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We build a one-variable p-adic L-function attached to two 
Hida families of ordinary p-stabilised newforms f , g, interpo-
lating the algebraic part of the central values of the complex 
L-series L(f ⊗ Ad0(g), s) when f and g range over the clas-
sical specialisations of f , g on a suitable line of the weight 
space. The construction rests on two major results: an ex-
plicit formula for the relevant complex central L-values, and 
the existence of non-trivial Λ-adic Shintani liftings and Saito–
Kurokawa liftings studied in a previous work by the authors. 
We also illustrate that, under an appropriate sign assumption, 
this p-adic L-function arises as a factor of a triple product p-
adic L-function attached to f , g, and g.
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1. Introduction

The first significant work towards the study of p-adic L-functions for GL(2) × GL(3)
was achieved by C.-G. Schmidt in [Sch93]. By using the so-called modular symbol 
method, extending ideas due to Kazhdan and Mazur, Schmidt studied algebraicity and 
p-adic interpolation properties of the twists of special values for the L-series associated 
with Rankin–Selberg convolution of two fixed automorphic representations for GL(2)
and GL(3). This led to the construction of the corresponding p-adic L-function in the 
cyclotomic variable.

The algebraicity results and p-adic interpolation properties studied in [Sch93] have 
been pursued and generalised to GL(n) ×GL(n +1) by several authors along the last years 
(see, for example, [KS13,RS08,Rag10,Sun17,Jan19]). Concerning the construction of p-
adic L-functions for GL(n) × GL(n + 1), we must mention the work of F. Januszewski 
in [Jan15], and more recently in [Jan], where p-adic L-functions for Hida families on 
GL(n) × GL(n + 1) are achieved. As a by-product, Januszewski obtains strong non-
vanishing results for central L-values of twisted Rankin–Selberg L-functions.

Within the general framework provided by the above mentioned works, the aim of 
the present paper is to construct a p-adic L-function (of a single weight variable) for 
GL(2) ×GL(3), using explicit Hida families of ordinary modular forms. Our construction 
relies on very explicit Ichino-like formulae for central values of degree 6 L-series proven in 
the recent years (cf. [Ich05], [PdVP19], [PdVP20], [Che20]), which are expressed in terms 
of periods involving Saito–Kurokawa liftings that can be p-adically interpolated when 
varying the weight. A disadvantage of this route is that we are forced to impose some 
technical assumptions that are inherent to the method and to the available formulae, 
which would cease to play a role as soon as the aforementioned special values results are 
generalized. In contrast, the main motivation (and advantage) of our approach is that 
it opens the path for a closer link to the arithmetic of classical modular forms and their 
special L-values, e.g. via the study of appropriate special cycles in the relevant algebraic 
varieties. Therefore, our construction provides a needed complement to the works cited 
in the previous paragraph.

In order to describe our main results, let N ≥ 1 be an odd, squarefree integer, and 
k, � ≥ 1 two odd integers. Let f ∈ Snew

2k (N) and g ∈ Snew
�+1 (N) be two normalised 

newforms of level Γ0(N) and weights 2k and � +1, respectively, and let Vf and Vg denote 
the compatible system of Deligne p-adic Galois representations associated with f and g, 
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respectively. Let also Ad0(Vg) be the adjoint representation of trace-zero endomorphisms 
of Vg (which, since g has trivial nebentype character, is just a cyclotomic twist of the 
symmetric square representation Sym2(Vg)). Associated with this data, we may consider 
the complex L-series L(f ⊗ Ad0(g), s) attached to Vf ⊗ Ad0(Vg), defined by an Euler 
product

L(f ⊗ Ad0(g), s) =
∏
q

L(q)(f ⊗ Ad0(g), q−s)−1

for Re(s) � 0. If q is a prime not dividing N , and we write αq(f), βq(f) and αq(g), 
βq(g) for the roots of the q-th Hecke polynomials

