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0. Introduction. Previous results.

Given (X, | -|]), (Y;|||-||]) two quasi-Banach spaces and 0 < ¢ < 1, we say that
X (1 + ¢)-embedds into Y if there is a one-to-one linear map 7: X — Y such that
T €
1—-e< W <1+ e. We will denote this fact by the diagram X 1<i> Y.
x

Lately, some authors have been investigating questions from the Local Theory
in the context of quasi-Banach spaces. In [2] and [3] the analogue of Dvoretzky’s
theorem on quasi-Banach spaces is proved. For non-spherical sections we only know
answers in particular cases. In [5] the authors show that if 0 < r <p <2, r <1,

E’; &5 ¢y provided that n > C(e,r,p) k.

In this paper we obtain an analogue of the main results in [13] and give general
estimates for the size of E'g—sections of any r-Banach space in terms of the stable-type
constant. The main ideas of the proofs (use of p-stable random variables, deviation
inequalities...) are the same as the ones used in [13]. In some cases Pisier’s ideas
adapt to the r-Banach case; in some others the extension is not obvious at all. As a
corollary we will re-prove the result in [5] quoted above. We do this in sections 1 and
2. In section 3 we study the set {p| £ &5 X, Vn € N, V0 < € < 1}, X an infinite-

dimensional r-Banach space. In this way we give a strong version of the Maurey-Pisier
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theorem (see [10]) for the type in r-Banach spaces. An infinite dimensional version
of this result has been already proved by N.Kalton [6] using ultrapower techniques.
Finally in section 4 we apply the methods used in 1 and 2 to the problem of embedding
finite subsets of L, into £, 0 <r <p < 2, r <1 (see section 4 for a definition). In
[15] the author proves that any finite subset T'C L,,,1 < p < 2 with card T'= N can
be (1 + ¢)-embedded into £} provided that n > C(e) N log NV, and it is conjectured
that the right estimate is some power of log N. In this last section we improve the

results in [15] for particular sets 7.

In the sequel (X, || -||) will denote an r-Banach space, 0 < r < 1, p will be a real

number verifying 0 < p < 2, r < p.

Definition. A real-valued random variable 0 is called p-stable if its Fourier transform

is IE(e'?) = e~ 11",

An interesting property of p-stable random variables is the following: Let Z =

o, 0;x; with 2; € X and ; independent identically distributed (i.i.d.) p-stable

random variables. If (Z;)%_, are independent copies of Z then for every (a;) € RF,

k k 1/p
Z a; Z; 1z (Z \ai]”> , where 4 means equality in distribution.
i=1 i=1

There are only p-stable random variables for 0 < p < 2. If 0 < p < 2,

n n 1/s
F | Zemus < 00 <= s < p. Moreover, forevery 0 <t < s < p, (E | Z@ZLHS) <
i=1 i=1

Cros.ton) (213 o)
=1

Definition. An r-Banach space X is said to be of stable type p if there is a constant

C > 0, such that for every n € N and any vectors z1,...,T, € X

n 1/s n 1/p
(EHZ@%HS> <C <ZH%HP>
=1 =1

where s = r if r < p and s = g if r = p, and 6; denote i.i.d. p-stable random

variables.



The stable-type constant of X denoted by § is the infimun of the constants C

verifying the inequality above.

If we put g; i.i.d. Rademacher random variables instead of #;, we obtain the

definition of Rademacher type of X.

We recall the following properties of stable type. For more details see [14]:
- Every r-Banach space is of stable type s for every s € (0, 7).

- If X is of stable type s, it is of stable type t for every ¢ < s.

- ST,(01) = Cpgn/ 7717 for 0 <q<p<2.

- ST,(fm) ~ Cp(logn)'/? for 0<p< 2.

- The space ¢, is of stable type ¢ for every ¢ < p, but not of stable type p
(0<p<2).

We will use the following equivalent definition of §. For a proof of this equivalence

follow Proposition 1.2 in [13].

