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ELEMENTARY REVERSE HÖLDER TYPE

INEQUALITIES WITH APPLICATION TO

OPERATOR INTERPOLATION THEORY

JESÚS BASTERO AND FRANCISCO J. RUIZ

(Communicated by J. Marshall Ash)

Abstract. We give a very elementary proof of the reverse Hölder type in-
equality for the classes of weights which characterize the boundedness on Lp

of the Hardy operator for nonincreasing functions. The same technique is ap-
plied to Calderón operator involved in the theory of interpolation for general

Lorentz spaces. This allows us to obtain further consequences for intermediate
interpolation spaces.

0. Introduction

Ariño and Muckenhoupt characterized the class of weights, ω, such that the
Hardy operator is bounded on Lp(ω) for nonnegative and nonincreasing functions
(see [AM]). This class, say (AM)p, is composed of those weights for which there is
a constant C > 0 such that for every t > 0∫ ∞

t

ω(x)

xp
dx ≤ C

tp

∫ t

0

ω(x)dx

(see also [L] for an earlier version of this formula). A crucial step in their proof is
the following reverse inequality: if ω ∈ (AM)p, then ω ∈ (AM)p−ε for some ε > 0.

In this note we will see that this fact, the reverse type inequality, has a very
elementary proof by means of some reiteration procedure. Furthermore, we will
show how similar ideas can be applied in the context of operator interpolation
theory for Lorentz spaces, in order to prove that weak type interpolation spaces
are the same as restricted weak type interpolation ones. These concepts require
some notations which will be introduced below but, briefly, in a very particular
case, we say that a rearrangement invariant Banach space, X , is a weak (p, q)-type
interpolation space, if every operator bounded from Lp into Lp,∞ and from Lq into
Lq,∞ is also bounded on X . It is a restricted weak (p, q)-type interpolation space,
if every operator bounded from Lp,1 into Lp,∞ and from Lq,1 into Lq,∞ is also
bounded on X .

Received by the editors May 22, 1993 and, in revised form, April 10, 1995.
1991 Mathematics Subject Classification. Primary 46E30, 46B70.
Key words and phrases. Hardy operator, weighted norm inequalities, Lorentz spaces, interpo-

lation of operators.
The first author was partially supported by DGICYT PS90-0120.
The second author was partially supported by DGICYT PS89-0181 and DGICYT PS93-0228-

C02-02.

c©1996 American Mathematical Society

3183
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As usual, a Banach space (X, ‖ · ‖) of real-valued, locally integrable, Lebesgue
measurable functions on I (I = [0, 1] or [0,∞)) is said to be a r.i. space if it satisfies
the following conditions:

i) If g∗ ≤ f∗ and f ∈ X , then g ∈ X with ‖g‖X ≤ ‖f‖X (f∗ denotes the
nonincreasing rearrangement of the function f).

ii) If A is a Lebesgue measurable set of finite measure, then χA ∈ X.
iii) 0 ≤ fn ↑, supn∈N ‖fn‖X ≤ M , imply that f = sup fn ∈ X and ‖f‖X =

supn∈N ‖fn‖X (this property is called by some authors the Fatou property;
see [LT]).

Let A = (A0, A1) and B = (B0, B1) be two compatible couples of Banach spaces
(see [BL] and [BS]). Let A and B be intermediate spaces with respect to A, respec-
tively B. We say that A and B are relative interpolation spaces with respect to A
and B if every linear operator T satisfying T : A→ B ( i.e., T : A0 +A1 → B0 +B1

and ‖T‖A→B = max{‖T‖A0→B0 , ‖T‖A1→B1} <∞) maps boundedly A into B.
We are concerned in this paper with the case of couples A and M(A), when A

is a couple of compatible r.i. spaces and M(A) = (M(A0),M(A1)) is the couple
of the corresponding weak type spaces. For the definition of these spaces we begin
by recalling that the fundamental function of a r.i. Banach space, X , is defined
by ΦX(t) = ‖χ[0,t]‖X , t ∈ I. There is no loss of generality if we assume ΦX to be
positive, nondecreasing, absolutely continuous far from the origin, concave and to
satisfy ΦX(t)ΦX′(t) = t for all t ∈ I.

