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The problem of (1+ε)-embedding the `n∞-cube into finite dimensional normed spaces can be stated
as follows: “Given X a normed space, dimX = n and 0 < ε < 1, estimate the highest cardinality
N(n, ε) = N of the sets T ⊂ X such that

1− ε ≤ ||x− y|| ≤ 1 + ε ∀ x 6= y ∈ T ” (1)

The first step in this direction is a result by Johnson and Lindenstrauss (see Lemma 1 in [J-L]),
which states that (1) holds for X = `n2 , provided n > Cε−2 logN (C numerical constant). Also,
the same statement can be easily deduced from Theorem 1 in [J-S 1] for X = `np , 1 ≤ p < 2 and
n > C(ε, p) logN.

In a recent paper by Bastero, Bernués and Kalton [B-B-K] the following result is proven: “There
exists a numerical constant C > 0 such that (1) holds for every 1-subsymmetric n-dimensional normed
space X, provided n > Cε−2 logN ”. Also, it is shown that estimates of the type n ≥ C(ε) logN are
asymptotically in n and N the best possible.

It is worth noting that one actually achieves an embedding of the `n∞ -cube into the `Np -cube,
with N ' Cε−2n. This result is an improvement on the one given by [B-M-W] where an embedding
of order N ' C(ε, p)n3 is obtained.

Unfortunately the method developed in that paper cannot be extended to a wider class of spaces
(even to 2-symmetric spaces).

We will present here some extensions to the result in [B-B-K]. The key will be deviation inequal-
ities by M.Talagrand, W.Johnson and Schechtman ([T], Theorem 3 and [J-S 2], Corollary 4) and by
V.Milman and G.Schechtman ([M-S], Ch.7).

We will obtain good estimates for (1) for the 1-unconditional space `np (`mq ), 1 ≤ p, q < ∞ the
study of which was suggested to us by N. Kalton as the first step beyond the 1-subsymmetric case,
for cotype-2 spaces and for some K-symmetric spaces. In the cases considered the method gives the
correct relation between n and N i.e. n ≥ C(ε) logN , but in the `np case it produces a dependence on
ε worse than Cε−2. This can be solved, in a different way than in [B-B-K], by using a sharp deviation
inequality (6) for the convex function ||.||p.

Notation. For i = 1, ..., n let (Xi, ||.||i) be normed spaces, let Ωi be a finite subset of Xi and let
IP i be any probability measure on Ωi. Define (Ω,dp, IP ) as Ω =

∏n
1 Ωi, dp the distance induced on Ω

by the norm in X = (
∑n

1

⊕
Xi)p , 1 ≤ p ≤ ∞ and IP =

∏n
1 IP i the product probability. x, x′ will

denote elements in X and η, η′ elements in Ω. In case (Xi, ||.||i) = (IR, |.|), we will denote, as usual,
(X,dp) = (`np , ||.||p).

Given a function f : Ω → IR, we denote by Mf its median, by σp(f) = σp its Lipschitz constant

σp = sup
η 6=η′

|f(η)− f(η′)|
dp(η, η′)

and by ωp
f (δ) its modulus of continuity ωp

f (δ) = sup
dp(η,η′)≤δ

|f(η)− f(η′)|.

For an n-dimensional normed space E with K-symmetric basis {e1, ..., en} , i.e. ||
∑n

1 aiei|| ≤
K ||

∑n
1 εiaieσ(i)|| for every εi = ±1 , σ permutation of {1 ... n} , denote λ(n) = ||

∑n
i=1 ei||.

For E a normed space of dimension n and 1 ≤ p ≤ q ≤ ∞, γE(p, q) = γE = inf{||T || ||S|| such that
lnp

T−→ X
S−→ lnq , S ◦ T = Id.}
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M will denote a convex Orlicz function satisfying ∆2 condition at zero. The Simonenko coeficients

for the function M , pM , qM are defined by pM = inf
t>0

tM ′(t)
M(t)

, qM = sup
t>0

tM ′(t)
M(t)

where M ′(t) is the

right hand side derivative of M (see [MA]).
The letter C will represent a numerical constant and different ocurrences of this letter may

represent different values.

We are interested in bounding the deviation of f from its median, i.e. find upper bounds for
IP{|f −Mf | > t}, t > 0.

The case Ω = {0, 1}n with probability IP =
n∏
1

[
δ0 + δ1

2

]n

has been widely studied (δ0 and δ1

are Dirac measures). It is well known that for the Hamming distance (p = 1),

IP{|f −Mf | > t} ≤ exp− 2t2

nσ2
1

(2)

(see [A-M], pg. 6).
The following two results are extensions to inequality (2) above.