Pf,q(T ) := T 2 − aq(f)T + q2k−1, Pg,q(T ) := T 2 − aq(g)T + q�,

of f and g, respectively, then L(f ⊗Ad0(g), T )(q) is the degree 6 Euler factor defined by 
the identity

L(q)(f ⊗ Ad0(g), T ) =
(
1 − αq(f)αq(g)

βq(g)T
)
·
(
1 − αq(f)T

)
·
(
1 − αq(f) βq(g)

αq(g)T
)

(1.1)

×
(
1 − βq(f)αq(g)

βq(g)T
)
·
(
1 − βq(f)T

)
·
(
1 − βq(f) βq(g)

αq(g)T
)
.

The completed L-function

Λ(f ⊗ Ad0(g), s) := L∞(f ⊗ Ad0(g), s) · L(f ⊗ Ad0(g), s),

where, for ΓC(s) := 2(2π)−sΓ(s),

L∞(f ⊗ Ad0(g), s) =
{

ΓC(s + �) · ΓC(s− �) · ΓC(s) if � < k,

ΓC(s + �) · ΓC(s + � + 1 − 2k) · ΓC(s) if � ≥ k,

admits analytic continuation to the whole complex plane and satisfies a functional equa-
tion relating the values Λ(f⊗Ad0(g), 2k−s) and Λ(f⊗Ad0(g), s). The center of symmetry 
s = k is always a critical point in the sense of Deligne, and the global sign ε = {±1}
appearing in this functional equation can be written as a product of local signs, one for 
each rational place:

ε =
∏
v

εv, εv ∈ {±1}.

The local signs εv are +1 away from N∞, and hence this is actually a finite product. In 
addition, our assumption that both f and g are newforms of the same level N , with N
odd and squarefree, implies that εq = +1 for all primes q | N . Therefore the sign in the 
functional equation for Λ(f ⊗ Ad0(g), s) is completely governed by
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ε∞ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if � < k and k odd
+1 if � < k and k even
+1 if � ≥ k and k odd
−1 if � ≥ k and k even

See [Pra90, Section 8] and the sign discussion in [PdVP19, p. 5]) for more detail. In the 
cases when ε∞ = +1 we have ε = 1, thus one expects the central value Λ(f ⊗Ad0(g), k)
to be generically non-zero. Therefore, it is natural to aim for a (two-variable) p-adic 
L-function Lp(f , Ad0(g)) interpolating the central values Λ(f ⊗ Ad0(g), k), when both 
f and g vary in Hida families f and g of ordinary p-stabilised newforms. With this in 
mind, the goal of this note is to construct a one-variable p-adic L-function L◦

p(f , Ad0(g))
attached to Hida families f , g interpolating those central values along the line � = k

(subregion of � ≥ k), which shall provide what it is expected to be the restriction of 
the two-variable one. For the reasons explained in these few lines, we will consider the 
following assumption:

(Sign) N is odd squarefree and that k is odd.

The assumption of N be odd is not needed for sign purposes, but for the central value 
formula we refer to in the next theorem. However, for convenience of the reader we prefer 
to keep it under this label as well.

Assume from now on that � = k. Our construction relies on an explicit central value 
formula for Λ(f ⊗ Ad0(g), k) in terms of Petersson products involving Saito–Kurokawa 
lifts, firstly described by Ichino [Ich05] and recently generalised in [PdVP19] and [Che20]. 
For our construction, we will rely on the formulation in [PdVP19] (where the notation 
Ad coincides with our Ad0, and we use a different normalization of the Petersson inner 
products):

Theorem 1.1. Let f ∈ Snew
2k (N), g ∈ Snew

k+1(N) be two normalised newforms of level N
and weights 2k and k + 1, respectively. If we assume that the pair (N, k) satisfies the 
hypothesis (Sign), then

Λ(f ⊗ Ad0(g), k) = C(f, g) · 〈f, f〉〈h, h〉 ·
|〈�(F ), g × g〉|2

〈g, g〉2 ,

where C(f, g) = 2k+1N−1, and:

