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0. Introduction
The classical Brunn-Minkowski inequality states that for A;, A> C IR™ compact,
Ay + Ag|™ > Ay |7 4 | Ag M (1)

where | - | denotes the Lebesgue measure on IR". Brunn [Br] gave the first proof of this inequality for
A1, Ao compact convex sets, followed by an analytical proof by Minkowski [Min]. The inequality (1)
for compact sets, not necessarily convex, was first proved by Lusternik [Lu]. A very simple proof of
it can be found in [Pi 1], Ch. 1.

It is easy to see that one cannot expect the reverse inequality to hold at all, even if it is perturbed
by a fixed constant and we restrict ourselves to balls (i.e. convex symmetric compact sets with the
origin as an interior point). Take for instance A1 = {(z1...2,) € R" | |z1] < ¢,|z;] < 1,2 <i < n}
and Ay = {(z1...2,) € R" | |z,,| <, x| <1,1<i<n—1}.

In 1986 V. Milman [Mil 1] discovered that if B; and By are balls there is always a relative position
of By and By for which a perturbed inverse of (1) holds. More precisely: “There exists a constant C > 0
such that for all n € IN and any balls By, B C IR" we can find a linear transformation u: IR" — IR"
with |det(u)| =1 and

u(By) + Bo|'/™ < C(|By|"/™ + | Ba| /™)

The nature of this reverse Brunn-Minkowski inequality is absolutely different from others (say
reverse Blaschke-Santalé inequality, etc.). Brunn-Minkowski inequality is an isoperimetric inequality,
(in IR™ it is its first and most important consequence till now) and there is no inverse to isoperimetric
inequalities. So, it was a new idea that in the class of affine images of convex bodies there is some
kind of inverse.

The result proved by Milman used hard technical tools (see [Mil 1]). Pisier in [Pi 2] gave a new
proof by using interpolation and entropy estimates. Milman in [Mil 2] gave another proof by using
the “convex surgery” and achieving also some entropy estimates.

The aim of this paper is to extend this Milman’s result to a larger class of sets. Note that simple
examples show that some conditions on a class of sets are clearly necessary.

For B C IR" body (i.e. compact, with non empty interior), consider By = B — x, where xg is an
interior point. If we denote by N(B1) = Nq>1aB; the balanced kernel of By, it is clear that N(B) is
a balanced compact neighbourhood of the origin, so there exists ¢ > 0 such that B; + By C ¢N(By).
The Aoki-Rolewicz theorem (see [Ro], [K-P-R]) implies that there is 0 < p < 1, namely p = log; ' (c),

such that B; € B C 2'/PB;, where B is the unit ball of some p-norm. This observation will allow us
to work in a p-convex enviroment.

The above construction allows us to define the following parameter. For B a body let p(B), 0 <
p(B) < 1, be the supremum of the p for which there exist a measure preserving affine transformation
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of B, T(B), and a p-norm with unit ball B verifying T(B) C B and |B| < |8'/PB|, (by suitably
adapting the results appearing in [Mil 2], it is clear that p(B) > p for any p-convex body B).

Our main theorem is,

Theorem 1. Let 0 < p < 1. There exists C = C(p) > 1 such that for allm € IN and all A1, As C IR"
bodies such that p(Ay),p(As) > p, there exists an affine transformation T(x) = w(x) + xo with
xo € R", u: R" — IR" linear and |det(u)| = 1 such that

IT(A1) + Aol < O ALY + [ A7)

In particular, for the class of p-balls the constant C' is universal (depending only on p).

We prove this theorem in section 2. The key is to estimate certain entropy numbers. We will use
the convexity of quasi-normed spaces of Rademacher type r > 1, as well as interpolation results and
iteration procedures.

We want to thank Gilles Pisier for a useful conversation during the preparation of this paper.