Theorem 1 ([M-S]). Consider (Ω,d1, IP ) with IP i the counting probability on Ωi. Let f : Ω → IR
be a function with median Mf . Then for every t > 0,

IP{|f −Mf | > t} ≤ 4 exp− t2

16σ2
1`

2

where `2 is the length of Ω (see [M-S], Ch.7 for definition).

Theorem 2 ([T] and [J-S 2]). Let (Ω,dp, IP ) with diameter diam Ωi ≤ 1, i = 1, ..., n. Let
f : Ω → IR be a function with median Mf and define σp the infimun of the Lipschitz constants of all
convex extension of f to conv Ω . Then for 2 ≤ p <∞

IP{|f −Mf | > t} ≤ 4 exp− tp

4σp
p

For 1 ≤ p < 2 since ||.||p ≤ n1/p−1/2||.||2 implies that σ2 ≤ σpn
1/p−1/2 we obtain

IP{|f −Mf | > t} ≤ 4 exp− t2

4n2/p−1σ2
p

In the case p = 1 and Ω = {0, 1}n, the estimates given by this last result and (2) are roughly
the same. This may be also deduced from the fact that for every A ⊆ Ω and for every η ∈ Ω \ A,
d(η,A) = d(η, convA).

(1) Following [M-S] and [T] it is not difficult to prove the following two statements:
(i) Let (Ω,d1, IP ), with IP i any probability on Ωi. Define

ai = sup
ηi∈Ωi

Aveη′
i
∈Ωi

||ηi − η′i||i

Write A = (
∑
a2

i )
1/2. Then for every function f : Ω → IR and any δ > 0

IP{|f −Mf | > ω1
f (δ)} ≤ 4 exp− δ2

16A2
(3)

(ii) Let (Ω,dp, IP ), 1 ≤ p ≤ ∞. For every function f : Ω → IR with median Mf , let f any convex
extension of f to convΩ. Then for every δ > 0,

IP{|f −Mf | > ωp

f
(δ)} ≤ 4 exp− δp

4(max diamΩi)p
2 ≤ p <∞ (4)
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and

IP{|f −Mf | > ωp

f
(δ)} ≤ 4 exp− δ2

4n2/p−1(max diamΩi)2
1 ≤ p ≤ 2 (5)

(2) As said above, for the function f = ||.||q, 1 ≤ q < ∞, one can find somehow sharper estimates.
More exactly,

Let Ωi = {0, 1} and IP i =
δ0 + δ1

2
. For every t > 0 and for f(η) = ||η||q, η ∈ Ω :

IP{|f −Mf | > t} ≤ exp− t2

8n2/q−1
(6)

Indeed,

Note that for f(η) = ||η||q, Mf =
(n

2

)1/q

. Write η = (ηi)n
i=1 ∈ Ω.