Proposition 0.1. § is the infimun of the constants C' > 0 such that,

n 1/s
(EHZ@J;Z-HS) < Cnt? sup |||
1=1

1<i<n

for every n € N and any x1,...,x, € X, where s =71 ifr <pands=r/2ifp=r.

A more convenient representation for ., 6;z; is known. In order to present it
we need to introduce some more notation: Given x1,...,x, € X let Y be the random
variable with distribution - 3" | (65, 4+ 6_z,) and let (Y;),j > 1 be independent
copies of Y. Let I'; be the random variable obtained by summing j i.i.d. exponential

random variables. The distribution function for I'; is known to be

21

P(T; <t) :/0 me*x dz
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Theorem 0.2. ([8,9]). For every 0 < p < 2 there is a constant C,, > 0 such that

Zz 19‘731 gcr ZF 1/]9

nl/P

Notacién For every m > 1, write S(™) = Zoil F_l/p Y;, St = Zj‘;l iTYP Y,
and for ¢ > 1, SZ-(m) = Z]oo . F_l/p Yi;, S’i(m) = ijljfl/” Y;; where I';; and Y;;
are independent copies of I'; and Y; respectively.

We compare the moments of order r of linear combinations of Si(m) and S’Z-(m).

Lemma 0.3. Let 0 < @ < r < p < 2. There is a constant K, , > 0 depending
on r and p such that for every (a;) € R¥ and m € N, we have if r < p and m > 1 or
ifr=pandm > 2,

k k k
Bl Y ais™ I = B Y aiS™ | < Koy Yo lail” sup il
=1 i=1 i=1 <i<n

Demostracion:

k k
‘Eu > asI = Bl Y aS™

i=1 i=1

k k
< EH Z |CLZ| (S@(m) — Sz(m)) ||r < Z |CLZ|TE”,S’Z(m) _ Sz(m)”r
=1 i=1

Vil < Zlazl

T

1/p_ 1/p 1/p_ 1/p Y51

It is enough to study the convergence of the series I,,, =

-
e A
j=1

know an expression for the distribution function of I'; so that we just have to estimate

'—1

= /P — 1/7“" e “dx
/0 Z' | (9—1)!

By using Stirling’s formula and the change of variable § = t the formula above

Co r 1 £\’
1 -1/2—r
/O ll_t/p‘ ZE (et_1> j/ /P Jt
j=1

reduces to



Ifr <

[M]hs}

the integral above diverges near ¢t = 1 for all m.

If r > £ it always converges near oo, we have convergence near 0 iff m > % and
by using Holder’s inequality, converges near ¢ = 1 if @ < r < p, for any m. Note

that £ < @ and so, r > §.

/1]

Observacion Some remarks about the number

(4_4” )P will be useful in the sequel:

—Mijm<lsincep<2.

—Itiseasytoseethat§<@<pandso,Mij)p<r<pimpliesl<§<2.

- The sequence (p,)n,>1 given by the relation p,+1 = %,0 < p < 2is

strictly monotone and decresing and lim p,, = 0.
n—oo
Approximation lemmas.

Definition. Let § > 0. A subset T of the unit sphere Sx of X is a d-net if for every
x € Sx there is an element t € T such that ||z — t||” < 6.

Lemma 0.4. Let X be of dimension n and § > 0. Sx contains a d-net of cardinality

at most exp

n
rd’

The following approximation lemma is an easy consequence of the one used in
[2] and [5].
Lemma 0.5. Let X be r-Banach and Y s-Banach. Let 0 <e <1 andd = £. If a
linear operator T': X — 'Y verifies

1-0<|Tz||" <1496

for every x in a 8°/"-net of Sx then,
l—e<|Tz||" <1+4¢
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for every x € Sx.

We will always work with the function || - ||". In order to remove the exponent r
at the end of the proofs we need the following easy lemma which is nothing but the

Mean Value Theorem applied to the function ¢'/7.