1. Notation and background

Throughout the paper X,Y, Z will denote finite dimensional real vector spaces. A quasi-norm on
a real vector space X is a map || - ||: X — R™ such that

i) Jz|| >0V z #0.
ii) |[tz]| = |t] ||z|| YVt € R,z € X.
iii) 3C > 1 such that ||z +y| < C(||z]| + [lyl) V 2,y € X
If iii) is substituted by
iii”) ||z + y||P < ||=]|P + ||y for z,y € X and some 0 < p < 1,
I - || is called a p-norm on X. Denote by Bx the unit ball of a quasi-normed or a p-normed space.

The above observations concerning the p-convexification of our problem can be restated using
p-norm and quasi-norm notation. Recall that any compact balanced set with 0 in its interior is the
unit ball of a quasi-norm.

By the concavity of the function t*, any p-norm is a quasi-norm with C' = 2/?~1, Conversely, by
the Aoki-Rolewicz theorem, for any quasi-norm with constant C there exists p, namely p = logy ! (20),
and a p-norm | - | such that |z| < ||z|| < 4YP|z|, V z € X.

A set K C X is called p-convex if Ax + py, whenever z,y € K, \,u > 0, AP + pu? = 1. Given
K C X, the p-convex hull (or p-convex envelope) of K is the intersection of all p-convex sets that
contain K. It is denoted by p-conv (K). The closed unit ball of a p-normed space (X, || -||) will simply
be called a p-ball. Any symmetric compact p-convex set in X with the origin as an interior point is
the p-ball associated to some p-norm.

We say that a quasi-normed space (X, || - ||) is of (Rademacher) type ¢,0 < ¢ < 2 if for some
constant 7, (X) > 0 we have

1 n n
5 O I el S TUX)Q )7, Vaie X1<i<n Vne N
g;i=%t1 i=1 i=1

Kalton, [Ka], proved that any quasi-normed space (X, | - ||) of type ¢ > 1 is convex. That is,
the quasi-norm || - || is equivalent to a norm and moreover, the equivalence constant depends only on
T,(X), (for a more precise statement and proof of this fact see [K-S]).

Given f,g:IN — IRT we write f ~ g if there exists a constant C' > 0 such that C~!f(n) < g(n) <
Cf(n),¥ n € IN. Numerical constants will always be denoted by C (or C,, if it depends only on p)
although their value may change from line to line.
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Let u: X — Y be a linear map between two quasi-normed spaces and k > 1. Recall the definition
of the following numbers:

Kolmogorov numbers: di(u) = inf{||Qsowul| | S C Y subspace and dim(S) < k} where
Qs:Y — Y/S is the quotient map.

Covering numbers: For A, Ay C X, N(A1,As) =inf{N € IN | 3 x;...2y € X such that A; C
Ui<icn (@i + A2)}.

Entropy numbers: ey, (u) = inf{e > 0 | N(u(Bx),eBy) < 2¢71}

The sequences {di(u)}, {ex(u)} are non-increasing and satisfy dy (u) = ey (u) = |lu||. If dim(X) =
dim(Y") = n then dg(u) = 0 for all & > n. Denote sj, either dj, or e. For all linear operators u: X — Y,
v:Y — Z we have si(vou) = |lu|lsg(v) and sg(vowu) = ||v|sp(u), Yk € IN (called the ideal property
of s) and

Span—1(vou) < sp(v)sp(u) VknelN

The following two lemmas contain useful information about these numbers. The first one extends
to the p-convex case its convex analogue due to Carl ([Ca]). Its proof mimics the ones of Theorem
5.1 and 5.2 in [Pi 1] (see also [T]) with minor changes. In particular we identify X as a quotient
of ¢,(I), for some I, and apply the metric lifting property of £,(I) in the class of p-normed spaces
(see Proposition C.3.6 in [Pie]). The second one contains easy facts about N (A, B) and its proof is
similar to the one of Lemma 7.5. in [Pi 1] .

Lemma 1. For all « > 0 and 0 < p < 1 there exists a constant C, , > 0 such that for all linear map
u: X — Y, X,Y p-normed spaces and for all n € IN we have

sup k% (u) < Cq psup k%dy(u)
k<n k<n
Lemma 2.