• h ∈ Sk+1/2(N) is any half-integral weight modular form in Shimura–Shintani corre-
spondence with f ;

• F ∈ S
(2)
k+1(N) is the Saito–Kurokawa lift of h;

• �(F ) ∈ Sk+1(N) ⊗Sk+1(N) is the pullback of F to H×H embedded diagonally into 
Siegel’s upper half space H2 (see Section 4 for details).
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The Shimura–Shintani correspondence and the Saito–Kurokawa lift are recalled in 
Section 3. A corollary of the above central value formula is the following algebraicity 
property, as predicted by Deligne:

Λ(f ⊗ Ad0(g), k)
〈g, g〉2Ω−

f

= C(f, g) · 〈f, f〉
〈h, h〉Ω−

f

· |〈�(F ), g × g〉|2
〈g, g〉4 ∈ Q(f, g), (1.2)

where Ω−
f ∈ C× denotes a complex period attached to f by Shimura (see equation (3.4)

below) and Q(f, g) denotes the number field obtained by adjoining to Q the Fourier 
coefficients of f and g. This explicit expression for the algebraic part of the central value 
Λ(f⊗Ad0(g), k) suggests the construction of the desired p-adic L-function L◦

p(f , Ad0(g))
attached to two Hida families of ordinary p-stabilised newforms by directly interpolating 
the right hand side of (1.2) when f and g vary along the classical specialisations of f and 
g. This is the strategy that we follow in this article.

We briefly explain what are the key steps in the aforementioned interpolation of 
(algebraic) central values, still keeping a classical flavour. Continue to assume that f ∈
Snew

2k (N) and g ∈ Snew
k+1(N) are normalised newforms, such that the pair (N, k) satisfies 

the hypothesis (Sign). Let p � 2N be a prime and suppose that both f and g are ordinary
at p, and write αf := αp(f), βf := βp(f), and αg := αp(g), βg := βp(g) for the roots 
of the p-th Hecke polynomials of f and g, respectively, labelled so that αf and αg are 
p-adic units. Then, consider the ordinary p-stabilisations

fα ∈ S2k(Np), gα ∈ Sk+1(Np)

of f and g on which Up acts as multiplication by αf and αg, respectively. As we will see 
in Sections 2.2 and 2.3, we have notions of p-stabilisations hα and Fα for the half-integral 
weight cuspform h and the Siegel form F as in Theorem 1.1, respectively.

In order to build the desired p-adic L-function we need to study the p-adic interpola-
tion of the periods appearing on the right hand side of formula (1.2). In Proposition 6.1, 
we interpolate the periods

〈f, f〉
〈h, h〉Ω−

f

,

by applying a classical formula due to Kohnen (recalled below in Theorem 3.2) and using 
the existence of Λ-adic Shintani liftings as studied in [CdVP21]. More challenging is the 
p-adic interpolation of the periods

|〈�(F ), g × g〉|2
〈g, g〉4 ,

which is performed in Proposition 6.2 and represents the main contribution of this article. 
On the classical side, the key ingredient is the proof of the following identity:
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〈eord(�(Fα)), gα × gα〉
〈gα, gα〉2

= E◦(f,Ad0(g))
E(Ad0(g))

· 〈�(F ), g × g〉
〈g, g〉2 , (1.3)

where eord denotes the ordinary projector acting on Sk+1(Np) ⊗Sk+1(Np) (as described 
in Section 5.2), and

E◦(f,Ad0(g)) :=
(

1 − βf

pk

)(
1 − βfβg/αg

pk

)
, E(Ad0(g)) =

(
1 − βg

αg

)(
1 − βg

pαg

)
.

(1.4)
It is worth noticing that formula (1.3) follows from the computations of Section 4 on 
pullbacks of Saito–Kurokawa lifts. More precisely, one needs an explicit relation between 
the pullbacks of F and UpF ; this is the content of Theorem 4.3, which has a completely 
classical flavour and it is of independent interest.

