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Abstract. In this paper some upper bounds for the volume and di-
ameter of central sections of symmetric convex bodies are obtained in
terms of the isotropy constant of the polar body.

1. Introduction, Notation and Results

We consider Rn endowed with the canonical euclidian structure. K will
be a convex body in Rn. We shall say that K is in isotropic position if its
centroid is the origin and there is a constant α > 0 such that

∫

K
〈x, θ〉2dx = α

for all θ ∈ Sn−1. Every convex body in Rn has a unique, up to orthogonal
transformation, isotropic position (by a position of a convex body we mean
here any affine transformation of the set, with determinant equal to 1). We
recall the definition of the isotropy constant LK of a convex body K

(1.1) nL2
K |K|2/n = inf

S∈SL(n)
t∈Rn

1
|K|

∫

K
|t + Sx|2 dx,

so, if K is in in isotropic position and |K| = 1,

L2
K =

∫

K
〈x, θ〉2dx

for all θ ∈ Sn−1.
In the sequel we will assume that |K| = 1. It is a major problem in as-

ymptotic convex geometry to prove that the isotropy constant of any convex
body K in Rn, LK , is bounded from above for an absolute constant (inde-
pendent even on the dimension). It is well known that this fact is equivalent
to the slicing problem: there exists an absolute constant c > 0 with the
following property, if K is a convex body in Rn with there exists a hyper-
plane H such that |K ∩H|n−1 > c. The best known bound for the isotropy
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2 J. BASTERO

constant was given by Bourgain LK ≤ Cn1/4 log n (see [Bo1], [Bo2] and also
[D] and [Pa] for the non symmetric case).

Let assume that the convex body K of volume one has its centroid in the
origin. The circumradius R(K) is the quantity

R(K) = max{|x|; x ∈ K}.
A simple computation shows that C

√
n ≤ R(K). Moreover if K is

isotropic R(K) ≤ (n + 1)LK (cf. [KLS]) and if instead of that, K◦ is in
isotropic position then

R(K) ≤ Cn

LK◦
≤ Cn

where C is an absolute constant (see Remark 3 bellow).
In this paper some upper bounds for the volume and circumradius of

sections of symmetric convex bodies with volume one are obtained in terms
of the isotropy constant of the polar body.

The proof we use in proving the part ii) of the Theorem 1.1 is based in
the methods appearing in the paper [Bo2] in which Bourgain obtained some
sharp estimates for isotropic ψ2-convex bodies. Our result is equivalent to
that appearing in [Bo2] (lemma in page 115), at least for high dimensional
sections. However, the approach we use here presents some differences. We
use the M -ellipsoid associated to every convex body and sharp estimates on
covering numbers given by Pisier (see [Pi]) instead of using the `-ellipsoid
and Talagrand majoration theorem.

The main result we achieve is the following:

Theorem 1.1. Let K be a centrally symmetric convex body in Rn with
volume |K| = 1 such that K◦ is in isotropic position. Let E be any m-
dimensional subspace, 1 ≤ m ≤ n. Then

i)

(1.2) |K ∩ E|1/m
m ≤ Cn log(1 + m)

m3/4LK◦

ii) if 0 < δ < 1/2 there exists another subspace F ⊂ E, (1 − 2δ)m ≤
dimF ≤ (1− δ)m such that

R(K ∩ F ) ≤ C

δ3

log(m + 1)n5/4

m1/2LK◦

for some absolute constant C > 0 (independent of K and of the dimensions
m,n).

Remarks 1. The bound (1.2) is sharp at least for the high dimensions,
since it gives the better known bound for the isotropy constant. In fact, it
is clear for m = n simply by taking E = Rn. A similar situation happens
for m = n(1−f(n)) whenever f(n) = O(1/ log n). Indeed, as a consequence
of Hensley inequalities (cf. [H]) or Ball result (cf. [B2], lemma 6) we know
that

LK |E ∩K|1/(n−m)
m ≥ C
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whenever that K is a symmetric convex body in Rn of |K|n = 1 in isotropic
position, E is any m-dimensional subspace of R‘n and C > 0 is a numerical
constant. Then if the convex body K is not assumed to be in isotropic
position the inequality before is true at least for one E, m-dimensional
subspace and so, taking into account (1.2) we have

(
C1

LK

)(n−m)/m

≤ C2n log(1 + m)
m3/4LK◦

,

and by using the rough estimates for the isotropy constant (for instance,
LK ≤ C

√
n), we would have

(
C1√

n

)(n−m)/m

≤ C2n log(1 + m)
m3/4LK◦

.

When m = n(1 − f(n)) the inequality gives the better known estimate for
the isotropy constant.