2er

Lemma 0.6. Let 0 < r,e <1,t> 0 and d = i

l—e<t<1l+e.

Then, 1 -6 <t"<146§f—=

Deviation inequalities.

As in most of the theorems quoted in the introduction, the proof of our main

results will rest on the so-called deviation inequalities.

Lemma 0.7. (Deviation inequality). Let 1 < g < 2. Let (§;) be a sequence of
independent random variables with values in X such that essup |&;]| = A\; < oo.

I |(AT) [ g,00 < o0 and Zﬁj converges almost surely, (a.s.), to a random variable £
Jj=21
with ||&||" integrable then, for every t > 0

’

q
t )
PN = Bl >t} < 2exp—cq | mim— if 1<g<?
(Al g,00
and

r r ct .
P{Ell" — E|€||"| > t} < K exp—exp (W) if qg=1
VRIS

where ¢, K are positive numerical constants, c, is a constant depending uniquely on

q and ¢’ is such that ¢=' + ¢! = 1.

Demostracion:

Denote by F; the c—algebra generated by {&1,...,&;}. Write d; = E(||E||" | F;)—
E(||E|I" |F;j=1)- It is easy to see that Z d; = [[E||"=E|&|", a.s.. Also it is not difficult

j=1
to prove the analogue of Yurinski’s inequality [16] for r-Banach spaces, namely for
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every j > 1, |d;| < [|&|I" + E[|§;]]". Therefore we have essup |d;| < 2)}. Conclude

by using two well known exponential inequalities for real valued martingales:

For every (d;) scalar martingale difference sequence such that ||d;|lc = p; < 00

and |[(p5)|lg,00 < 00 if 1 < g <2 we have V¢ >0,

’

P ‘ E dj‘>t §2exp—cq(+) if 1<g<?2
H(HJ) q,00

j=1
and
S t
P{}Zdj}>t}§KeXp—(ech—) if g=1
2 )
We refer to [5] for more information on the former and to [13] for the latter.  ///

Observacion By Yurinski’s inequality and the property of orthogonality of martin-

gale differences it is not difficult to check that I | ||£||” — E||¢]|" |2 = )| Zdj’z <

j=1
DIES
j=1

1. The case r < p.
Now we are in position to state the main result of the section,

Theorem 1.1. Let r,p € R such that 0 < @ < r < p < 2. There exists a
constant C'(r,p) > 0 such that for every 0 < € < 1 and every r-Banach space X,

1+¢
k
t; — X aslong as
2 1

k< C(r,p) £ (STP(X)) T

Demostracion: Fix 0 < e < 1. By Proposition 0.1. pick x1,...,z, in the unit

ball of X such that

(ST(X))n'”

N =

n 1/r
(E | ZQz‘xiHT) >
=1
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1 ™
It follows from Theorem 0.2 that FE|S™M||" > (f) (ST, (X))"

p

Let k € N to be fixed, and let (a;) € R* such that Zle la;|P = 1.

Denote &; = a;Y;;7 —1/P_ For such a sequence of random variables Lemma 0.7.

particularizes as follows:

k k
(1 T o(1 T
JP{ 1> " a:SMN - By S|

i=1 i=1
with ¢ = 2, 1 < ¢ < 2 (the proof of this fact reduces to the same computations as in

> t} < 2exp —¢q td'

the Banach space setting; see [12] for the details). Also Lemma 0.3. applied to the

same sequence yields to the inequality

k k
E|Y " ais| - B a8 < Ky p k17T
=1 1=1
2er )
Let § = ——— dd=——— Th
GO s 1+@2C,) "
{ ' || Zazsmuf E| Zazsmur S s BISO|" }

o(1 T o(1 r
sp{’nzaisﬁu —JEHZaiSi()H +
=1 =1

k
HEISOI - B w8
=1

S & BISO| + 8 (26,)" B|SO|” }

k k
S(1 r o(1 r
P{\nzaisﬁ’n C B @S0 |+
=1 =1

k
+] E|SO) - B]Y a5

=1

> 8 E|ISW||" 4 8" ST, (X)" }
Now if we choose k such that K., k'="/? < §' ST,(X)" we have by Lemma 0.3.,

k k
~(1 r 1 T
JP{ \ I3 s B> e
r r
{‘Hzaz SO~ BIY ad®)

