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The problem of (1+4¢)-embedding the £2 -cube into finite dimensional normed spaces can be stated
as follows: “Given X a normed space, dimX = n and 0 < € < 1, estimate the highest cardinality
N(n,e) = N of the sets T C X such that

l—e<lflz—yl[<1+e VaotyeT 7 (1)

The first step in this direction is a result by Johnson and Lindenstrauss (see Lemma 1 in [J-L]),
which states that (1) holds for X = ¢35, provided n > Ce ?log N (C numerical constant). Also,
the same statement can be easily deduced from Theorem 1 in [J-S 1] for X = ¢} , 1 < p < 2 and
n > C(e,p)log N.

In a recent paper by Bastero, Bernués and Kalton [B-B-K] the following result is proven: “There
exists a numerical constant C' > 0 such that (1) holds for every 1-subsymmetric n-dimensional normed
space X, provided n > Ce™2 log N 7. Also, it is shown that estimates of the type n > C(e)log N are
asymptotically in n and N the best possible.

It is worth noting that one actually achieves an embedding of the ¢2, -cube into the ﬁf,v -cube,
with N o~ Ce™?n. This result is an improvement on the one given by [B-M-W] where an embedding
of order N ~ C(¢,p)n? is obtained.

Unfortunately the method developed in that paper cannot be extended to a wider class of spaces
(even to 2-symmetric spaces).

We will present here some extensions to the result in [B-B-K]. The key will be deviation inequal-
ities by M.Talagrand, W.Johnson and Schechtman ([T], Theorem 3 and [J-S 2], Corollary 4) and by
V.Milman and G.Schechtman ([M-S], Ch.7).

We will obtain good estimates for (1) for the 1-unconditional space £ ({7"), 1 < p,q < oo the
study of which was suggested to us by N. Kalton as the first step beyond the 1-subsymmetric case,
for cotype-2 spaces and for some K-symmetric spaces. In the cases considered the method gives the
correct relation between n and N i.e. n > C(e)log N, but in the ¢} case it produces a dependence on
e worse than C'e=2. This can be solved, in a different way than in [B-B-K], by using a sharp deviation
inequality (6) for the convex function ||.||,.

Notation. For i = 1,...,n let (X;,]||.||;) be normed spaces, let §; be a finite subset of X; and let
IP; be any probability measure on ;. Define (Q2,d,,, IP) as Q = [[] €, d,, the distance induced on
by the norm in X = (35 @ Xi),, 1 < p < oo and P = [[|' IP; the product probability. x,z’ will
denote elements in X and 7,7’ elements in Q. In case (X, ||.||:) = (IR,].]), we will denote, as usual,
(X, dp) = (5, |Ip)-

Given a function f: Q — IR, we denote by M its median, by o,(f) = o0, its Lipschitz constant

/
op = Sup M and by w¥(d) its modulus of continuity w’(6) = sup [f(n) — f(n')|.
n#n’ dp(ﬁ? n ) dp(n,n")<s

For an n-dimensional normed space E with K-symmetric basis {e1,...,e,} , Le. || 2] azesl| <
K || 327 €iaieq (|| for every e; = +1, o permutation of {1 ... n} , denote A(n) = || D07 el

For E anormed space of dimension n and 1 < p < ¢ < 00, vg(p, ¢) = vg = inf{||T|| ||S|| such that

xS, SeT=1d)
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M will denote a convex Orlicz function satisfying As condition at zero. The Simonenko coeficients

tM'(t tM’(t
]\/I(Ef))’ qum = su (*) where M'(t) is the

for the function M, pys,qpr are defined by pps = %I;f(;

right hand side derivative of M (see [MA]).
The letter C' will represent a numerical constant and different ocurrences of this letter may
represent different values.

1o M(t)

We are interested in bounding the deviation of f from its median, i.e. find upper bounds for
P{|f — M| >t}, t>0.