We denote by M(X) the r.i. space of all measurable functions f for which there
exists f∗∗ and

‖f‖M(X) = sup
t∈I

ΦX(t)f∗∗(t) <∞

(recall that f∗∗ is defined by f∗∗(t) = 1
t

∫ t
0 f
∗).

We will denote by M∗(X) the space of all measurable functions for which

‖f‖M∗(X) = sup
t∈I

ΦX(t)f∗(t) <∞.

The function ‖ · ‖M∗(X) is a quasinorm on M∗(X) and it is equivalent to ‖ · ‖M(X)

if and only if 1
ΦX
∈M(X). In this case M(X) = M∗(X).

Since 1
ΦX

is a decreasing function, it belongs to M(X) if and only if it is in the

A1-class of Muckenhoupt (see [AM], [M]).
Let w be an a.e. positive locally integrable weight defined on I = [0,∞) and let

W (t) be defined byW (t) =
∫ t

0 w <∞, ∀t <∞. We assume that limt→∞W (t) =∞.
We recall that the classical Lorentz space Λ(W,p), 0 < p ≤ ∞, is the class of all
real valued measurable functions on I such that

‖f‖Λ(W,p) =

{(∫
I
f∗(t)pdW (t)

)1/p
<∞ if 0 < p <∞,

supt>0 f
∗(t)W (t) <∞ if p =∞ .

The space Λ(W,p), 1 ≤ p < ∞, is normable if and only if ω ∈ (AM)p (see [AM],
and [R], [S] for other equivalent conditions).

The letter C denotes a numerical constant which may change in different occur-
rences.
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1. Reverse type inequalities

We introduce the operators

Hf(t) =
1

t

∫ t

0

ω(x)dx, Jpf(t) =

∫ ∞
t

ω(x)

(
t

x

)p−1
dx

x
.

In this framework, the condition (AM)p can be reformulated as: there exists a
constant C > 0 so that Jpω ≤ C Hω, a.e.

Theorem 1.1. Let 1 ≤ p < ∞. If Jpω ≤ C Hω, a.e., then Jp−εω ≤ C Hω, a.e.,
for some ε > 0.

Proof. A simple application of Fubini’s theorem shows that

JpHω = HJpω = p−1(Hω + Jpω)

and that the reiteration of Jp is

J (k)
p ω(t) =

1

(k − 1)!

∫ ∞
t

ω(x)

(
t

x

)p−1

logk−1
(x
t

) dx
x
.(1.1)

The hypothesis implies that

J (2)
p ω ≤ C JpHω ≤ C (Hω + Jpω) ≤ (1 + C)2Hω.

Therefore, by induction for almost all points

J (k)
p ω ≤ (1 + C)kHω.(1.2)

We take ε > 0 such that ε(C + 1) < 1. We calculate the sum
∑∞

1 εk−1J
(k)
p ω by

(1.1) and then we estimate it by using (1.2) to obtain∫ ∞
t

ω(x)

(
t

x

)p−1 (x
t

)ε dx
x
≤ (C + 1)

∞∑
0

(ε(C + 1))kHω ≤ CHω,

that is, condition (AM)p−ε.

(See also [N] for a different approach to this result).
The same kind of ideas work when one is concerned with Calderón’s operators

involved in the theory of interpolation for r.i. spaces.
Let w be a weight as quoted before. We introduce the operators P , Q defined

for measurable functions on [0,∞) by

Pf(t) = W−1/p(t)

(∫ t

0

f∗(x)pdW (x)

)1/p

, t > 0,

and

Qf(t) = W−1/p(t)

(∫ ∞
t

f∗(x)pdW (x)

)1/p

, t > 0

(these operators appear also in [Ma1]).

Theorem 1.2. Let 1 ≤ p < ∞ and let X be a r.i. space. If the operator P is
defined and bounded in X, then there exists ε > 0 such that the operator P , defined
by

Pf(t) =

(
W (t)ε−1

∫ t

0

f∗(x)pW (x)−εdW (x)

)1/p

,

is well defined and bounded from X into X.
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Proof. Suppose that ‖Pf‖X ≤ C‖f‖X for f ∈ X . It is very easy to compute that
(Pf)∗ = Pf and so, the reiteration of the operator P has the expression

P (n)f(t)p = W (t)−1

∫ t

0

f∗(x)p
[log(W (t)/W (x))]n−1

(n− 1)!
dW (x).