IPn{|f −Mf | > t} = IPn

{∣∣∣∣∣
(∑n

k=1 ηi

n

)1/q

−
(

1
2

)1/q
∣∣∣∣∣ > t

n1/q

}

This last expression suggests the use of the mean value theorem∣∣∣∣∣
(∑n

k=1 ηi

n

)1/q

−
(

1
2

)1/q
∣∣∣∣∣ =

∣∣∣∣∑n
k=1 ηi

n
− 1

2

∣∣∣∣ 1
q
ξ−1/q′

(
1
q

+
1
q′

= 1) for some ξ in the open interval limited by
1
2

and
∑n

k=1 ηi

n
. If t <

1
q

(n
4

)1/q

, let

s =
1
4
tq

(
4
n

)1/q

<
1
4
. Then

∣∣∣∣∑n
k=1 ηi

n
− 1

2

∣∣∣∣ ≤ s implies that

∣∣∣∣∣
(∑n

k=1 ηi

n

)1/q

−
(

1
2

)1/q
∣∣∣∣∣ ≤ s

q( 1
2 − s)1/q′

≤ s41/q′

q
=

t

n1/q

and hence

IPn{|f −Mf | > t} ≤ IPn

{∣∣∣∣∑n
k=1 ηi

n
− 1

2

∣∣∣∣ > 1
4
tq

(
4
n

)1/q
}

≤ by (2) ≤ exp− 2t2q2

42/q′n2/q−1

≤ exp− t2

8n2/q−1

If
1
q

(n
4

)1/q

≤ t ≤
(n

2

)1/q

, as before
∣∣∣∣∑n

k=1 ηi

n
− 1

2

∣∣∣∣ ≤ 1
4

implies that

∣∣∣∣∣
(∑n

k=1 ηi

n

)1/q

−
(

1
2

)1/q
∣∣∣∣∣ ≤ 1

q41/q

Thus

IPn{|f −Mf | > t} ≤ IPn

{
|f −Mf | >

1
q

(n
4

)1/q
}
≤ IPn

{∣∣∣∣∑n
k=1 ηi

n
− 1

2

∣∣∣∣ > 1
4

}
≤ exp−n

8
≤ exp− t2

2 41/q′n2/q−1
≤ exp− t2

8n2/q−1

3



Eventually we realize that for t >
(n

2

)1/q

, {|f −Mf | > t} = ∅.
Comparing these estimates with the ones given by (4) and (5) one gets that both bounds are

roughly the same for 1 ≤ q ≤ 2, and for the natural convex extension of f to conv Ω i.e f(x) = ||x||q
. But the same convex extension ||x||q for q > 2 plus formula (5) leads us to a worse estimate than
the one given by (6). We do not know whether there exist a convex extension of f which, by applying
Theorem 2, yields to our estimate.

In the sequel applications we will use the most convenient metric in Ω so that we obtain better
estimates for the event {|f −Mf | > ωp

f (δ)}.
We remark that, in general, inequality (3) would be sufficient in order to achieve the right esti-

mates for n in the problem we are considering, but it would lead to worse ones for the dependence on
ε.

Theorem 3. There exists a numerical constant C > 0 , such that for every 0 < ε < 1, property (1)
holds for:

(i) Any n-dimensional K-symmetric space E such that ψ(δ) = sup
n∈IN

λ([δn])
λ(n)

→ 0 as δ → 0 , provided

n > C(ε) logN

(ii) Any n-dimensional normed space E K-isomorphic to `nM provided

n > C

(
CK2

ε

)qM max{1, 2
pM

}

logN

(iii) Any normed space K-isomorphic to `np (`mq ), 1 ≤ p, q <∞ n,m ∈ IN , provided

nm > C

(
2K
ε

)max{2,p,q}

logN

(iv) Any n-dimensional normed space E, provided

n1+max{2,p}(1/q−1/p) > C

(
2γE

ε

)max{2,p}

logN

Proof:
(i) Let X(ω) =

∑n
i=1 εi(ω)xi an E-valued random variable where IP{εi = +1} = IP{εi =

−1} = 1
2 , i = 1, ..., n. Let Y (ω) =

∑n
i=1 ε

′
i(ω)xi an independent copy of X. We are interested in the

distribution of ||X − Y ||.
||X − Y ||

2
=
||
∑n

i=1(εi(ω)− ε′i(ω))xi||
2

d= f(η)

where η ∈ Ω = {0, 1,−1}n ⊂ IRn, IP i{ηi = 0} =
1
2

and IP i{ηi = 1} = IP i{ηi = −1} =
1
4

and

f : Ω → IR, defined by f(η) = ||
∑n

i=1 ηixi||.
In this case, consider {0, 1,−1}n ⊂ ln1 . It is straightforward to show that A ≤ n1/2. Now using

the fact that there is an 1-symmetric norm ||.||0 in E such that ||x|| ≤ ||x||0 ≤ K||x|| ∀x ∈ X it is
easy to see: a) Mf ≥ CK−1λ(n), and b) ω1

f (δ) ≤ CKλ([δ]) , δ > 0.
Indeed, write λ0(n) = ||

∑n
i=1 xi||0 . a) Since f(η) ≥ K−1||

∑n
i=1 |ηi|xi||0 , then

Mf ≥ K−1λ0([n/2]) ≥ CK−1λ(n).
b) Let ξi = ηi − η′i (ξi = 0,±1,±2) A = {i : |ξi| = 2} and B = {i : |ξi| = 1}. Note that

||η − η′||1 = 2|A|+ |B| (|.| denotes the cardinality of a subset). Now

|f(η)− f(η′)| ≤ ||
n∑

i=1

|ηi − η′i|xi||0 ≤ 2λ0(|A|+ |B|)

≤CKλ(||η − η′||1)
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and so, ω1
f (δ) ≤ CKλ([δ]).