The case Q2 = {O7 1}n with probability P = H |:0;_1:| has been widely studied (50 and dq
1

are Dirac measures). It is well known that for the Hamming distance (p = 1),

212
P{|f — My| >t} <exp——s; (2)
noy
(see [A-M], pg. 6).
The following two results are extensions to inequality (2) above.
Theorem 1 ([M-S]). Consider (§2,dy,P) with IP; the counting probability on Q;. Let f : Q — IR
be a function with median M. Then for every t > 0,

2

P - M tt <4 -
{|f f|> }— exp 160’%62

where ¢* is the length of Q) (see [M-S], Ch.7 for definition).

Theorem 2 ([T] and [J-S 2]). Let (Q,d,, P) with diameter diam Q; < 1, i = 1,...,n. Let
f:Q — IR be a function with median My and define o, the infimun of the Lipschitz constants of all
convex extension of f to conv €2 . Then for 2 < p < oo

P
P{|f — My >t} <4 exp—r

=D
Op

For 1 < p < 2 since ||.||, < n'/P=1/2||.||o implies that 7o < F,n'/P~/2 we obtain

t2
P{|f — M| >t} <4 eXp—m
In the case p = 1 and Q = {0,1}", the estimates given by this last result and (2) are roughly
the same. This may be also deduced from the fact that for every A C Q and for every n € Q\ A,
d(n, A) = d(n, convA).

(1) Following [M-S] and [T] it is not difficult to prove the following two statements:
(i) Let (2,dq, P), with IP; any probability on ;. Define

i _771/'”1‘

a; = sup Aveycq,
1ni €8 )

Write A = (3. a?)/2. Then for every function f : Q — IR and any § > 0
52
16A2 3)

(i) Let (Q,dp,P),1 < p < oco. For every function f : @ — IR with median My, let f any convex
extension of f to conv(). Then for every § > 0,

P{If — My| > wh(8)} < 4 exp—

oP

_ L)} < " A(max diam Q. )P
P{|f — M;| > Wf((s)} <4 exp 4(max diam(2; )P

2<p<oo (4)
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and
62
4n2/P=1(max diam$);)?

PAIf = My > w2(8)} <4 exp—

1<p<2 (5)

(2) As said above, for the function f = ||.||q, 1 < g < 00, one can find somehow sharper estimates.

More exactly,

Let ©; = {0,1} and IP; =

0o + 0
2

2

P{|f — My| > t} SeXP—W

Indeed,
n

1/q .
Note that for f(n) = ||n||q, My = (5) . Write n = (n;)1, € Q.

Po{|f — My >t}:Pn{‘(ZZ;1m>l/q_ (;)w

This last expression suggests the use of the mean value theorem

(Bamy" ()"

t
= nl/q

DY S N R
n 2| q

1 1
-+ - = for some ¢ in the open interval limited by — and Z’“ LI/ T
' 2
q q
1 4 1/q ; 1
s = th (n) < 1 Then Zk L 2‘ < s implies that
n 1/ 1
ELTARAN AR PR B
" 2 q(5 — )1/
541/‘1/ t
- q - nl/a
and hence )
Shoi i1 1 4\ 1
P, -M t} < P, k=1t Zt =
{If = My| > 1} < {‘ - 51>t -
2t2q2
<by (2) < eXP*W
t2
= exp_8n2/qfl
1 1/q 1/q n T 1
1= (5) e ()7 as before b=t L Ly e that
g\ 4 2 n 2|~ 4
Ek 17 _ 1 1 < 1
n 2 - q41/q

Thus

1 /n\14 T 1
Pullr -8yl > < P {ir -yl 1 (5) < {|E2 - )

2
12 2

n
S €xXp — o S eXp72 41/(1/7’1,2/(1_1 S eXp78n2/q_1

8
3

L. For every ¢ > 0 and for f(n) = [17]lq, m € Q:

PN GARAI
L(G) e
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. n\ /4
Eventually we realize that for ¢ > (5) Alf = My >t} =0.

Comparing these estimates with the ones given by (4) and (5) one gets that both bounds are
roughly the same for 1 < ¢ < 2, and for the natural convex extension of f to conv  i.e f(z) = ||z||,
. But the same convex extension ||z||, for ¢ > 2 plus formula (5) leads us to a worse estimate than
the one given by (6). We do not know whether there exist a convex extension of f which, by applying
Theorem 2, yields to our estimate.