We consider ε > 0 such that εC < 1 and define

SN (f)(t) =

(
N∑
n=0

(
εnP (n+1)(f(t))

)p)1/p

.

It is very easy to check that the sequence of functions {SN (f)}∞N=0 is nondecreasing
and converges almost everywhere to the function Pf . Since

‖SN(f)‖A ≤
∞∑
n=0

εnCn+1 <∞,

we conclude from the Fatou property that Pf ∈ X and ‖Pf‖X ≤ C1‖f‖X , and the
theorem is proved.

The analogous result, with similar proof, for the operator Q is

Theorem 1.3. If Q is defined and bounded in X, then there exists ε > 0 such that
the operator Q, defined by

Qf(t) =

(
W (t)−ε−1

∫ ∞
t

f∗(x)pW (x)εdW (x)

)1/p

,

is well defined and bounded from X into X.

2. Theory of interpolation of operators

In order to see how Theorems 1.2 and 1.3 can be applied in the theory of inter-
polation of operators we should state some previous results.

Let A0 and A1 be two r.i. Banach spaces and let Φ0,Φ1 be their fundamental
functions. We suppose that the following conditions are satisfied:

i) For i = 0, 1,

1

ΦAi
∈M(Ai).(C.0)

ii) There exists a constant C such that, for all t > 0

Φ1(t)

Φ0(t)

∥∥∥∥χ[0,t]

Φ1

∥∥∥∥
A0

≤ C,(C.1)

Φ0(t)

Φ1(t)

∥∥∥∥χ[t,∞)

Φ0

∥∥∥∥
A1

≤ C.(C.2)
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Condition i) is used in order to obtain the corresponding results for the space M(Ai)
instead of M∗(Ai). Note that this condition, for i = 1, follows from condition (C.1).
In fact (let Φ′0 = ΦA′0 )

1

t

∫ t

0

ds

Φ1(s)
=

1

Φ0(t)Φ′0(t)

∫ ∞
0

χ[0,t](s)

Φ1(s)
χ[0,t](s)ds

≤ 1

Φ0(t)

∥∥∥∥χ[0,t]

Φ1

∥∥∥∥
A0

‖χ[0,t]‖A′0
Φ′0(t)

=
1

Φ0(t)

∥∥∥∥χ[0,t]

Φ1

∥∥∥∥
A0

≤ C

Φ1(t)
.

Conditions appearing in ii) actually mean equivalence conditions between the two
members appearing in the corresponding inequalities. They are really significant
and are satisfied for a lot of couples of classical function spaces (see [Ma2]).

The first consequence of (C.1) and (C.2) is that the peak (flat) part of functions
are in A0 (A1) (it would also be a consequence of Theorem 1 in [Ma2]):

Lemma 2.1. Let f be a function in A0 +A1. Then

f∗χ[0,t] ∈ A0, f∗χ[t,∞) ∈ A1.

Proof. In order to obtain the first part, by using standard arguments, we only
have to suppose that f ∈ A1 and show that f∗χ[0,t] ∈ A0. Let h be an arbitrary
decreasing function in the dual space A′0 with ‖h‖A′0 = 1. We have∫ ∞

0

f∗(s)χ[0,t](s)h(s)ds ≤ ‖f‖A1

∫ t

0

h(s)

Φ1(s)
ds ≤ ‖f‖A1

∥∥∥∥χ[0,t]

Φ1

∥∥∥∥
A0

≤ C‖f‖A1

Φ0(t)

Φ1(t)
,

where we have used Holder’s inequality and the fact that f ∈ A1 ⇒ f∗(s)Φ1(s) ≤
‖f∗‖A1 . Now, taking the supremum in h’s we have

‖f∗χ[0,t]‖A0 ≤ C‖f‖A1

Φ0(t)

Φ1(t)
.(2.1)

For the second part, let f be in A0 and show that f∗χ[t,∞) ∈ A1. Let t > 0 be
a fixed real number. It is clear that (f∗χ[t,∞))

∗ ≤ f∗(t)χ[0,t] + f∗χ[t,∞). So, if h
is an arbitrary decreasing function in the dual space A′1, with ‖h‖A′1 = 1, by using
condition (C.2) we have∫ ∞

0

(f∗χ[t,∞))
∗h ≤

∫ t

0

f∗(t)h(s)ds+

∫ ∞
t

f∗(s)h(s)ds

≤ f∗(t)Φ1(t) + ‖f‖A0

∫ ∞
t

h(s)