We are now going to state the main result of this note. Let p be an odd prime not 
dividing N , and consider the usual Iwasawa algebra Λ := Zp[[Γ]], where Γ = 1 + pZp, 
together with its associated weight space

W := Homcts(Λ,Cp).

We define the dense subset Wcl ⊆ W of classical points in W as the image of the map

Z≥1 ↪→ W, k �→ νk−1

sending an integer k ≥ 1 to the homomorphism νk−1 : Λ → Cp determined by requiring 
that νk([t]) = tk−1 for all t ∈ Γ. We will call wt(νk−1) = k− 1 the weight of the classical 
point νk−1.

Let f and g be two Hida families of p-stabilised newforms of tame level N , and let 
us assume for simplicity for the rest of the introduction that their coefficients lie in Λ
(this last assumption is solely for sake of simplicity here, and will not be considered in 
the body of the text), so that we can see them as functions on Wf = W and Wg = W. 
Consider the embedding

W ↪→ Wf ×Wg (1.5)

defined as the only continuation of the one defined on classical weights by νk−1 �→
(ν2k−2, νk−1). By restricting to classical weights contained in a single residue class modulo 
p − 1, we may assume that

• g(νk−1) is the p-stabilisation of an eigenform gk+1 ∈ Snew
k+1(N), for all νk−1 ∈ Wcl;

• f(ν2k−2) is the p-stabilisation of an eigenform f2k ∈ Snew
2k (N), for all νk−1 ∈ Wcl.

In this simplified setting, the main theorem of this article reads as follows.
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Theorem 1.2. Let (f , g) be a pair of Hida families of ordinary p-stabilised newforms 
defined on a neighbourhood U of a classical point νk0−1 ∈ Wcl such that (N, k0) satisfies 
the hypothesis (Sign). There exists a unique element L◦

p(f , Ad0(g)) ∈ Frac(Λ), defining 
a p-adic analytic function on a Zariski-open subset U ⊂ W, such that for every classical 
point νk−1 ∈ Wcl ∩ U the following interpolation formula holds:

L◦
p(f ,Ad0(g))(νk−1) = Ω−

2k · C (N, k) · E
◦(f2k,Ad0(gk+1))2

E(Ad0(gk+1))2
· Λ(f2k ⊗ Ad0(gk+1), k)

Ω−
f2k

· 〈gk+1, gk+1〉2
,

where

• Ω−
2k is the p-adic period defined as in [GS93];

• C (N, k) = (−1)[k/2]2−2kN ;
• E◦(f2k, Ad0(gk+1)) and E(Ad0(gk+1)) are the Euler factors defined as in (1.4).

We refer the reader to Section 6, and particularly to Theorem 6.3, for the precise 
statement in a general form. Let us just indicate briefly that, when dropping the as-
sumption that f and g have coefficients in Λ, the embedding of W into Wf ×Wg in (1.5)
is to be replaced with a natural embedding

Wf ×W,σ Wg ↪→ Wf ×Wg,

where σ : Λ → Λ is the isomorphism of Zp-algebras defined on group-like elements by 
σ([t]) = [t2].

Remark 1.3. In the proof of the above theorem we need to use the special value formula 
of Theorem 1.1, which holds true only for newforms of squarefree levels. This is the 
main reason for which both here and in the bulk of the article we restrict our attention 
to classical (crystalline) specialisations. However, it is expected that after an extension 
of the special value formula we should enjoy an interpolation formula at all arithmetic 
specialisations.

