
mn header will be provided by the publisher

Random vectors satisfying Khinchine-Kahane type inequalities
for linear and quadratic forms
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We study the behaviour of moments of order p (1 < p < ∞) of affine and quadratic forms with
respect to non log-concave measures and we obtain an extension of Khinchine-Kahane inequality
for new families of random vectors by using Pisier’s inequalities for martingales. As a consequence,
we get some estimates for the moments of affine and quadratic forms with respect to a tail volume
of the unit ball of `n

q (0 < q < 1).
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1 Introduction

It is well known the exponential decay of many systems of independent and identically distributed
random variables and a similar situation occurs in other frameworks. For instance, M.Gromov and
V. Milman (see [8]) proved such exponential decay for the uniform distribution on convex bodies in
Rn and this fact is known as an extension of Khinchine-Kahane inequalities for convex bodies. More
exactly, what they proved was that for every convex body in Rn, and for every f , linear form defined
on Rn, the following inequality is true

(
1
|K|

∫

K

|f(x)|p dx

)1/p

≤ Cp
1
|K|

∫

K

|f(x)| dx, (1.1)

for all p ≥ 1 and for some absolute constant C > 0 independent of K and of the dimension. From this
fact it is clear that

µ {x ∈ K; |f(x)| > t ‖f‖2} ≤ C exp(−Ct)

where µ is the uniform distribution on K and

‖f‖2 =
(

1
|K|

∫

K

|f(x)|2 dx

)1/2

.

Moreover,

‖f‖Lψ1 (K,dµ) ≤ C‖f‖L1(K,dµ) (1.2)

for some absolute constant C > 0, where Lψ1(K, dx) is the Orlicz space generated by the Orlicz function
ψ1(t) = et − 1 with respect to the Lebesgue measure normalized on K.

By using C.Borel inequality (see [3], [4]) a simple proof of this fact can be given in a more general
framework, that of log-concave measures on Rn (note that the uniform distribution on a convex body is
a log-concave probability on Rn as a consequence of the Brunn-Minkowski inequality, see [13]). R. LataÃla
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2 J. Bastero and M.Romance: Inequalities of Khinchine-Kahane type

([11]) and O. Guédon ([9]) extended the inequality 1.1 to the range −1 < r < p < ∞ for log-concave
probabilities, by proving that

‖f‖Lp(dµ) ≤ C max
{

p,
1

1 + r

}
‖f‖Lr(dµ).

J. Bourgain (cf. [5]) extended M.Gromov and V. Milman inequality to the class of polynomials,
answering a question raised by V.Milman. S.G. Bobkov (see [2]), by using localization lemma, extended
Bourgain’s result to any log-concave probability on Rn given the right estimate, i.e.

‖f‖Lψ1/d
(dµ) ≤ Cd‖f‖1,

for any polynomial f of degree d and some absolute constant C, where ψ(t) = exp (t1/d) − 1 and the
same method prove that

‖f‖L1(dµ) ≤
(

C

1 + r

)d

‖f‖Lr/d(dµ)

for −1 < r < 1. More recently A. Brudnyi studied the corresponding result for analytic functions in
terms of their Chebyshev degree (see [6]) and F. Nazarov, M. Sodin and A. Volberg give another approach
to this kind of result by using a geometric Kannan-Lóvasz-Simonovits localization lemma (see [14]).

The extension of Khinchine inequalities for quadratic forms appears, for instance, in [7] and [10].
The main goal of this note is to exhibit families of random vectors in Rn verifying similar inequalities

to the ones given above for affine and quadratic forms in the range 1 ≤ p ≤ ∞. The uniform distribution
on the q-balls Bn

q , (0 < q < 1) are particular examples.
We should note that q-balls, (0 < q < 1), are q-convex sets in Rn and not convex ones. A. Litvak in

a recent paper proved that we cannot obtain an inequality of the type Gromov-Milman (see (1.1)) for
linear forms with constant independent of the dimension, when we consider the uniform distribution,
µK , on a q-convex body K in Rn; so, µK (the uniform distribution on K) is not log-concave (see [12]
for the definition of q-convex sets and for this result).

The methods we use in the proofs are quite elementary and are based on a recent result by G. Pisier
(see [16]), where he gives a new proof of the inequalities for martingales in commutative and non-
commutative Lp-space using Moebius inversion formula.