=1

> BV | <

> 5'175”5(1)”7"} < 2exp— Cpr(s'q (E|SM|" )

1

< 2exp—C,, 07 (ST,(X)) 7
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-

Rl
|
Sl

It is straightforward to check that the restriction on k is the same as k < C(e, 7, p) (ST,(X))
The rest of the proof is standard. We have already estimated the probability

8

Let 6; = 0™n(1P)/7 Let Nj, be the cardinality of a §;-net T, in the unit ball of 0y
It follows that

{ \ H Zazsmur E|lsO|

1

>5EHS(1)||’”} < 2exp—Cp, 07 (STH(X))* »

[ Zaz S — BlSD|"

=1

<SE|SY|" | Y(a;) € Ty, }

1

el

1
p

>1— N;, 2exp—C, 5 (ST,(X))

If we oblige the second part of the inequality to be strictly positive then there will exist
k
1> as @I - BIsO|r

i=1
5 E||SM||" holds for every (a;) € Tj,. This is achieved, in view of Lemma 0.4., if

an element w = w(¢) in the probability space such that

IN

1

Zk / 1 1
2 —————exp—C,, 07 (ST,(X)) " 7 <1
exXp min(1, p)o; exXp —Lp, (STH(X)) <
2 1 ! 1
which is a consequence of the condition k < C(r,p)e™@=" (ST,(X))* 7. Finally
k &(1)

use Lemma 0.6. to remove the exponent r and get 1 —e < || Z aim | <1l+e.
i=1

/1]

As announced we deduce the main result in [5]:

Corollary 1.2. If X =/ (0 <r < 1), and r < p < 2 then for every 0 < e <1
there is a constant C = C(e,r,p) such that £} &5 ey for every k < Cn.

Demostracién: Recall that ST,(¢?) = C,,n'/""Y/P for 0 <r < p < 2 and
@ < 1. Theorem 1.1 tells us that ¢5 &5 (" whenever “ _f)p <s<p,s<1for

every k < Cn. By iteration we get the result.
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2. The case r = p.

The difference from the previous case is that the moment of order r of ||S()|]
does not exist and that is the reason why we will have to truncate it and consider
S(m) and S m > 2. As before it will be important to compare the moments of

certain variables.

Lemma 2.1.. Let 6 > 0,0 < r < 1. There exists functions m = m(d,r),C(d,r) and
©(6,r) with p(d,7) — 0 as 6 — 0 for fixed r, such that for every k € N such that

logk < C(8,7) (ST,(X))"

and every (a;) € R such that Zle la;|” = 1, we have

k
]En S a8 | -
=1

< M"p(6,1)

k 2/r
2/r
where M = (E I Zaisi(l)Hr/Z> = (EHS(U“T/Z)

1=1

k k
Denote @y = || 3 ai5™ || and Wy = || 3= ai5™ .

i=1 =1

We will prove 2.1. later; now we will state the main theorem of the section:

Theorem 2.2. Let0 < r < 1. Forevery 0 < € < 1 there exists a constant C(e,r) > 0

1+
such that for every r-Banach space X, (¥ X as long as

logk < C(e,r) (STr(X»T

Demostracion: Fix 0 <e < 1. Let § = 5.2251% and m = m(d,r) > 2 given
by Lemma 1.2. Let k € N and (a;) € R* with Zle la;|” = 1. Choose vectors

T1...%, € Bx such that

n 2/r
1 "/ 1
ey (E” § N ) 2 §STr(X)

i=1

12



2/r 2/r
By 02, M = (BILEL as?I72)" = e (BILE, bl 2) " 2
50, ST (X).