Given ε > 0, let 0 < δ < 1 s.t. ψ(δ) ≤ ε

CK2
. Then

ω1
f (δn)
Mf

≤ CK2λ([δn])
λ(n)

≤ CK2ψ(δ) < ε

So εMf ≥ ω1
f (δn) and

IPn{|f −Mf | > εMf} ≤ IPn{|f −Mf | > ω1
f (δn)}

≤ (by (3)) ≤ 4 exp−Cnδ2.

Now take N independent copies (N to be determined) of X, X1, . . . , XN . It follows from the
computations above:

IPn{| ||Xi −Xj || − 2Mf | > ε2Mf ,∀ 1 ≤ i 6= j ≤ N}

≤
(
N

2

)
4 exp−Cnδ2

So if the last number is strictly smaller than 1 we can assure the existence of some ω in the
probability space which verifies

2Mf (1− ε) ≤ ||Xi(ω)−Xj(ω)|| ≤ 2Mf (1 + ε)

whenever 1 ≤ i 6= j ≤ N . Thus the result (i) follows inmediately.

(ii) There is no loss of generality if we suppose K = 1. The only modifications which we would
need are similar to the ones which appear in the previous case and so, they only affect the numerical
constant.

We need only consider the set Ω = {0, 1}n with IP =
n∏
1

[
δ0 + δ1

2

]n

. Metricize the set {0, 1}n

with the `npM
-norm and let f(η) = ||η||`n

M
for η ∈ Ω. Denote f the natural extension of f to conv Ω,

f(x) = ||x||`n
M
. Note that λ(n) = 1

M−1( 1
n ) . Then we can write, as before, Mf ≥ C

M−1( 1
n ) . Also

|f(x)− f(x′)| ≤ ||x− x′||`n
M

and use the well known fact that ∀ 0 ≤ α ≤ 1

αqMM(t) ≤M(αt) ≤ αpMM(t)

to obtain εMf ≥ ωpM

f
(δ). Indeed, since x, x′ ∈ conv Ω, we have that

1 =
n∑

i=1

M

(
|xi − x′i|
||x− x′||`n

M

)
≤

n∑
i=1

|xi − x′i|pMM

(
1

||x− x′||`n
M

)
.

Thus,

ωpM

f
(δ) ≤ 1

M−1
(

1
δpM

) .
Now for every 0 < ε < 1, let δ > 0 such that δpM = (Cε)qMn.

M

[
CεM−1

(
1

(Cε)qMn

)]
≥ 1
n

If pM ≥ 2
IPn{|f −Mf | > εMf} ≤ IPn{|f −Mf | > ωpM

f
(δ)}

≤ (by (4)) ≤ 4 exp−Cn(Cε)qM .
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Eventually we conclude as in (i).
In the case pM ≤ 2 we use the corresponding deviation inequality (5). (We will obtain a better

dependence on ε when qM ≤ 2, by using that `nM is cotype 2 (see Corollary 4 below)).
(iii) Suppose that K = 1. As before, since our space is 1-unconditional, we need only study the

set Ω = {0, 1}nm with IP =
n∏
1

[
δ0 + δ1

2

]nm

. Metricize the set {0, 1}nm with the `nm
max{p,q}-norm and

let f(η) = ||η||`n
p (`m

q ) for η ∈ Ω. Denote f the natural extension of f to convΩ, f(x) = ||x||`n
p (`m

q ). Since

||η||`n
p (`m

q )

n1/pm1/q
≥ ||η||1

nm

then

IP

{
||η||`n

p (`m
q )

n1/pm1/q
≤ 1

3

}
<

1
2

and so Mf ≥
n1/pm1/q

3
.

Using the inequality ||x||r ≤ n1/r−1/s||x||s for every 1 ≤ r ≤ s ≤ ∞, we get ωmax{p,q}
f

(δ) ≤

m1/q−1/pδ, if q ≤ p and ω
max{p,q}
f

(δ) ≤ n1/p−1/qδ, otherwise. Indeed, call Ii = (|xi1 − x′i1|, ..., |xim −
x′im|), 1 ≤ i ≤ n.