Next we introduce some notation. Let µ be a random vector on Rn. We can see µ as the joint
distribution of n real random variables (no necessarily independent), (Xi)n

i=1, defined in some probability
space Ω, µ = µX1,...,Xn . E denotes either the expectation in Rn with respect to µ or the expectation in
the probability space, depending on the representation we choose.

We say that µ is unconditional if

µX1,...,Xn = µε1X1,...,εnXn

for any choice of signs εi = ±1. We say that µ is orthogonal if

Exi1 . . . xik
= 0,

for all choice of indexes 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ k ≤ n, We say that µ is strongly orthogonal if

Exα1
i1

. . . xαk
ik

= 0,

for all choice of indexes 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ k ≤ n and αj ∈ N∪{0}, whenever min{α1, . . . , αk} =
1. It is easy to see that an unconditional probability having finite all the moments for all the variables
is strongly orthogonal and that the three concepts are different.

We shall introduce the following notation for Borel probabilities µ in Rn whose moments are all finite
for all variables:

ϕ(p, µ) = max
1≤i≤n

(E|xi|p)1/p

(E|xi|2)1/2
(1.3)
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and

γ(p, µ) = max
1≤i 6=j≤n

(E|xixj |p)1/p

(E|xixj |2)1/2
(1.4)

for all 2 ≤ p.
If the measure µ is the Lebesgue measure normalized in a compact K ⊂ Rn with |K| > 0, we will

denote ϕ(p,K) = ϕ(p, µ) and γ(p,K) = γ(p, µ).
As usual we denote by

‖x‖q =

(
n∑

1=1

|xi|q
)1/q

for x = (x1, . . . , xn) ∈ Rn, 0 < q ≤ ∞. Bn
q will denote the corresponding unit ball for ‖ · ‖q. | · |

will denote so Lebesgue measure as the absolute value depending on the context. It is clear that the
Lebesgue measure normalized on Bn

q , i.e.

µ(A) =
|A ∩Bn

q |
|Bn

q |

is unconditional and so strongly orthogonal. The letter C or Cq will denote an absolute constant or a
constant depending only on q which can vary from line to line.

2 Inequalities for linear and quadratic forms

Let µ be a random vector in Rn. In the sequel we shall assume that all the moments of µ with respect
to all the variables are finite. Next result gives an inequality of Khinchine type for affine forms in terms
of the parameter ϕ(p, µ).

Proposition 2.1 Let µ be as before. Let a be a vector in Rn, m ∈ R and let p ≥ 2 any even integer,
then, for some absolute constant C > 0,we have

(E|m + 〈a, x〉|p)1/p ≤ Cpϕ(p, µ)
(
E|m + 〈a, x〉|2)1/2

, (2.1)

whenever µ is orthogonal and

(E|m + 〈a, x〉|p)1/p ≤ C
√

pϕ(p, µ)
(
E|m + 〈a, x〉|2)1/2

(2.2)

whenever µ is unconditional.

P r o o f. First of all we suppose that µ is orthogonal. We can use the following Pisier’s result quoted
below (see [16], Theorem 2.1),

Let (di)i∈I be a finite sequence in Lp(Ω, dµ) a measure space. Let p be an even integer. If we assume
that

∫

Ω

di1 . . . dipdµ = 0 (2.3)

whenever ij 6= ik, (1 ≤ j, k ≤ p) then

∥∥∥∥∥
∑

i∈I

di

∥∥∥∥∥
p

≤ 2p

∥∥∥∥∥∥

(∑

i∈I

|di|2
)1/2

∥∥∥∥∥∥
p

.
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4 J. Bastero and M.Romance: Inequalities of Khinchine-Kahane type

Let {di}∞i=0 be the sequence of random variables given by

di =





m, if i = 0,

aixi, if 1 ≤ i ≤ n,

0 if i > n

Since µ is orthogonal, by using Minkowski inequality, we have

E|m + 〈a, x〉|p =
∥∥∥
∑

di

∥∥∥
p

p
≤ 2pppE

(
m2 +

n∑
1

a2
i x

2
i

)p/2

≤ 2ppp

(
m2 +

n∑
1

a2
i (E|xi|p)2/p

)p/2

≤ 2pppϕ(p, µ)p

(
m2 +

n∑
1

a2
iE|xi|2

)p/2

= 2pppϕ(p, µ)p
(
E|m + 〈a, x〉|2)p/2

.