By Lemma 0.7. and proceeding as in the case r < p we have for every m > 2,

{\n S wS - B 0
=1

> t} < Kexp —(expct)

With the notation of Lemma 2.1. define ¢’ = §’(e,r) such that 6 > (', r) +¢".

By using triangle inequality (and again Lemma 2.1.) it is easy to show that

8

and the result now follows by using again standard density arguments.

k
1> a8 | — M7

i=1

> 5M’"} < Kexp—(expcdM")

/1]

Proof of Lemma 2.1. We have to prove | E(®] ) — M"| < M" p(4,r).

Paso 1. Given § > 0 by Lemma 0.2. we can pick m = m(d,r) such that [E(®; ) —

E(U; )| <.

Paso 2. By IFy we mean that we are fixing I';; and integrating with respect to Yj;

and analagously [Fr. With this notation Er/Fy = [Ey IFr = IE. Then

1/2
\E(W) _(B@)"2| < Blur? - (B@)?

< JE‘\Vm - E(2;,)

1/2 1/2

< E|\V;, — Ey(Y;,)

+JE‘EY(%> — E(ar,)

1/2
+ Er

1/2

=FE ¥, — FEy(V;,) Ey(¥;,) — Ey(®;,)

We have to estimate the two summands,
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Paso 3. (Ep Ey(\If:n) — Ey(q):n) Ey(\I/:n) — Ey(q):n) S E‘@In —

1/2\ 2
) < FEr

(IDQL‘ < 0 (the last inequality is Step 1).

Paso 4. For m big enough,

1/2\ 2
(JE\%—EY@;) ) s(JE\%—JEy@:n)

2) 1/2
1/2

o\ 1/2
—2
) <2| ) FErT; <5

jzm

- (]EFJEY U — By (V)

For the second inequality we first use the remark after 0.7. to obtain

' ' 2 T —
Ey |V, — Ey(¥;,)]" <4 |a;*T;;
6, J

then take espectation respect to I';;. Finally, the third inequality follows from the
known fact that ]E(I‘j_z) ~ 772 (see [9]).

Paso 5. Let m be the maximun of the values needed in steps 1 and 4. Let Z; =
di<m Fi_jl. We want to find estimates of || Ele |ai|" Z;||1 /2 which will be applied
next. In order to do so we need three lemmas. The first one is a straightforward
computation; the second one can be found in [12] and the third one is sufficiently

known.

m2

Lemma 2.3. ]P{Z Fi_jl >t} < e

jsm

Lemma 2.4. ([12]). Let (Z;) be a sequence of independent positive random vari-

ables. Let the function w — || Z;(w)||q,00. For every 0 < ¢ < oo

|12 ol e < 2es0p 8 S P(Z0 > 1)
> X

Lemma 2.5. Let 0 < q,

(i) For every (a;) € R, n > 1, [[(@:)]lg.0 < [[(@i)lly < ¢4 (logn)"/? ||(a:)

q,00
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(ii) For any 0 < s < ¢ there is a positive constant C, s such that for any measurable

function f defined on a probability space, Cy sl flls < | fllg.00 < || fllq-

Hence,

k k
1> lail" Zillyz < CIY_lail Zillioo < C Nl IHasl" Zi(w)

i=1 =1

1,00 Hl,oo 10g k

k E o k
m
< Clogk supt P{la;|"Z; >t} < Clogksupt —|a;|" = B(d,r)log k a;l”
< Clogk supt 3 Plla 2 > 1} < Cloghsupt 3 "clod” = Bl6r)logh 3o

for some function B of § and r.

Paso 6.