2. Apart from random estimates obtained recently by different authors,
the most recent result in this line is that by Bourgain, Klartag and Milman
(see [BKM]) who proved that if Kn is an isotropic convex body of volume one
such that, LKn is the worst possible constant in dimension n, then for any
subspace F of dimension n−m, |Kn∩F |1/m

n−m ≤ C, for some absolute constant
C. In our situation, if K is a symmetric convex body such that such that
LK0 = LKn then by using that Lm ≤ CLn we have that |K ∩E|1/m

m ≤ C n
m .

3. It is clear that no upper bounds for the circumradius of a general
symmetric convex body can exist. However if K◦ is in isotropic position,
then R(K) ≤ Cn and the expression (1.2) for m = 1 gives this estimate.
We can also give a shoter proof based in the reverse Blaschke-Santaló’s
inequality (see [BM]). Indeed, by (2.3) we have

L2
K◦ ≤ C

n2

|K◦|
∫

K◦
〈x, θ〉2dx ≤ Cn2‖θ‖2

K .

(‖ · ‖K represents the norm in Rn whose unit ball is K).
If K is a general convex body in Rn with its centroid in the origin, since

K ⊂ K −K and Rogers-Shephard’s inequality we have that there exists a
position of K, say K̃, for which

R(K̃) ≤ Cn.

4. We can improve the estimate for the circumradius before only for
high dimensional sections of convex bodies of volume one, whose polar is in
isotropic position. For instance, by taking m = n and δ = 1/4 we obtain
some n/2-dimensional section for a subspace F such that

R(K ∩ F ) ≤ Cn3/4 log n

for any symmetric convex body of volume one whose polar is in isotropic
position.
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Let us introduce eventually some notation. We represent `n
2 the normed

space Rn with the euclidean norm. Notice that | · | will represent also the
euclidian norm as the volume |K| = |K|n (if we want to empathize the
dimension). By C, c we will represent absolute constants which can vary
from line to line. The expression ∼ denotes equivalence of two quantities up
to an absolute factor.

2. Proof of the theorem

Proof. i) The case m = n is just Bourgain’s estimate for the isotropy con-
stant. We only consider 1 ≤ m ≤ n−1. By using Bourgain-Milman’s reverse
Blaschke-Santaló’s inequality (see [BM]) we have that

|K ∩ E|1/m
m ≤ C

m|(K ∩ E)◦|1/m
m

=
C

m|PE(K◦)|1/m
m

.

and also using Fubini’s theorem and Brunn-Minkowski inequality

|K◦|1/n
n ≤ |K◦ ∩ E⊥|1/n

n−m|PE(K◦)|1/n
m .

Then

|K ∩ E|1/m
m ≤ C

m|K◦|1/m
|K◦ ∩ E⊥|1/m

n−m

Now we use a fact which can be deduced from a well known result by Milman-
Pajor (cf. [MP] Proposition 3.11) (this result can be found implicit in K.
Ball ([B1])): if T in Rn is an isotropic symmetric convex body then

|T ∩ E⊥|1/m
n−m ≤ C

Lm

LT
|T |(n−m)/nm

n

where C is an absolute constant and Lm is the supremun of the isotropy
constants of all m-dimensional convex bodies. Hence, we apply this result
to T = K◦, taking into account that |K◦|1/n

n ∼ C/n by reverse Blaschke-
Santaló’s inequality. Eventually Bourgain’s estimate for the isotropy con-
stant gives the result.

ii) Since the convex body K◦ is in isotropic position and its volume is
|K◦|1/n

n ∼ 1/n, the isotropic constant L = LK◦ satisfies

(2.3) L2 ∼ n

|K◦|n

∫

K◦
|x|2dx,

according to (1.1).
Let E be any m-dimensional subspace of Rn. We denote by X the m-

dimensional normed space X = (E, ‖ · ‖K∩E), where ‖ · ‖K∩E is the norm on
E whose unit ball is K ∩ E. We denote by B the polar set of K ∩ E in E
so the dual space is X∗ = (E, ‖ · ‖B) and it is well known that B = PE(K◦)
where PE denotes the orthogonal projection on E.
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We consider the M -ellipsoid associated to the symmetric convex body (in
E), K ∩E, (see [Pi]), i. e. given any 0 < p < 2 there exists an isomorphism
u : `m

2 → X such that
(2.4)

max{dk(u), ck(u−1), ek(u), ek(u∗), ek(u−1), ek(u−1∗)} ≤ C√
2− p

(m

k

)1/p

for some absolute constant C > 0 and for all k = 1, . . . , m, where the
dk, ck, ek’s are the corresponding Kolmogorov, Gelfand and entropy num-
bers. Furthermore

max {log N(u(Dm), tK ∩ E), log N(u∗(B), tDm),(2.5)

log N(K ∩ E, tu(Dm)), log N(Dm, tu∗(B))}(2.6)

≤
(

C√
2− p

)p m

tp
(2.7)

for all t ≥ C/
√

2− p , where C > 0 is an absolute constant (see, for instance
[Pi], theorem 7.13 corollaries 7.15. and 7.16).