If q ≤ p ,

|f(x)− f(x′)| = | ||x|| − ||x′|| | ≤ ||x− x′|| =

(
n∑

i=1

||Ii||pq

)1/p

≤

(
n∑

i=1

(
||Ii||pm1/q−1/p

)p
)1/p

= m1/q−1/p||x− x′||p

The case p ≤ q is analagous.
Now apply (4) for max{p, q} ≥ 2 and (5) for max{p, q} ≤ 2 and conclude as in (i).
(iv) By hypothesis there are vectors x1, ..., xn ∈ E such that(

n∑
i=1

|ai|q
)1/q

≤ ||
n∑

i=1

aixi|| ≤ γE(p, q)

(
n∑

i=1

|ai|p
)1/p

(7)

Let Ω = {0, 1,−1}n, diam Ω = 2, IP{ηi = 0} =
1
2

, IP{ηi = 1} = IP{ηi = −1} =
1
4
, f : Ω → IR

defined by f(η) = ||
∑n

i=1 ηixi|| and f its natural convex extension to conv Ω. Write r = max{2, p}

and consider Ω ⊂ `nr . Using (7) it is easy to see that Mf ≥
(n

2

)1/q

and ωr
f
(δ) ≤ γEn

1/p−1/rδ.

IP{| ||X − Y || − 2Mf | > ε2Mf} = IP{|f(η)−Mf | > εMf}

≤ IP{|f(η)−Mf | > ε
(n

2

)1/q

}

≤ by (4) and (5) ≤ 4 exp−
[
C

(
ε

2γE

)r

n1+r(1/q−1/p)

]
and conclude as in (i).

///

- Spaces verifying the condition in (i) are for instance the Lorentz sequence spaces E = `nd(ω,p),
when 1 ≤ p <∞ and ω = (n−r)n, 0 < r < 1, etc..

- Result (ii) can easily be extended to the space `n1
p1

(`n2
p2

(. . . (`nk
pk

)) . . .),
1 ≤ p1, . . . , pk <∞.

- Result (iii) provides an estimate of N = N(n, ε) for general normed spaces E which can be
improved (as shown below) by adding extra conditions to the space, namely cotype conditions etc....
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Corollary 4. There exists a numerical constant C > 0 , such that for every 0 < ε < 1, property (1)
holds for:
(1) Any n-dimensional cotype q normed space E with cotype q constant Cq provided

n2/q >
C C2

q

ε2
logN

(2) Any n-dimensional weak cotype 2 normed space with weak cotype 2 constant wC2 provided

n >
C wC2

2 (1 + logCwC2)2

ε2
logN

Proof: (2) Apply the result by [F-L-M] to find a subspace Y ⊆ X of dimension k =
[
cn2/q

Cq
2

]
such that Y

2∼= `k2 and use (i) with p = q.

(3) Apply the results in [M-P] and conclude as before.

- The case X = `p, 1 ≤ p < ∞, can be deduced either from Theorem 3 (ii) or Corollary 4(1).
The former gives us a better dependence on ε; more precisely, C(ε) = Cε−max{2,p}. For 2 ≤ p <∞ a
sharper estimate, namely Cε−2 can be obtained by using inequality (6).

- Corollary 4.(2) is actually a consecuence of the theorems in [F-L-M] and [J-L] quoted above,

because `c(ε)n
2/q

2

1+ε
↪→ X. But a direct application of these two results leads us to an inferior estimate

for the dependence on ε (namely C(ε) = Cε−4).
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[B-M-W] J. BOURGAIN, V. MILMAN and H. WOLFSON, On type or metric spaces. Trans. A.M.S., 294
(1986), 295-317.

[F-L-M] T. FIGIEL, J. LINDENSTRAUSS and V. D. MILMAN, The dimension of almost spherical sec-
tions of convex bodies. Acta Mathematica, 139 (1977), 53-94.

[J-L] W. B. JOHNSON and J. LINDENSTRAUSS, Extension of Lipschitz mappings into a Hilbert
space. Contemp. Math., 2 (1984), 189-206.

[J-S 1] W. B. JOHNSON and G. SCHECHTMAN, Embedding `mp into `n1 . Acta Mathematica, 149
(1982), 71-85.

[J-S 2] W. B. JOHNSON and G. SCHECHTMAN, Remarks on Talagrand’s deviation inequality for
Rademacher functions. (To appear in Longhorn Notes).

[MA] L. MALIGRANDA, Indices and interpolation. Dissertationes Math. 234 (1985), 1-49.
[M-S] V. D. MILMAN and G. SCHECHTMAN, Asymptotic theory of finite dimensional normed spaces.

Lect.Notes in Math. 1200. Springer-Verlag 1986.
[M-P] V. D. MILMAN and G. PISIER, Banach spaces with a weak cotype 2 property. Israel J. Math.,

54 (1986), 139-158.
[T] M. TALAGRAND, An isoperimetric theorem on the cube and the Kintchine - Kahane inequalities.

Proc. A.M.S., 104 (1988), 86-90.
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