5 2
‘]E\Iffn/z _ M2 ‘I’:r{z By ZaiSfl)H”Q )
i=1

2 k
- [pu B s
=1

2
(=

k 1/2\ 2 k 2
r Lyr a(m 1 r
< (E\wm— 1" ast| ) < (Euzaxsi F sty /2>
=1 =1
2 2
k Ly 1/2 k X 1/2
< | B> Jail I Y Ty Yyl < | B> lal” ) T
i=1 j<m i=1 j<m

< (by Step 5) < B(d,7)logk
That is, for a certain function C’(d,r) we have proved that ‘E(\I'Tm/z) — MT/2| <
(B(5,r)log k)** < C'(8,7) M™/2.
Final. Joining steps 2 and 6,
| (E®;,)' = M"2| < | (B®),)" — B+ |[EW;?) - M™?| < ¢'(5,r)M"/

and by using the Mean Value Theorem to remove the exponent % we get the desired

result with ¢ = 2¢'(1 4 ¢'). ///
3. The Maurey-Pisier theorem for the type for r-Banach spaces.

Notation.
p(X) = inf{p| &2 <5 X, vn e N, V0 <e < 1}
p(X) = sup{p| X is of stable typep}

15



In order to prove the result we need to recall some relations between stable type

and Rademacher type (type for short).

Lemma 3.2. ([4,14]). For any r-Banach space X,
(i) If X is of type p then is of stable type q for every q < p.

(ii) If X is of stable type p then is of type p.

Theorem 3.3. ([7]).

(i) If X is an r-Banach space of type p for 1 < p < 2 then X is a Banach space.

(i.e. there is an equivalent norm in X such that X turns to be Banach).

(ii) If X is an r-Banach space of type p for 0 < r < p < 1 then X a p-Banach space.

(i.e. there is an equivalent p-norm in X such that X turns to be p-Banach).

(iii) If X is an r-Banach space of type 1 for then X a p-Banach space for every p < 1.

(i.e. there is an equivalent p-norm in X such that X turns to be p-Banach).

Theorem 3.1. Let X be an infinite dimensional r-Banach space. Then

i) p(X) = p(X).

.\ om 1+4e

i) lyxy = XVneN,V0<e<l

Demostracién: i) Standard arguments taken from the Banach space context

show that r < p(X) < p(X) < 2. The non-trivial part is to see p(X) = p(X).
Suppose p(X) < p(X). By definition, X is of stable type ¢ for every ¢ < p(X) and so
is of type ¢-Rademacher and can be renormed to be a g-Banach space. Now choose

¢1 such that p(X) < ¢1 < p(X) and (4_?# < ¢ < q1. Since STy, (X) = oo, Theorem
L.1. tells us that £} & X which means p(X) < g, contradiction.

ii) also follows by standard arguments. ///

Observacion Again, proceeding as in the Banach space context one can show
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D) [HX),2 = {p|lr EX VneN Vo<e<1}

ii) {p|X is of stable type p} is an open interval.

4. Embedding subsets of L, into /]!, 0 <r <p <2,r <1.

Given (X, |-, (Y, ||| |l]) two quasi-Banach spaces, 0 < e <1 and aset T C X

we say that 7' (1 + ¢)-embedds into Y (and we will denote this by the diagram

T Y') if there is a one-to-one map f:7T — Y such that 1 —¢ < |Hf(|T") — f|(|y)
=Yy

Il .

1+e Va,yeT.

Observaciéon Since simple functions are dense in L, an approximation argument

shows that for every 0 < ¢ < 1 and any finite set 7' C L,, there is 77 C ¢, and a
If (=) — f(y)

2 = yllp
if two functions z,y € T' C L, have disjoint support so do the corresponding images

one-to-one map f from T onto T” such that 1 —¢ < lp < 1+4e. Moreover

in 7”. For notation reasons all the theorems are stated supposing 7' C ¢, but they

can be re-written considering 7' contained in L.

t —
Notacién Let r and p be as above. Given T' C £, denote D, ;) = sup —H SHT_
tser |1t = sllp