1) For all Al, AQ,A3 Cc X, N(Al,Ag) < N(Al, AQ)N(AQ,A3)

ii) For allt > 0 and 0 < p < 1 there is C), > 0 such that for all X p-normed space of dimension n,
N(Bx,tBx) < Cp,.
111) For any Al, AQ, K C Bn, ‘Al + K| < N(Al,A2)|A2 + K|
| B1]

iv) Let By, Ba be p-balls in IR" for some p and By C By; then ﬁ ~ N(By, Bs).
2

For any B C IR™ p-ball the polar set of B is defined as
B°:={xeR"|(x,y) <1, Vy € B}

where (-,-) denotes the standard scalar product on IR". Given B, D p-balls in IR" we define the
following two numbers:
s(B) := (|B| - |B°|)"/"

and

|B+D| |B°+D°[\""
BN D| |B°ND°|

M(B,D) := (
Observe that for any linear isomorphism u: IR™ — IR" we have s(u(B)) = s(B) and
M (u(B),u(D)) = M(B, D).
Recall that s(Bgm) ~n~'/? ~ s(Bgy)'/?,0 < p <1 ([Pi 1] pg. 11).

The following estimates on these numbers are known:
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a) [Sa]. For every symmetric convex body B C IR", s(B) < s(Byy) with equality only if B is an
ellipsoid. (Blaschke-Santald’s inequality).

b) [B-M]. There exists a numerical constant C' > 0 such that for any n € IV and any symmetric
convex body B C IR", s(B) > Cs(Byy).

¢) [Mil 1]. There exists a numerical constant C' > 0 such that for any n € IN and any symmet-
ric convex body B C IR", there is an ellipsoid (called Milman ellipsoid) D C IR™ such that
M (B, D) < C,(Milman ellipsoid theorem).

2. Entropy estimates and reverse Brunn-Minkowski inequality

We first introduce some useful notation: Let By, Bo C IR" be two p-balls and u: IR — IR"™ a linear
map. We denote u: By — Bs the operator between p-normed spaces u: (R", || - ||5,) — (R",| - ||5,)
where || - || 5, is the p-norm on IR"™ whose unit ball is B;.

Proof of Theorem 1:

Let Aj, Ay be two bodies in IR" such that p(A;), p(As) > p. It’s clear from the definition
that there exist two p-balls, By, Ba, (for instance, p = p/2) and two measure preserving affine
transformations 13, T, verifying

Ty 1Ty (Ay) + As| < |By + Byl

and
B + By < Gy (| A7)

So, we only have to prove the theorem for p-balls.

In the convex case a way to obtain the reverse Brunn-Minkowski inequality is to prove that, for
any symmetric convex body B, there exists an ellipsoid D verifying |B| = |D| and

|IB+AlY™ < C|D+ A" (2)

for any, say compact, subset A C JR" (C' is an universal constant independent of B and n).

Indeed, let By, Bs be two balls in IR". Suppose w.l.o.g. that D;, the ellipsoids associated to B;
satisfy upD; = o; Bgn, where u; are linear mappings with |det u;| = 1 and |B;|/™ = | Bep |/ Then

|U1.Bl + UQB2|1/TL S 02‘U1D1 + u2D2‘1/n
= C*(a1 + a2)| By [M™ = C2(|B1|"/™ + | Bo| /™)

In view of the preceding comments and of straightforward computations deduced from Lemma
2, in order to obtain (2) for p-balls it is sufficent to associate an ellipsoid D to each p-ball B C IR"™ in
such a way that the corresponding covering numbers verify N(B, D), N(D, B) < C™ for some constant
C depending only on p.

It is important to remark now the fact that, what we deduce from covering numbers estimate is
that the ellipsoid D associated to B actually verifies the stronger assertion

CYB+ AN <D+ AN < OB+ AV

for any compact set A in IR"™, with constant depending only on p. Furthermore, the role of the ellipsoid
can be played by any fixed p-ball in a “spetial position”.