We can assume that the isomorphism u has a diagonal expression if we
take the canonical basis {εi}m

i=1 in `m
2 and some orthogonal basis {ei}m

i=1
(with respect to the euclidian structure of Rn) in E such that u(εi) = λiei,
for some λi > 0, 1 ≤ i ≤ m in such a way that λ1 ≤ λ2 ≤ · · · ≤ λm. Let
1 ≤ k < m. Since

ck(u−1) ≤ C√
2− p

(m

k

)1/p

(see, (2.4)), by definition of the Gelfand numbers, there exists a subspace
F1 ⊆ E with dimF1 > m− k, such that

|u−1(x)| ≤ C√
2− p

(m

k

)1/p
‖x‖K

for all x ∈ F1. Let F2 = span {e1, . . . , em−k}. It is clear that F = F1 ∩ F2

verifies that m− 2k < dimF ≤ m− k and

|u−1(x)| =
∣∣∣∣∣
m−k∑

i=1

λ−1
i xiεi

∣∣∣∣∣ ≥
1

λm−k

(
m−k∑

i=1

x2
i

)1/2

=
|x|

λm−k

for all x =
∑m−k

i=1 xiei ∈ F . So,

|x| ≤ λm−k
C√
2− p

(m

k

)1/p
‖x‖K

≤ 1
k

(
m∑

i=m−k+1

λi

)
C√
2− p

(m

k

)1/p
‖x‖K

≤ 1
k

(
m∑

i=1

λi

)
C√
2− p

(m

k

)1/p
‖x‖K
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for all x ∈ F . We will assume the following

Claim.
m∑

i=1

λi ≤ Cn(3/2−1/2p)m1/p

L
√

2− p
.

We follow the proof. If we assume that k = δm, for some 0 < δ < 1/2
then

|x| ≤ C

(2− p)δ1+1/p

n3/2−1/2p

Lm1−1/p

for all x ∈ F ∩K and we achieve the result, by taking p = 2− 1/ log m. ¤

Proof of the Claim.
We consider `m

2 canonically embedded in `n
2 and we denote by {εi}n

i=1 its
canonical basis; in the same way, we extend the orthogonal basis {ei}m

i=1
from E to all Rn. Let PE : Rn → E the orthogonal projection on E.

Let K1 ⊆ `n
2 the convex set defined by

K1 = {x =
n∑

i=1

xiεi ∈ `n
2 ;

n∑

i=1

xiei ∈ K◦}.

K1 is an orthogonal copy of K◦, therefore they have the same volume and
isotropy constant, and hence, by (2.3),

C

n2
L2 ≤ 1

|K1|n

∫

K1

x2
i dx

for an absolute constant and for all 1 ≤ i ≤ n. Hence

C

n2
L2

m∑

i=1

λi ≤ 1
|K1|n

∫

K1

m∑

i=1

λix
2
i dx(2.8)

=
1

|K1|n

∫

K1

〈
n∑

i=1

xiεi, u
∗
(

m∑

i=1

xiei

)〉
dx(2.9)

=
1

|K1|n

∫

K1

〈
x, u∗ ◦ PE

(
n∑

i=1

xiei

)〉
dx(2.10)

≤ 1
|K1|n

∫

K1

max
z∈u∗(B)

〈x, z〉 dx(2.11)

since B, which is the polar of K ∩E in E, can be expressed as B = PE(K◦)
and u∗ : (E, ‖ · ‖B) → `m

2 .
Now we follow the method appearing in [D], [Gi], [Pa] in order to estimate

from above the last integral. If we assume that u∗(B) ⊂ RDm, for some
R > 0 large enough, we use the Dudley-Fernique’s technique. Let N ∈ N
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(to be chosen later). By using (2.7), it is clear that for every j = 1, . . . , N

there exist points y
(j)
1 , . . . , y

(j)
Nj

such that

u∗(B) ⊂
Nj⋃

i=1

(
y

(j)
i +

R

2j
Dm

)
,

where

log Nj ≤
(

C√
2− p

)p m2jp

Rp
.

Therefore, for every z ∈ u∗(B) and 1 ≤ j ≤ N we choose the points y(j)

such that |z − y(j)| ≤ R/2j . Hence

z = 0 + (y(1) − 0) + (y(2) − y(1)) + · · ·+ (y(N) − y(N−1)) + (z − y(N))
= w1 + · · ·+ wN + w,

where

|wj | ≤ |y(j) − z|+ |z − y(j−1)| ≤ 3R

2j

|w| = |z − y(N))| ≤ R

2N
.