Next we consider that µ is unconditional. Let now {εi}n
i=1 a sequence of independent, independent

of µ and identically distributed random variables taking values ±1 with probability 1/2. It is clear that

E|〈a, x〉|p = E

∣∣∣∣∣
n∑
1

aiεixi

∣∣∣∣∣

p

for all choice of signs εi, 1 ≤ i ≤ n. Hence averaging and by Khinchine and Minkowski inequalities we
have

E|〈a, x〉|p = ExEε

∣∣∣∣∣
n∑
1

εiaixi

∣∣∣∣∣

p

≤ Cppp/2E

(
n∑
1

a2
i x

2
i

)p/2

≤ Cppp/2

(
n∑
1

a2
i (E|xi|p)2/p

)p/2

≤ Cppp/2ϕ(p, µ)p

(
n∑
1

a2
iE|xi|2

)p/2

= Cppp/2ϕ(p, µ)p
(
E|〈a, x〉|2)p/2

.

Hence

(E|m + 〈x, a〉|p)1/p ≤ m + (E|〈a, x〉|p)1/p

≤ Cp1/2ϕ(p, µ)
((
E|〈a, x〉|2)1/2

+ m
)

≤ Cp1/2ϕ(p, µ)
(
E|〈a, x〉|2 + m2

)1/2

= Cp1/2ϕ(p, µ)
(
E|m + 〈a, x〉|2)1/2

.

If we don’t assume any cancellation at all, we also obtain an estimate similar to the one in part i),
but only for m = 0 and for the values of p > n, for which (2.3) is obvious.

Next result offers an inequality for quadratic forms. The parameters ϕ(p, µ) and γ(p, µ) appear
explicitly.
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Proposition 2.2 Let µ be as before. Let C = (cij) a real n×n symmetric matrix such that cij = cji

and cii = 0. Consider the quadratic form on Rn defined by Q(x) =
∑n

i,j=1 cijxixj. Let p ≥ 2 an even
integer, then

(i) Suppose µ is strongly orthogonal then we have

(E |Q|p)1/p ≤ Cp2


 ∑

1≤i<j≤n

c2
ij

(
γ2(p, µ)E|xixj |2 + ϕ(p, µ)4E|xi|2E|xj |2

)



1/2

,

(ii) If µ is unconditional we have

(E|Q|p)1/p ≤ Cpγ(p, µ)
(
E|Q|2)1/2

where C > 0 is an absolute constant.

P r o o f. (i) We are going to use the ideas appearing in [10] and [16].

E |Q|p = 2pE

∣∣∣∣∣∣
∑

1≤i<j≤n

cijxixj

∣∣∣∣∣∣

p

.

By using the properties of µ and Jensen inequalities we get that

E |Q|p = 2pEx

∣∣∣∣∣∣
Ey


 ∑

1≤i<j≤n

cij(xixj − yiyj)




∣∣∣∣∣∣

p

= 2pEx

∣∣∣∣∣∣
Ey


 ∑

1≤i<j≤n

cij(xi − yi)(xj + yj)




∣∣∣∣∣∣

p

≤ 2pEx,y

∣∣∣∣∣∣
∑

1≤i<j≤n

cij(xi − yi)(xj + yj)

∣∣∣∣∣∣

p

= 2pE

∣∣∣∣∣
n∑

i=i

di

∣∣∣∣∣

p

where {di}∞i=1, defined on the probability space (Rn × Rn, µ⊗ µ), is given by

di = (xi − yi)
n∑

j=i+1

cij(xj + yj),

if 1 ≤ i ≤ n− 1, and di = 0 if i ≥ n.
The sequence {di}∞i=1 is p-orthogonal in the sense of G. Pisier for any p ≥ 2, with respect to the

probability space (Rn × Rn, µ⊗ µ). Indeed, the condition imposed to µ implies that

Ex,ydi1 . . . dip = 0

whenever i1 < · · · < ip, since the integrand is a polynomial in the variables xk, yk (1 ≤ k ≤ n) and the
corresponding exponents for xi1 , yi1 are equal to 1. So, by using Pisier and Minkowski inequalities we
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6 J. Bastero and M.Romance: Inequalities of Khinchine-Kahane type

get

E|Q|p ≤ CpppEx,y

∣∣∣∣∣∣∣

n∑

i=1

(xi − yi)2




n∑

j=i+1

cij(xj + yj)




2
∣∣∣∣∣∣∣

p/2

≤ CpppEx,y




n∑

i=1

(x2
i + y2

i )




n∑

j=i+1

cij(xj + yj)




2



p/2

≤ Cppp




n∑

i=1


Ex,y

∣∣∣∣∣∣
xi

n∑

j=i+1

ci,j(xj + yj)

∣∣∣∣∣∣

p


2/p



p/2

.