Theorem 4.1. Foreveryr, p such that 0 <r < p < 2,0 < r <1 there are constants
C,C',C" > 0 uniquely dependent on r and p such that for every 0 < ¢ < 1 and any
finite set T' C {,, of cardinality card T'= N, the diagram T &5 ¢ holds

4
i) If0<2¥<7’<p, as long as

DI 4logN < Ce?'n

(r,p)

4 —
ii) Ifr < M’ as long as

DaT

(’I",p) + IOgN < 0/50 n

17



where q = b and ¢’ the conjugate exponent of q.
r

Demostracién: It is enough to prove the first statement since ii) is consequence
of i), Corollary 1.2. and the fact that for every 0 < r < s, D(; ) < Dy, ). Throughout
the proof any constant depending on p and r will be denoted with the same letter

C. For every n € N let Y: ) — £ be the random variable with distribution function
1 n
o (0e; +0_¢,), where e; is the canonical basis of £]'. With the notation introduced
n
i=1

above define for every t = (¢;)° € T, Oy = ZtiSi(l) and O, = Ztigi(l). For
i=1 =
every t,s € T consider ©;, — O, and ©, —0,. By the fundamental property of p-stable

random variables we have |0, — O,]|, < ||t — s||,, [|S™ ||, and JE( 19, — @5||:) =

B(l6:-e.l; ) - B(16: -

1t — sl Cn7. Also Lemma 0.3. yields in this case to

6.7 ) | < C it = sl Tha is
1 ~ ~
[ _ r . . r <
i | B0 edli) - (16, @sur)] co,,

Proceeding as in the proof of Theorem 1.1. we have,

JE(H@t—@SH:)}

1t = sll5

P{ 16— 6,7 E(16-64r)

™ - ™ ‘ > €
1t = sl 1t = sl

160~ 6.l — B ( 6 - 617 ) " Vi
<P o > C(en'/—DI ) b <2 exp—C(en'/4 ~Dr)
_ST ’ ’
p

We have estimated the probability

’

&, — O, . , N .
P{| =Sl p 150 | <m0 vt et |2 1-(}) 2o -ctenttr -z,

If this probability is strictly positive there will be an element w in the probability

space such that,

O (w
E(HS(I)H:)(l_Z‘:)S H t(||i_8||r( )”7“ <(1+8) (HS(l)H:) v t,SET
Conclude using Lemma 0.6. in order to remove the exponent r. ///
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Observe that the smaller the constant D, ) is the better estimate will be ob-
tained. This is the case for instance when we consider subsets T' formed by points of

mutually disjoint support.

Observacion Let T' C /4, be a set of points with mutually disjoint support. The map
f:T — £, defined by f(t;) = ||t;||p €; is an isometry. Indeed, for every pair t;,t; € T,

— 4l = Z|t WP+ 1L (R = [ Itillpes = [IE5]lpes 15 = 15 () = fE)I

Nies — Aje;
Observacién I T = {Mey,..., Aven}, then  sup  Juci — il
1<izi<N [ Aiei — Ajejllp

Corollary 4.2. For every r, p such that 0 < r < p < 2, r < 1 there are constants
C,C’,C" > 0 uniquely dependent on r and p such that for every 0 < ¢ < 1 and any
finite set T' C ¥,, of points of mutually disjoint support and cardinality card T'= N,
the diagram T o8 ¢ holds

4
i) If0<#<7’<p, as long as

n >

4—
ii) If r < %, as long as
/

n > log N

€C//

—_

1
dondengy—+—/:1.
r q

<

Demostracion: By the remarks above we can assume that 7' is of the form

T ={\e1,... \yex} C £} and D, ) < 21/4" Now use Theorem 4.1. ///
Observacion An standard volumetric argument shows that the relation between n
and N in Corollary 4.2. is the best posible.