Denote by B the convex hull of B.

By definition of e, if e, (id: B — D) < X then N(B,2AD) < 2"~! and by Lemma 2-ii), N(B, D) <
A", (Of course, the same can be done with N (D, B)). Therefore our problem reduces to estimating

entropy numbers. What we are going to prove is really a stronger result than we need, in the line of
Theorem 7.13 of [Pi 2].



Lemma 3. Given « > 1/p—1/2, there exists a constant C' = C(«, p) such that, for any n € IN and
for any p-ball B € IR" we can find an ellipsoid D € IR" such that

dp(D — B) + en(B — D) < C (%)a

for every 1 <k < n.

Proof of the Lemma. From Theorem 7.13 of [Pi 2] we can easily deduce the following fact: There
exists a constant C(a) > 0 such that for any 1 < k < n, n € IN and any ball B C IR", there is
ellipsoid Dy C IR™ such that the identity operator id: R™ — IR"™ verifies

dy.(id: Dy — B) < C(a) (%)a and  ey(id: B — D) < C(a)(%)a 3)

For simplicity, since we are always going to deal with the identity operator, we will denote
id: B1 — BQ by B1 — BQ.

Let Do be the ellipsoid associated to AB in (3). Tt is well known [Pe], [G-K] that B C B C
n/P~1B. This means |B — B|| < 1 and ||B — B|| < n!/P~1. Now, (3) and the ideal property of dj,
and e imply

dx(Do — B) < C(a)n'/?~1 (%)a and  ex(B — Do) < C(a) (%)a VEk<n

This let us to introduce the constant C,, as the infimum of the constants C > 0 for which the
conclusion of lemma 3 is true for all p-ball in R". Trivially C,, < C(a) (1 +n!/P~!). Let D; be an
almost optimal ellipsoid such that

d(Dy — B) <26, ()"
ex(B— D1) <26, (1)

(4)

for every 1 < k < n.

Use the real interpolation method with parameters 6,2 to interpolate the couple id: B — B and
id: D1 — B. It is straightforward from its definition that for By: = (B, D1)g,2, we have

di(By — B) < ||B — B||'*"%(d(D, — B))? Vk<n
and therefore,

a(Bs — B) < (2C, (%)a)g VEk<n

Write A = 4C, (%) . By definition of the entropy numbers, there exist z; € IR"™ such that

2k—1

B C U x; + 2AD;. But by perturbing A with an absolute constant we can suppose w.l.o.g. that
i=1

x; € B. For all z € B, there exists x; € B such that ||z — z;||p, < 2A. Also by p-convexity,

2 = 2l < 2V/7.

A general result (see [B-L] Ch. 3.) assures the existence of a constant Cj, > 0 such that

By < Cpllll 5 !l -
][y < Cpll]|

Therefore, for all 2z € B, there exists z; € B such that ||z — 2;||5, < CpA? which means

ex(B = By) < Cy(2C, (%)a )9.
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2(1 —
Since a > 1/p — 1/2, then we can pick § € (0,1) such that g < 6 < min{1,1 — 1/2a}.

Then By has Rademacher type strictly bigger than 1 because 1}'%9 + g < 1.

By Kalton’s result quoted before, we can suppose that By is a ball and therefore we can apply to
it (3) for v = (1 — ) > 1/2 and assure the existence of another ellipsoid Dy such that

di(Dy — By) < C(v) (%)7 and ex(By — D3) < C(7) (%)W and Vk<n

Recall that dop—1(D2 — B) < di(D2 — By)dx(By — B) and the same for the ep’s. Thanks to
the monotonicity of the numbers s, we can use the what is known about sg;_1 for all s;. Using the
estimates obtained above we get V £ < n,

n)’v-i-a@

“+ab
A(D2 — B) < C(p,a)2’Cl (1 2

and ex(B — Dy) < C(p,a)2°C? (k

Hence by the election of v and by minimality we obtain C}~% < C(p,a)2%, and the conclusion of the
lemma holds.