In order to compute

Ex,y

∣∣∣∣∣∣
xi

n∑

j=i+1

ci,j(xj + yj)

∣∣∣∣∣∣

p

we consider again {d̃j}∞j=1 by

d̃j =

{
xicij(xj + yj), if i + 1 ≤ j ≤ n,

0 otherwise

we also have p-orthogonality and then

Ex,y

∣∣∣∣∣∣
xi

n∑

j=i+1

ci,j(xj + yj)

∣∣∣∣∣∣

p

≤ CpppEx,y




n∑

j=i+1

x2
i c

2
ij(xj + yj)2




p/2

≤ Cppp




n∑

j=i+1

(Ex,y (|cijxi(xj + yj)|)p)2/p




p/2

.

Since

(Ex,y (|xi(xj + yj)|)p)1/p ≤ (E |xixj |p)1/p + (Ex,y |xiyj |p)1/p

≤ γ(p, µ)
(
E |xixj |2

)1/2

+ ϕ(p, µ)2
(
E |xi|2

)1/2 (
E |xj |2

)1/2

,

we eventually we arrive at

E |Q|p ≤ Cpp2p


 ∑

1≤i<j≤n

c2
ij

(
γ(p, µ)2E|xixj |2 + ϕ(p, µ)4E|xi|2E|xj |2

)



p/2

.

(ii) We follow the ideas of proposition 2.1. Let now {εi}n
i=1 be a sequence of independent and

identically distributed random variables taking values ±1 with probability 1/2. Then

E|Q|p = E

∣∣∣∣∣∣

n∑

i,j=1

cijεiεjxixj

∣∣∣∣∣∣

p
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for all choice of signs εi, 1 ≤ i ≤ n. Hence averaging and by Khinchine inequalities for quadratic forms
(see [10], [7]) and Minkowski inequalities we have

E|Q|p = Ex,ε

∣∣∣∣∣∣

n∑

i,j=1

cijεiεjxixj

∣∣∣∣∣∣

p

≤ CpppE

∣∣∣∣∣∣

n∑

i,j=1

c2
ijx

2
i x

2
j

∣∣∣∣∣∣

p/2

≤ Cppp




n∑

i,j=1

c2
ij (E|xixj |p)2/p




p/2

≤ Cpppγ(p, µ)p




n∑

i,j=1

c2
ijE|xixj |2




p/2

= Cpppγ(p, µ)p
(
E|Q|2)p/2

.

3 Inequalities for Bn
q , (0 < q < 1)

In the previous section the inequalities we obtained depend on the asymptotic behaviour of the constant
ϕ(p, µ) and γ(p, µ). Now we consider the special case of probabilities µ defined by the Lebesgue measure
normalized on a compact K, i.e.

µ(A) =
|A ∩K|
|K| ,

for A any Borel set in Rn and K a compact with |A ∩K| > 0. There are two families for which we can
give the right estimate of the parameters ϕ(p,K) and γ(p,K).

Proposition 3.1 Let 0 < q < 1 and 2 ≤ p < ∞. Then for every 1 ≤ i ≤ n,
(

1
|Bn

q |
∫

Bn
q

|xi|pdx

)1/p

∼q

(
p

n + p

)1/q

.

and
(

1
|Bn

q |
∫

Bn
q

|xixj |pdx

)1/p

∼q

(
p

n + p

)2/q (
n

n + p

)1/pq

,

if i 6= j, (1 ≤ i, j ≤ n). Therefore

ϕ(p,Bn
q ) ≤ Cqp

1/q,

and

γ(p,Bn
q ) ≤ Cqp

2/q.

