'Cr,s(t; f) = (p(f) = (Z afm,— + Qiofka)

i=1

n s/q
+1t (azo (my, — Tg, )} + Z afm,-)

ko1
= Fx.ally + 2 Xize0ll;
where £ = my + ... + My,—~1 + Tg,. In the three cases the Step 1 is proved.

Step 2. Suppose now that f € L™ and the length of the support of f is
finite. We can approximate f by a non decreasing sequence of simple functions
{(fn)n converging to f in the L°°-norm. We apply the Step 1 to these simple
functions f, and we get that

Krs(t: fn) = £ X0,z + X1z, 00 [;

where @ € suppfa. Since K, (1, fz) < K. 4(f; f) by passing to a subsequence
if necessary there exists z = lim z,, and thus we have

m&e ot £r) = |1 xt0,a )5 + I Xz00ily 2 Kralts £)-

Hence
Kr {6 £} = x4l + 1 Xz 0013
for some z € supp f.

Step 3. If f is a general non increasing and non negative function in LP 4 L7
we approximate f by a sequence of truncations of f and we apply the ideas of
the Siep 2. B
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In order to determinate the point z € supp f for which

K:r,s(t;f) = “fX[E],r]“; + t“fX[Z,oo)“;

we consider the auxiliary function ¢ defined by

o[} ()"

for 0 < < & = length of the support of f. This function ¢ is continuous and
has derivative p'(z) almost everywhere. More precisely, there exist ¢'(z1) and
¢'(z7) and they are equal except at most in the discontinnity points of f. [
is easy to check that

ozt = %sIIfX[z,m)!I;"'f(xi)”[q’{:c) - faty)

0 < z < b, where
rg |1fxjo,all "
B(z) = __t.[—"P_q
Pt Xiz,00le

(¢'{z%) denotes each one of the two haad side derivatives of y, in the same
way f(z¥) represents the two lateral limits of f). Hence we have that if g 1s a
point of minimum for the function o necessarily zo = 0, or = bor f(zg )97 >
®(z9) > f(aF)?7?. In particular we have the following

A.6. Proposition.
1) If either r > pand s > g or v > p and s > ¢ there exists only one

point To € supp f for which the mintmum of ¢ is aftained. Furthermore
vg = sup{z; ¥{z) £ f(2)? 7} and

s—q | P%
Kra(t £) = t1f Xizo 00l [Ellfxw,mlll?@(f) + 11 X120 0001
#) Ifr=pands=gqg

Kot f) = [ minlf(aP, ef(a)") e

Proof: i) Under these hypotheses ® is a strictely increasing function. Let
I={zc(0,b);%(x) < f{z)?7P}.

I = @ means that f € LY N L7, r = p and ||f]||5S7 < %“f“g_’. Then
s
@'(%) > 0 for all z and then K, ,(f; f) = tlifil3-
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If 7 =(0,b) then b < oo and ¢/ {z%} < Oforall 0 < z < b. So K, ,(¢; f) =
(L£115-
Otherwise ¢'(2%) < 0 for all z € I and /(2%) > 0if z ¢ I. Hence i) holds.

it} Now ¢(z) = % and this part of the proposition is easily checked. W

Remark. We note that our K, ; functional is exactly the corresponding K, ,
functional used by Sparr in [11, definition (3.1)]

Later on we shall prove that for r,s > 1 all the K, ,-monotonicities are
eguivalent in any intermediate space between LF and LY and that a weaker
result is true for the correspondig K. ,-monotonicities.

A.T7. Proposition. Let X be an intermediate space between LP gnd L¥and
r,s > 1. The following assertions are true: 1} X is {1, K, ,)-monotone & X
is-(1, K)-monotene. w} Ifr > pand 5 > q, X 15 (1,K, . )-monotone & X i3
(1,K, ¢ )-monotone.

Proof: 1) Set E the functional defined for f € LP+L%and A > 0 by E(X; f) =

inf ||f — ¢, It is clear that
ugu,sxn ls

K, (t; f) = inf [X 4+ BT £y (A.7.1)
' A

and

. rilfs
E(); f) = sup [M _ ’\_]
] t i

(see [11], lernma 3.3). Then K, (f; f) > K. (t;g) for all t > 0 if and only if
E(A £y 2 E(A;g) for all A > 0 and hence if and only if Ky,1(t; f} > Kya(t; g)
for all t > C.

#1}) The proof of this part is similar to the previous one by using a suitable
modification of the functional E, namely £, defined by

iD= i el

(A.7.2)

Now the corresponding similar expressions (A.7.1) and (A .7.2) for the function-
als K, , and £ oceur. Actually, the only thing we have to compute is that given
A > 0 with £(}; f) > 0 there exists > 0 such that K, ,{t; f) = A" + t&(A; f)*.
It is clear that there exists only one point y, 0 < y < length supp f, such
that |[fxeglls = A and |[fx(y,000llg = E(A; f). Since r 2 p and 5 > ¢ we take
rgAt TP

' By

Remark. For r,s > 1 it is clear that ¥ X is (1, X, ,)-monctone = X is
(1,K, )}-monotone.

F{yY ™7 and we apply Proposition A.6. B

Now we recall that a lattice homomorphism is a linear bounded operator be-
tween Banach lattices which maps disjointly supported functions into disjointly
supported functions.
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A8, Theorem. Let X be an inlermediate space between LF and L%, X i3
(1, K, )-monotone if and only if ihe following interpolation result is irue: If
T € L{LPYN L(L3) i3 a latlice homomorphism then T € L(X) and

I17]]x—x < max{||T||zr—rr, IT]|ze—re}-

Proof: First of all we remark that both assertions imply that X is a rear-
rangement invariant function space. Suppose that X is {1, X, ;)-monotone and
that T is a lattice homomorphism such that

max{||T|ler—ps, I T||Lo—re} < 1.
If fe X, since T is a lattice homomorphism we have

KpaTH) = inf llallp + bl < inf Mgl + IRl

srnh=0 ghh=0
= Kp ol f)
forallt > 0. Thus Tf € X and ||Tfllx < ||fllx-

On the converse hand, let f € X and g € LP 4 LY such that for all ¢ > 0
Kpolt; f) 2 K, o(t;9). Applying the lemma 4.2 of [11] we obtain that for
each € > 0 there is a lattice homomorphism T, € L{LP) N L{ L4} which verifies
T.(f) =g. Then by using the hypotheses we have ¢ € X and

lgllx < NTNx—xiIfllx £ (1+lfllx

Since this is true for all € > 0 thus the proof of the theorem is complete. B

As a consequence of this result we can establish the following characterization
of interpolation spaces with respect to the couple (L?, L9); this corollary is in
essence an interpolation result

A.9. Corollary., Lel X be an intermediaie space between LP and LY. The
Jollowing statements are equivaleni: i) X is an inlerpolation space, 1} X 15 an
inlerpolation space for lattice homomorphisms.

Proof: We only have to show i1} = i}. We define a new equivalent norm ||| |||
on X in the following way

1A = sup |7 A

where the infimum runs over all possible lattice homomorphisms T € L{LF) N
L(L7) such that mex{||T||zr—zr,||T||ce—re} < L. It is clear that (X, {|[.]|]) 1s
an cxact interpolation space for lattice homomorphisms. Thus (X, {||.]|]} have
to be {(1,K, ,)-monotone. Hence the result follows by applying the theorem 5.2
of [11]. W
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