The same techniques can be used to embedd subsets of £, into £}.
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Proposition 4.3.

i) For every 1 < p < 2 there is a constant C = C(p) > 0 such that for every
0 < e <1 and any finite set T" C ¢, with cardinality card T = N,the diagram

T <5 07 holds provided that

P
7

D, ) + (log N)»" < CeP logn

ii) For every 0 < p <1l and 0 < § < 4L, there is a constant C = C(p,d) > 0
-D
such that for every 0 < € < 1 and any finite subset T' C {,, of cardinality card
T = N, the diagram T sy ¢, holds provided that
D »_, + (log N)° < Ce'*0 logn

(m,p

The idea of the proof, that we omit, is to consider ¢, as an r-Banach space for
appropiate r and and proceed exactly as in Theorem 4.1. However the estimates are
not as satisfactory as before. As a corollary we study the situation in the case of sets

of poits of mutually disjoint support.

Corollary 4.4. For every 1 < p < 2. There is a constant C' = C(p) > 0 such that,
for every 0 < € < 1 and any finite set T C {,, of points of mutually disjoint support
and cardinality card T = N, the diagram T & ¢, holds provided that

r
7

C
logn > g—p(logN)p

N
p

such T, Dy, < 2'/9". Use Proposition 4.3. ///

Demostracién: Assume that T is of the form T'= {Ajeq,... Ayen} C £,; for

Observacién Write f(N) = exp [(log N )5] It is straightforward to check that
(log N)* < f(N) < N° for all a,b > 0 and so the relation given by f(N) is sharper
than Nlog N, (i.e. the one achieved by Schechtman in [15] for any 7') although it is

worse than the one conjectured by himself in the same paper, a power of log N.
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If 0 < p <1, the relation obtained by applying Proposition 4.3. to a set 1" of
C
points of support mutually disjoint is logn > 1—+5(log N )5, Vv 6 > 0 and it can be
€
substantially improved (and actually reach a power of logarithm estimate) by using

the techniques of Theorem 2.2.

Theorem 4.5. For every 0 < p < 1 and 0 < ¢ < 1, there are constants C,C" > 0
depending on p and e such that, for any set T' C ¢,, of points with mutually disjoint
support and cardinality card T = N, the diagram T &5 ¢, holds provided that

n> C (log N)®

Demostracién: Suppose T’ = {Are1,... Ayen} C £). Recall that ST,(¢)) ~
Cp(logn)l/p. There are vectors x1,...,z; € Bep such that M = E(||S(1)||g/2)2/p =

k 2/?
E (H > 0, x; ||g/2> kHPCst > (2C,)  (logn) P
=1

For every 1 < i < N and m € N denote @Z(-m) =\ S'Z-(m). For any 1 <17 # j <
N consider @z(-m) — @gm)‘ The two main ingredients in the proof of Theorem 2.2.

(deviation inequality and Lemma 2.1.) particularize respectively as follows:

| joi™ —e(mjp Bl —ef)

Niei — Aje;llb [Aiei — Njejllp

>t}§KeXp—(expct) Vit>0

and

“Let § > 0, 0 < p < 1.There are functions m(é,p), C(6,p) and ¢(6,p) with
©(6,p) — 0 as § — 0 and fixed p, such that if log2 < C(9,p) logn, then
E (o - ")

[Aiei — Njesllp

— MP| < MPp(d,p) 7

Now for every 0 < ¢ < 1let 6 = d(¢) > 0 and ¢’ = ¢'(e,p) such that 6 >
0(8',p) + 4. If log2 < C(&', p) logn, then for every 1 <i # j < N we have

— MP

(m) (m)
P{‘H@z _®j ||£

[Xi ei — Ajejllp

> 5Mp} < Kexp—(expC¥ logn) = K exp —nC?
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and so

P 1o — ;" Il

[Ai ei — Ajejllp

N ,
—MP §(5M”|V1§i7éj§]\f}21—K(2)exp—n05

Conclude as in all the results above. Observe that, by choosing appropiately the

constant C, the restriction log2 < C' logn is not such.

/1]
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