Φ0(s)
ds

≤ ‖f‖A0

(
Φ1(t)

Φ0(t)
+

∥∥∥∥χ[t,∞)

Φ0

∥∥∥∥
A1

)
≤ CΦ1(t)

Φ0(t)
‖f‖A0,

and taking the supremum on h’s we get

‖f∗χ[t,∞)‖A1 ≤ C
Φ1(t)

Φ0(t)
‖f‖A0(2.2)

and the lemma is proved.
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We introduce the operator S, which could be named Calderón operator associated
to our scheme, by

Sf(t) =
1

Φ0(t)
‖f∗χ[0,t]‖A0 +

1

Φ1(t)
‖f∗χ[t,∞)‖A1 , ∀t > 0.

This operator is well defined for functions in A0 + A1. The following result shows
that the Calderón operator S is equivalent to the K-functional of interpolation
relative to A.

Lemma 2.2. There exist constants C1, C2 > 0 such that if f ∈ A0 +A1, then

C1Φ0(t)S(f)(t) ≤ K
(

Φ0(t)

Φ1(t)
, f ;A

)
≤ C2Φ0(t)S(f)(t), ∀t > 0.

Proof. Let t > 0 be a fixed real number. If we take the decomposition

g = (f − f∗(t) sgn f)χE , h = f − g,

where the set E satisfies {x; |f(x)| > f∗(t)} ⊆ E ⊆ {x : |f(x)| ≥ f∗(t)} and

m(E) = t, we have that K
(

Φ0(t)
Φ1(t) ; f

)
is bounded by

‖f∗χ[0,t]‖A0 +
Φ0(t)

Φ1(t)
‖f∗χ[t,∞)‖A1 ≤ Φ0(t)S(f)(t).

On the other hand, let f ∈ A0 +A1. For any decomposition f = g + h, g ∈ A0,
h ∈ A1, since

(g + h)∗(s)χ[0,t](s) ≤ (g∗(s/2) + h∗(s/2))χ[0,t](s/2)

for all s > 0, by using (2.1) and (2.2) we have

‖(g + h)∗χ[0,t]‖ ≤ C
(
‖g‖A0 +

Φ0(t)

Φ1(t)
‖h‖A1

)
(the constant C depends on the norm of the dilation operator D2 on A0 and A1).
In a similar way

(g + h)∗(s)χ[t,∞)(s) ≤ (g∗(s/2) + h∗(s/2))χ[t/2,∞)(s/2)

for all s > 0, and hence

‖(g + h)∗χ[t,∞)‖A1 ≤ C
(

Φ1(t)

Φ0(t)
‖g‖A0 + ‖h‖A1

)
(the constant C also depends on the norm of the dilation operator D2 on A0 and
A1). Then

S(f)(t)Φ0(t) ≤ C
(
‖g‖A0 +

Φ0(t)

Φ1(t)
‖h‖A1

)
and, taking the infimum over all possible decompositions, we get

S(f)(t)Φ0(t) ≤ CK
(

Φ0(t)

Φ1(t)
; f

)
.

The following result characterizes the pairs of spaces which are of interpolation
with respect to the couples A and M(A). The authors are indebted to Mieczyslaw
Mastylo for showing them the reference [DK].



ELEMENTARY REVERSE HÖLDER INEQUALITIES 3189

Theorem 2.3. A pair A, B of intermediate spaces with respect to A and M(A) is
a pair of relative interpolation spaces with respect to A and M(A) if and only if the
Calderón operator S is bounded from A into B.

Proof. The “if part” of the proof is a consequence of the preceding lemma and
Lemma 1 of [DK]. For the other part we use the same lemma and Theorem 3
of [DK]. Note that in our case, since the condition (C.0) is fulfilled, the weak
interpolation (Φ0,Φ1)-property is exactly what we need.

Remarks. i) As a consequence of the same results of [DK] we obtain that the couples
A and M(A) are relative Calderón pairs (see [C]).

ii) In a very recent paper Kalton (see Theorem 5.3 of [K]) obtained the following
result: Suppose A0 and A1 is a pair of r.i. spaces whose Boyd indices satisfy p1 > q0.
Then A is a Calderón couple if and only if A0 is stretchable and A1 is compressible.