In the sequel applications we will use the most convenient metric in €2 so that we obtain better
estimates for the event {|f — My| > w¥(d)}.

We remark that, in general, inequality (3) would be sufficient in order to achieve the right esti-
mates for n in the problem we are considering, but it would lead to worse ones for the dependence on
€.

Theorem 3. There exists a numerical constant C > 0 , such that for every 0 < e < 1, property (1)
holds for:
b A([dn])

(i) Any n-dimensional K-symmetric space E such that ¢(d) = su
nelV )\(n)

— 0asd — 0 , provided

n > C(e)log N

(ii) Any n-dimensional normed space E K -isomorphic to (%, provided

2\ am max{l,-2-}
n>C (CK ) " log N
€

(iii) Any normed space K-isomorphic to £ (¢y"), 1 <p,q < oo n,m € IN, provided

log N

2K max{2,p,q}
e>

nm>C(

(iv) Any n-dimensional normed space E, provided

1+max{2,p}(1/g—1/p) 2y | "
n ’ >C (€> log N

Proof:

(i) Let X(w) = > i, €(w)z; an E-valued random variable where P{e; = +1} = P{e; =
—1} =3,i=1,...,n Let Y(w) = X" | €;(w)z; an independent copy of X. We are interested in the
distribution of || X — Y||.

X -V 132 (6i(w) — €(w))a]]
2 2

< f(n)

where n € @ = {0,1,-1}" ¢ R", P{n =0} = % and P;{n;, = 1} = P;{n; = -1} = i and
f:Q— R, defined by f(n) = || 32,2 niwil|-

In this case, consider {0,1,—1}" C I?. It is straightforward to show that A < n'/2. Now using
the fact that there is an 1-symmetric norm ||.||p in E such that ||z|| < [|z]lo < K]|z|| Vz € X it is
easy to see: a) My > CK~'A(n), and b) wi(8) < CKA([3]) , § > 0.

Indeed, write A\o(n) = || Y1y zillo - a) Since f(n) > K| >, [nil@illo , then
My > K=*\o([n/2]) > CK~'A(n).
lln —n'|l1 = 2|A] + |B| (].] denotes the cardinality of a subset). Now

() = £ < 11D I = mileillo < 22o(|Al +|B])

i=1
<CK(|ln =1l
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and so, wi(d) < CKA([9]).

Given € >0, let 0 < 6 < 1s.t. ¥(J) < Then

CK2

wy(9n) A([8n])
M, < CK? ) < OK?)(8) < e

So €My > wi(dn) and

Po{|f — M| > eMy} < Pof|f — My| > wi(on)}
< (by (3)) <4 exp—Cné>.

Now take N independent copies (N to be determined) of X, Xi,...,Xy. It follows from the
computations above:

Po{| [|Xi — Xl = 2My| > e2My,¥V 1 <i# j < N}

< (];)4 exp —Cnd>

So if the last number is strictly smaller than 1 we can assure the existence of some w in the
probability space which verifies

2My(1 —€) < [[Xi(w) = X;(w)[| < 2Mj(1 +€)

whenever 1 <i# j < N. Thus the result (i) follows inmediately.

(ii) There is no loss of generality if we suppose K = 1. The only modifications which we would
need are similar to the ones which appear in the previous case and so, they only affect the numerical
constant.

do+ 0
We need only consider the set Q = {0,1}" with P = H [ ek

} . Metricize the set {0,1}"

with the £;, -norm and let f(n) = [[n||¢n, for n € Q. Denote f the natural extension of f to conv {2,
flz) = ||z|[¢n . Note that A(n) = M%(i) Then we can write, as before, My > —— (;) Also
|f(x) = f(z")] < [lz — 2'[|¢n, and use the well known fact that V 0 < a <1

a™M(t) < M(at) < oM M(t)

to obtain eMy > w?M (0). Indeed, since x,x’ € conv 2, we have that

M <N |- M| ———— .
-2 (w—ww)z' | (u_z%)

i=1 =1

Thus,

1
PM < —F
wf (6>—M 1(6171\4)

Now for every 0 < € < 1, let § > 0 such that §* = (Ce)?™n.

e ()] 2

Po{[f = Myl > es} < Po{|f — My| > w2 (5))
< (by (4)) <4 exp—Cn(Ce)®™

If par > 2
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Eventually we conclude as in (i).