Each vector wj belongs to a finite set Fj of cardinality |Fj | ≤ NjNj−1, so

log |Fj | ≤ 2
(

C√
2− p

)p m2jp

Rp
.

Therefore
∫

K1

max
z∈u∗(B)

〈x, z〉 dx ≤
N∑

j=1

∫

K1

max
wj∈Fj

〈x,wj〉dx +
∫

K1

max
w∈ R

2N Dm

〈x,w〉dx

Since K1 is in isotropic position, the last summand verifies

1
|K1|n

∫

K1

max
w∈ R

2N Dm

〈x,w〉dx ≤ R

2N

1
|K1|n

∫

K1

|x|dx

≤ R

2N

(
1

|K1|n

∫

K1

|x|2dx

)1/2

≤ by (2.3) ≤ CR

2N

L√
n

.

We use the following well known fact (which is a consequence of Borel’s
lemma, see [MS]): if K̃ is an isotropic convex body with volume |K̃|n = 1
then

(2.12)
∫

K̃

N
max
i=1

|〈x, yi〉|dx ≤ C LK̃ log N
N

max
i=1

|yi|
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for any finite family of unit vectors {y1, . . . , yN}, where C > 0 is an absolute
constant. Then we get that

n

|K1|n

∫

K1

max
wj∈Fj

|〈x,wj〉|dx ≤ C
|K1|−1/n

n

|K1|n

∫

K1

max
wj∈Fj

|〈x,wj〉|dx

≤ C1L log |Fj | max
wj∈Fj

|wj |

≤ C1L

(
2

(
C√
2− p

)p m2jp

Rp

)
3R

2j

≤ CC1Lm

(2− p)p/2

2j(p−1)

Rp−1
.

Taking into account (2.11) and (2.12) we have

L

m∑

i=1

λi ≤ Cn


 R

2N

√
n +

CC1m

(2− p)p/2

N∑

j=1

2j(p−1)

Rp−1




≤ Cn

(
R

2N

√
n +

CC1m

(2− p)p/2(p− 1)

(
2N

R

)p−1
)

.

We optimize by taking

R

2N
=

(
CC1m√

n(2− p)p/2

)1/p

and hence the claim holds.

Acknowledgment. The author is very indebted to Bo’az Klartag for per-
mitting the inclusion of this version and proof of the part i) of the theorem,
which very much improves an earlier version.

References

[B1] K. Ball Isometric problems in `p and sections of convex bodies, Ph. D. Thesis,
Cambridge University (1986).

[B2] K. Ball Logarithmically concave functions and sections of convex sets in Rn, Stu-
dia Math. 88 (1988), pp. 69-84.

[BKM] J. Bourgain, B. Klartag and V. Milman, Symmetrization and isotropic con-
stants of convex bodies, Geometric Aspects of Functional Analysis, Lecture Notes
in Math. 1850, Springer (2004) 101-116.

[Bo1] J. Bourgain, On the distribution of polynomials on high dimensional convex sets,
Lecture Notes in Math. Springer, 1469 (1991), 127-137.

[Bo2] J. Bourgain, On the isotropy-Constant Problem for “PSI-2”-Bodies, Lecture Notes
in Math. Springer, 1807 (2003), 114-121.

[BM] J. Bourgain and V. Milman, New volume ratio properties for convex symmetric
bodies in Rn, Invent. Math. 88 (1987), pp. 319-340.

[D] S. Dar, Remarks on Bourgain’s problem on slicing convex bodies, in Geom. Aspects
of Funct. Analysis (Lindenstrauss-Milman eds,), Operator Theory: Advances and
Applications 77 (1995), 61-66.



SECTIONS 9

[Gi] A. Giannopoulos, Notes on isotropic convex bodies, http://itia.math.uch.gr/
apostolo/notes.html.

[H] D. Hensley, Slicing convex bodies - bounds of slice area in terms of the body’s
covariance, Proceed. od AMS 79 (1980), pp. 619-625.

[KLS] R. Kannan, L. Lovasz and M. Simonovts, Isoperimetric problems for convex
bodies, Discrete Comput. Geom. 13 (1995), pp. 541-559.

[MP] V. Milman and A. Pajor, Isotropic positions and inertia ellipsoids and zonoids
of the unit ball of a normed n-dimensional space, GAFA Seminar 87-89, Springer
Lecture Notes in Math. 1376 (1989), pp. 64-104.

[MS] V. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed
spaces, Lecture Notes in Math. 1200, (1986).

[Pa] G. Paouris, On the isotropic constant of non-symmetric convex bodies, Lecture
Notes in Math., Springer, 1745 (2000), 239-243.

[Pi] G. Pisier, The Volume of Convex bodies and Banach Space Geometry, Cambridge
Tracts in Mathematics 94 (1989).
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