Let us assume now that p1 > q0, where

p1 = pM(A1) = lim
s→∞

log s

log ‖Ds‖M(A1)

and

q0 = qM(A0) = lim
s→0

log s

log ‖Ds‖M(A0)

are the corresponding Boyd indices, where Ds is the dilation operator defined by
Dsf(t) = f(t/s). Hence

lim
s→∞

log
(
‖Ds‖M(A1)‖D1/s‖M(A0)

)
log s

< 0

and so, there exists a constant C > 0 such that for every s ≥ 1

‖Ds‖M(A1)‖D1/s‖M(A0) ≤ C.
Therefore, if s < t,

Φ0(s)

Φ1(s)
=
‖Ds/tχ[0,t)‖M(A0)

Φ1(s)

≤
‖Ds/t‖M(A0)Φ0(t)

‖Dt/s‖−1
M(A1)‖Dt/sχ[0,s)‖M(A1)

≤ CΦ0(t)

Φ1(t)
.

Now if M(A0) is convexifiable, then so is M(A1). Furthermore, the couple M(A)
is a Calderón couple, or in our notation the couples M(A) and M(A) are relative
Calderón couples, and we do not need to assume extra conditions about Boyd
indices. Indeed, it is clear that∥∥∥∥χ[0,t]

Φ1

∥∥∥∥
M(A0)

= sup
0<s≤t

Φ0(s)

Φ1(s)
≤ CΦ0(t)

Φ1(t)
,

which implies condition (C.1), and in a similar way∥∥∥∥χ[t,∞)

Φ0

∥∥∥∥
M(A1)

= sup
0<s<∞

Φ1(s)

Φ0(s+ t)
≤ CΦ1(t)

Φ0(t)

implies condition (C.2).



3190 JESÚS BASTERO AND F. J. RUIZ

As a consequence by using the notations in [K] we obtain the following results:

Corollary 2.4. Suppose that X is a r.i. Banach space.

i) If M∗(X) is convexifiable and the Boyd index qM(X) < ∞, then M(X) is
stretchable.

ii) If pM(X) > 1, then M∗(X) is convexifiable and M(X) is compressible, in the
sense of [K].

Proof. We only have to consider A0 = M(X) and A1 = LqM(X)+1,∞ for i), and
A0 = Lp−ε,∞, A1 = M(X) for ii).

3. Application to Lorentz spaces

We apply the results of the preceding section to classical Lorentz spaces. Let
wi, i = 0, 1, be two weights and 1 ≤ pi < ∞ two real numbers. We will suppose
that the weights satisfy the corresponding conditions (AMpi), i = 0, 1, quoted in
the introduction.

In the sequel let Ai = Λ(Wi, pi), i = 0, 1, the corresponding Lorentz spaces.
Since Φi(t) = Wi(t)

1/pi , condition (C.0) is satisfied if and only if the nonincreasing

weights W
−1/pi
i satisfy

1

t

∫ t

0

dx

Wi(x)1/pi
≤ C

Wi(t)1/pi

for some constant C > 0 and for all t > 0.
In order to ensure that conditions (C.1) and (C.2) are fullfilled we suppose that

there exists a real α, 0 < α < 1 and a C > 0 such that

C−1W
α/p0

0 (t) ≤W 1/p1

1 (t) ≤ CWα/p0

0 (t).(Cα)

Indeed

W
1/p1

1 (t)

W
1/p0

0 (t)

∥∥∥∥∥ χ[0,t]

W
1/p1

1

∥∥∥∥∥
A0

≤ CW (α−1)/p1

0 (t)

(∫ t

0

dW0(x)

Wα
0 (x)

)1/p0

≤ C

and

W
1/p0

0 (t)

W
1/p1

1 (t)

∥∥∥∥∥ χ[t,∞)

W
1/p0

0

∥∥∥∥∥
A1

≤ CW (1−α)/p1α
1 (t)

(∫ ∞
0

dW1(x)

W
1/α
1 (x+ t)

)1/p1

≤W (1−α)/p1α
1 (t)

(∫ t

0

dW1(x)

W
1/α
1 (t)

+

∫ ∞
t

dW1(x)

W
1/α
1 (x)

)1/p1

≤ C.