Remark 1.4. The reason for the ornament ◦ in the notation L◦
p(f , Ad0(g)) is that this is 

expected to be a one-variable restriction of a more general two-variable p-adic L-function 
Lp(f , Ad0(g)) : Wf × Wg → Cp satisfying an analogous interpolation property on the 
subset of Wcl

f ×Wcl
g determined by 2wt(λ) ≥ wt(κ). This two-variable p-adic L-function 

Lp(f , Ad0(g)) can be constructed along similar lines as L◦
p(f , Ad0(g)), by considering 

Hida families of (Shimura–Maass) derivatives of modular forms and interpolating nearly-
holomorphic Saito–Kurokawa lifts. On the classical side, one can use the extension of 
Theorem 1.1 to the setting where f and g have weights 2k and � + 1 with � ≥ k (see 
[Che20,PdVP20]).
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Remark 1.5. The Euler factor E◦(f, Ad0(g))2 is not equal to the one conjecturally de-
scribed by Coates and Perrin-Riou (cf. [CPR89]), which should be E◦(f, Ad0(g))2 · (1 −
αf2kα

−2
gk+1

)2 (notice that this is part of the correction term of Theorem 7.1). This is 
not surprising and it arises because to perform our interpolation in families we consider 
the semi-ordinary p-stabilisation of the Saito-Kurokawa lift Fα of F . Following our con-
struction with the appropriate p-depletion of F instead, would give rise to the full Euler 
factor described by Coates and Perrin-Riou. Notice that on the line k = � this correction 
term is a p-adic analytic function, which specialises to nonzero algebraic elements at all 
classical points.

As a direct consequence of Theorem 1.2, we prove in Section 7 a factorisation of p-adic 
L-functions. Indeed, we consider the three-variable p-adic L-function

Lbal
p (f ,g,g) : Wf ,g,g := Wf ×Wg ×Wg −→ Cp

described in [Hsi21], interpolating the algebraic parts of the central values of the Garret–
Rankin complex L-series L(fκ⊗gλ⊗gμ, s), when (κ, λ, μ) varies in the balanced subregion 
of Wcl

f ,g,g (cf. Section 7 for the details). With the above notation, let us denote by 
Lbal,◦
p (f , g, g) the one-variable restriction of Lbal

p (f , g, g) to W via the embedding

W ↪→ Wf ,g,g := Wf ×Wg ×Wg

naturally induced by the composition of (1.5) and the diagonal embedding of Wg. Let 
us also consider the central critical restriction

L◦
p(f) : W → Cp

of Greenberg–Stevens p-adic L-function attached to f , interpolating the algebraic parts 
of the central values of L(f2k, k), as κ = ν2k−2 varies in Wcl. For this not to be identically 
zero we need to assume that the global sign of f is ε(f) = +1.

Theorem 1.6. Let (f , g) a pair of Hida families as in Theorem 1.2. If ε(f) = +1, then 
we have the following factorisation of p-adic L-functions:

Lbal,◦
p (f ,g,g)2 = L◦

p(f ,Ad0(g)) · L◦
p(f) (mod Λ×).

The proof of this result follows straightforward from the Artin formalism:

Vg⊗Vg � det(Vg)⊗(1⊕Ad0(Vg)) =⇒ L(f⊗g⊗g, s) = L(f, s−k)·L(f⊗Ad0(g), s−k),

and it is achieved by comparing the interpolation properties of the three p-adic L-
functions involved. Moreover, the above omitted Λ-adic fudge function is described 
explicitly in Section 7. This formula suggests an alternative definition of our p-adic 
L-function as a quotient of Lbal,◦

p (f , g, g)2 by L◦
p(f). This definition naturally extends 
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to the two and three-variable case (see Section 7), but it only makes sense under the 

assumption ε(f) = 1, while our construction for L◦
p(f , Ad0(g)) is unconditional in this 

regard. As commented in Remark 1.4, we expect a direct construction of a two-variable 

p-adic L-function Lp(f , Ad0(g)) by extending the techniques in this note, and then a 

proof of a factorisation analogous to the one in Theorem 1.6 would proceed along the 

same lines.
More interesting and challenging is the case when ε(f) = −1. In this scenario, we 

expect a factorisation involving L◦
p(f , Ad0(g)) (and more generally, Lp(f , Ad0(g))) similar 