P r o o f. It is easy to compute

1
|Bn

q |
∫

Bn
q

|xi|pdx =
2|Bn−1

q |
|Bn

q |
∫ 1

0

xp(1− xq)(n−1)/qdx.

and it is also well known (see, for instance [15]) that

|Bn
q | =

(
2Γ(1 + 1

q )
)n

Γ
(
1 + n

q

) .
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We use Stirling formula

Γ(1 + z) =
√

2πzz+1/2e−zeµ(z)

for all z > 0, where µ(z) is non increasing function and non negative, for z ≥ 1 (cf. [17]).
We therefore obtain

1
|Bn

q |
∫

Bn
q

|xi|pdx =
Γ

(
p+1

q

)
Γ

(
1 + n

q

)

qΓ
(
1 + 1

q

)
Γ

(
1 + n+p

q

)

=
ep/qΓ

(
p+1

q

)

qΓ
(
1 + 1

q

)
(

n

n + p

)n
q + 1

2
(

q

n + p

) p
q

exp
(

µ(
n

q
)− µ(

n + p

q
)
)

.

Since

ep/q

(
n

n + p

)n
q

↘ 1

when n →∞ and besides 1 ≤ µ(n
q ), µ(n+p

q ) ≤ e, we get

(
1

|Bn
q |

∫

Bn
q

|xi|pdx

)1/p

∼
(

p

n + p

)1/q

.

Thus

ϕ(p,Bn
q ) ≤ Cqp

1/q.

Let now i 6= j, (1 ≤ i, j ≤ n),

1
|Bn

q |
∫

Bn
q

|xixj |p dx =
2

|Bn
q |

∫ 1

0

xp
1

(∫

(1−xq
1)1/qBn−1

q

|x2|pdx2 . . . dxn

)
dx1

=
2

∣∣Bn−1
q

∣∣
|Bn

q |
(∫ 1

0

xp
1(1− xq

1)
n−1+p

q dx1

) (
1

|Bn−1
q |

∫

Bn−1
q

|x2|p dx2 · · · dxn

)

∼q

(
p

n− 1 + p

)p/q

n1/q
Γ

(
p+1

q

)
Γ

(
1 + n−1+p

q

)

Γ
(
1 + n+2p

q

) .

By using again Stirling formula we have
(

1
|Bn

q |
∫

Bn
q

|xixj |p dx

)1/p

∼q

(
p

n− 1 + p

)1/q

n
1

pq

(
p + 1
n + 2p

) 1
q + 1

pq

∼q

(
p

n + p

)2/q (
n

n + p

)1/pq

.

Remark 3.2 It is easy to see that for fixed n ∈ N, then

ϕ(p,Bn
q ) ≤ Cqn

1/q

for all p ≥ 2. In consequence we get a better estimate that the corresponding to Gromov-Milman for
general convex bodies. The same remark can be done for quadratic forms, since we would have

γ(p,Bn
q ) ≤ Cqn

2/q

for all p ≥ 2.
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Using now these estimate we can give the corresponding inequalities for affine forms and quadratic
forms for Bn

q , (0 < q < 1)

Corollary 3.3 Let f, Q : Rn −→ R respectively an affine or a quadratic form and K = Bn
q , (0 <

q < 1). There exists a constant Cq > 0 such that

(E|f |p)1/p ≤ Cqp
1
q + 1

2
(
E|f |2)1/2

,

or respectively

(E|Q|p)1/p ≤ Cqp
1+ 4

q
(
E|Q|2)1/2

for 2 ≤ p < +∞. Moreover

E exp




∣∣∣∣∣
f

C ′q (E|f |2)1/2

∣∣∣∣∣

2q
2+q


 ≤ 2,

or respectively

E exp




∣∣∣∣∣
Q

C ′q (E|Q|2)1/2

∣∣∣∣∣

q
4+q


 ≤ 2,

where the expectation is with respect to the normalized Lebesgue measure on K denoted µK .

Remark 3.4 Notice that proposition 3.1 and the last corollary also holds for every 0 < q ≤ ∞. In
particular, we get that for every 0 < p ≤ ∞ and every affine form f : Rn −→ R

‖f‖L2q/(2+q)(dµK) ≤ Cq‖f‖L1(dµK), (3.1)

i.e. the unit ball of `n
q (0 < q ≤ ∞) is a ψ2q/(2+q)-body. Recently, F. Barthe and A. Koldobsky (see [1])

have proved that if 2 < q ≤ ∞, the unit ball of `n
q is a ψ2-body.
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