It is worth noting that condition (Cα) and the fact that W
−1/p0

0 belongs to the

A1-class of Muckenhoupt imply that W
−1/p1

1 also belongs to the A1-class.
We are going to prove that the Calderón operator associated to this scheme is

equivalent to P +Q, where

Pf(t) = W
−1/p0

0 (t)

(∫ t

0

f∗(x)p0dW0(x)

)1/p0

, t > 0,
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and

Qf(t) = W
−1/p1

1 (t)

(∫ ∞
t

f∗(x)p1dW1(x)

)1/q1

, t > 0.

Lemma 3.1. There exists a constant C > 0 such that

C−1Sf(t) ≤ Pf(t) +Qf(t) ≤ Sf(t).

Proof. It is clear that Pf(t) + Qf(t) ≤ Sf(t), for all t > 0. For the converse
inequality

W
−1/p1

1 (t)‖f∗χ[t,∞)‖A1 = W
−1/p1

1 (t)

(∫ ∞
0

f∗(x+ t)p1dW1(x)

)1/p1

≤ CW−1/p1

1 (t)

[
f∗(t)W

1/p1

1 (t) +

(∫ ∞
t

f∗(x)p1dW1(x)

)1/p1
]

≤ C
[

1

W
1/p0

0 (t)

(∫ t

0

f∗(x)p0dW0

)1/p0

+
1

W
1/p1

1 (t)

(∫ ∞
t

f∗(x)p1dW1

)1/p1
]
.

Hence

Sf(t) ≤ C(Pf(t) +Qf(t))

and the lemma holds.

Next we are going to prove that relative interpolation spaces with respect to
relative Calderón couples of Lorentz spaces coincide. This result extends previous
results in [BR].

Proposition 3.2. Let A be a r.i. space. The following are equivalent:
3.2.i) The pair A, A is of relative interpolation with respect to the couples A,

M(A).
3.2.ii) There exists ε > 0, small enough, such that the pair A, A is of relative

interpolation with respect to the relative Calderón couples B, M(B), where B0 =
Λ(W 1−ε

0 , p0) and B1 = Λ(W 1+ε
1 , p1).

3.2.iii) The pair A, A is of relative interpolation with respect to the relative Cal-

derón couples C, M(C), where Ci = Λ(W
1/pi
i , 1), i = 0, 1.

Proof. We remark that M(Ai) = M(Ci), i = 0, 1.
3.2.i) ⇒ 3.2.ii). As a conclusion of Theorems 1.2 and 1.3, we can choose ε > 0,

small enough, such that the operator P +Q is bounded in A and besides that the
couple B satisfies condition (Cβ) for β = α(1 + ε)(1− ε)−1 < 1. We apply Theorem

2.3 and so we obtain 3.2.ii), since P + Q is equivalent to the Calderón operator
associated to the couples B, M(B).

3.2.ii) ⇒ 3.2.iii). We only need to check that the Calderón operator associated
to the couples C and M(C) is bounded in A, when p0 > 1, p1 > 1. This fact is an
inmediate consequence of Hölder’s inequality∫ t

0

f∗dW
1/p0

0 ≤ C
(∫ t

0

f∗p0W−ε0 dW0

)1/p0 (∫ t

0

W
−1+(εp′0)/p0

0 dW0

)1/p′0

≤ CW0(t)1/p0Pf(t)
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and ∫ ∞
t

f∗dW
1/p1

1 ≤ C
(∫ ∞

t

f∗p1W ε
0dW1

)1/p1
(∫ ∞

t

W
−1−(εp′1)/p1

1 dW0

)1/p′1

≤ CW1(t)1/p1Qf(t).

3.2.iii) ⇒ 3.2.i). This part is well known since each space Ci, i = 0, 1, is the
corresponding Lorentz space Λ(Ai) (see for instance [BS], Theorem 5.13).

As a corollary we get

Corollary 3.3. Let A be a r.i. space and 1 < p0 < p1 < ∞ and 1 ≤ q0, q1 < ∞.
The following assertions are equivalent:

3.5.i) The pair A, A is of relative interpolation with respect to the couples
(Lp0,1, Lp1,1) and (Lp0,∞, Lp1,∞).

3.5.ii) The pair A, A is of relative interpolation with respect to the couples
(Lp0,q0 , Lp1,q1) and (Lp0,∞, Lp1,∞).

3.5.iii) The Boyd indices of A satisfy pA > p0 and qA < p1.
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