/1]

The theorem follows now from the estimate we achieved in Lemma 3 and by Lemma 1. Indeed,
given any a > 1/p — 1/2, if D is the ellipsoid associated to B by Lemma 3, we have

«
n%en(D — B) < sup k“e;(D — B) < C(«,p)sup k%di(D — B) < C(«, p) sup gl
k<n k<n k<n ko

= C(a, p)n®

and so, e, (D — B) < C(a,p). On the other hand just take £ = n in Lemma 3 and so, e, (B — D) <
C(a, p).

Finally observe that since the constant C(«,p) depends only on p and « and we can take any
a > 1/p —1/2 the thesis of the theorem as stated inmediately follows.

/1]



3. Concluding remarks

We conclude this note by stating the corresponding versions of a) Blaschke-Santal6, b) reverse
Blaschke-Santalé and ¢) Milman ellipsoid theorem, cited in section 1, in the context of p-normed
spaces.

Proposition 1. Let 0 < p < 1. There exists a numerical constant C, > 0 such that for every p-ball
B C R",
1
Cy(s(Bey)) """ < s(B) < s(Bey)

and in the second inequality, equality holds if only if B is an ellipsoid

Proof: Denote by B the convex envelope of B. Since B® = B°® we have s(B) < s(B) < 5(Bey). If
s(B) = s(Byp), then B is an ellipsoid. We will show that B = B. Every z in the boundary of B can
be written as x = Y \x;, x; € B, > A; = 1; but since BA is an ellipsoid, z is an extreme point of B
and so x = z; for some i that is x € B. This shows B = B and we are done.

/
. B
For the first inequality, B C B C n!'/?~1 B easily implies (M) < n'/?P~1 and so,

1/n A

o n 0 n B ; © n s(B

s(B) = (|B| - |B°)Y™ = (|B| - |B°|)"/" = (BD (|1B]-|B°|)/" > nl(/p_)l
Cs(Buy) _ 1/
i1 = O P =Gy (s(Bey)) "

/1]

The left inequality above is sharp since s(ng) =0, (s(ng))l/p. The right inequality is also
sharp since every ball is a p-ball for every 0 < p < 1. And it is sharp even if we restrict ourselves to
the class of p-balls which are not g-convex for any ¢ > p, as it is showed by the following example:
Let € > 0 and C. be a relatively open cap in S"~! centered in z = (0,...,0,1) of radius . Write
K = S" 1\ {C.U—C.}. The p-ball p-conv (K) is not g-convex for any ¢ > p and we can pick ¢ such
s(p-conv (K))

that ~ 1.
s(Byp)
Observe that the left inequality is actually equivalent to the existence of a constant C}, > 0 such
A /
B
that for every p-ball B, (H) < Cpn'/P~! and by Lemma 2 iv), this is also equivalent to the

inequality N (B, B) < C,n'/P~1.
With respect to the Milman ellipsoid theorem we obtain

Proposition 2. Let 0 < p < 1. There exists a numerical constant C, > 0 such that for every p-ball
B there is an ellipsoid D such that M (B, D) < Cpnl/p_l.

Proof: Given a p-ball B let D be the Milman ellipsoid of B. Then,

|B+D| |B°+D\""
|BND| |B°ND|

R R 1/n 1/n ~ 1/n
_(1B+D| |B°+D| |B + D| BN D)
BN D| |B°nD| |B + D| BN D|

. 1/n
A BND
M(B,D) <| n > S Cpnl/p—l

M(B,D) = (

IA

BN D)
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/1]

The bound for M (B, D) is sharp. Indeed, if there was a function f(n) << n'/?P~! such that for
every a p-ball B there was an ellipsoid D with M (B, D) < f(n), then

s(Byy) _ (D) <(IBND|-|B°N D)™ < s(B)

fn) — f(n)
s(Ben) -1/ . . .
and we would have, s(B) > 7o~ >>n~ /P which is not possible.
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led them to improve the presentation of the paper.
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