In the case pps < 2 we use the corresponding deviation inequality (5). (We will obtain a better
dependence on € when ¢gp < 2, by using that £}, is cotype 2 (see Corollary 4 below)).

(iii) Suppose that K = 1 As before, since our space is 1-unconditional, we need only study the

set © = {0,1}"™ with IP = H {50 +

] . Metricize the set {0, 1} with the o {p,qy 2orm and

let f(n) = [[nllen (o) forn € Q. Denote f the natural extension of f to conv(), f(x) = |[z[|n (¢m)- Since

|71l cemy S lnlh
nl/pml/a = nm

then
Inllencemy 1 1
e il
P{nl/pml/q -3 < 2
/pmi/a
and so My > nom
Using the inequality ||z||, < n/7=/3||z||, for every 1 < r < s < oo, we get w?ax{p’q}((;) <
m'/97YPs if ¢ < p and w%nax{pﬂ} (8) < n'/P=Y/45 otherwise. Indeed, call I; = (@ — @y, ... |Tim —
1), 1<i<n.
Ifg<p,

n 1/p
[f(z) = F@) = | |Jz|]| = [l2]| | < ||z —2'|| = (Z |L-||§>

=1

n 1/p
- (Z (Illym /e p)p> = m!/ P — 2|,

i=1
The case p < ¢ is analagous.

Now apply (4) for max{p, ¢} > 2 and (5) for max{p, ¢} < 2 and conclude as in (i).
(iv) By hypothesis there are vectors x1, ..., 2, € E such that

n 1/q 1/p
(Zlai|q> < IIZamII <ve(P,9) <Zlaz|”> (7)

1=1

1
Let Q = {0,1,—1}", diam Q = 2, P{m—()}—f P{n, =1} = P{n; = 1}:1,f:§2—>JR
defined by f(n) = || > i, mizi|| and f its natural convex extension to conv 2. Write r = max{2, p}
1/q
and consider 2 C £7'. Using (7) it is easy to see that My > (g) and w?(é) < ypnt/P=1rs,

P{|||X = Y|| = 2My| > e2My} = IP{|f(n) — My| > eMy}
< P{lsn) - Myl > e (2))

< by (4) and (5) < 4exp — [C (€> nl'*""(l/q_l/p)}
2vE

and conclude as in (i).

/1]

- Spaces verifying the condition in (i) are for instance the Lorentz sequence spaces E = {7}

when 1 <p<ooand w=(n""),, 0 <r <1, etc..

- Result (ii) can easily be extended to the space (p1({p2(...(0pF))...),
1<p1,...,p1 < 00.

- Result (iili) provides an estimate of N = N(n,¢€) for general normed spaces E which can be
improved (as shown below) by adding extra conditions to the space, namely cotype conditions etc....

(w,p)’
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Corollary 4. There exists a numerical constant C' > 0 , such that for every 0 < e < 1, property (1)
holds for:
(1) Any n-dimensional cotype q normed space E with cotype g constant C,; provided

C C?
n?/4 > quogN
€

(2) Any n-dimensional weak cotype 2 normed space with weak cotype 2 constant wCs provided

he C wC3(1 + log CwCs)? |

5 og N

€

2/q
Proof: (2) Apply the result by [F-L-M] to find a subspace Y C X of dimension k = [Cn }

Cy
2
such that Y = (5 and use (i) with p = q.

(3) Apply the results in [M-P] and conclude as before.

- The case X = {,, 1 < p < oo, can be deduced either from Theorem 3 (ii) or Corollary 4(1).
The former gives us a better dependence on €; more precisely, C(e) = Ce™ max{2.p} For 2 < p < 00 a
sharper estimate, namely Ce™? can be obtained by using inequality (6).

- Corollary 4.(2) is actually a consecuence of the theorems in [F-L-M] and [J-L] quoted above,

2/a 14 . — e .
because zg(e)” " I X. But a direct application of these two results leads us to an inferior estimate

for the dependence on € (namely C(e) = Ce™4).
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