to the above one, where the balanced p-adic L-function is to be replaced by an unbalanced
triple-product p-adic L-function, a scenario that is analysed in a forthcoming work of the 

first named author of this article with K. Byükboduk and R. Sakamoto (cf. [CBS]). The 

proof of the expected factorisation will not follow by comparing interpolation properties, 
as the interpolation regions will now be disjoint, but rather by following a strategy 

inspired by Dasgupta’s and Gross’ factorisation results in [Das16], [Gro80].
Finally, let us close this introduction by explaining the motivation behind some of the 

choices that are made for the construction of L◦
p(f , Ad0(g)). One of the two main objects 

we use is a Λ-adic family ΘΘΘ ∈ Λ[[q]] of half-integral weight modular forms. A version of 
it was first defined in [Ste94], but we shall use here the version introduced in [CdVP21]. 
The main reason for our choice is that while the first construction could be trivial, the 

latter can be guaranteed to be nonzero, which is fundamental for the construction of the 

p-adic L-function.
Another mild innovation of the present manuscript is the introduction of a completely 

explicit element SK ∈ Λ[[q1, q2, ζ]] interpolating the Saito–Kurokawa lifts, which is used 

to build the Λ-adic object interpolating the left hand side of equation (1.3). This object 
is interpolating the elements Fα, which should correspond to a suitable normalisation of 
the semi-ordinary p-stabilisation of the classical Saito–Kurokawa lift described in [SU06]. 
An explicit p-adic interpolation of families of coefficients of Saito–Kurokawa lifts was also 

explored in [Gue00] and in [LN13], but that approach was not useful for our purposes in 

this paper. Our construction is more reminiscent of the one in [Kaw], which is done for 
the Duke–Imamoḡlu lifting in level 1.
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2. Modular forms

2.1. Classical modular forms (of integral weight)

Let M, k ≥ 1 be integers, and let S2k(M) denote the space of classical modular 
cuspforms of weight 2k and trivial nebentype character for the congruence subgroup 
Γ0(M) of SL2(Z). If φ ∈ S2k(M), we write its q-expansion as usual,

φ =
∑
n≥1

an(φ)qn, where q = exp(2πiτ).

If φ, ψ ∈ S2k(M), we normalize their Petersson product to be

〈φ, ψ〉 =
∫

Γ0(M)\H

φ(z)ψ(z)y2k−2dxdy.

Recall that if γ ∈ GL2(Q), then the slash operator (of weight 2k) is defined by

φ|2kγ(τ) = det(γ)2k−1(cτ + d)−2kφ(γτ), γ =
(
a b
c d

)
,

where det : GL2 → Gm (the determinant) is the similitude morphism or scale map.
Let p be a prime, and consider the double coset operator Γ0(M)upΓ0(M) associated 

with the element up := diag(1, p) ∈ GL2(Q). As it is customary, when p � M this operator 
will be denoted by Tp, while if p | M we will call it Up. The action of Up can be described 
as

Upφ(τ) =
∑

b∈Z/pZ

φ|2kαb(τ), αb =
(

1 b
0 p

)
∈ GL2(Q),

where b runs over a set of representatives for Z/pZ. By making explicit the slash action 
of the elements αb this can also be written as

Upφ(τ) = p−1
∑

b∈Z/pZ

φ((τ + b)/p). (2.1)

This last expression also makes sense for cuspforms φ ∈ S2k(M) with M not divisible by 
p; in that case, Upφ belongs to S2k(Mp).

Continue to fix the prime p. Working on q-expansions, we can consider the operators 
U and V defined by

Uφ :=
∑

apn(φ)qn, V φ :=
∑

an(φ)qpn =
∑

an/p(φ)qn,

n n n



D. Casazza, C. de Vera-Piquero / Journal of Number Theory 249 (2023) 131–182 141
where in the latter expression we read an/p(φ) = 0 if p � n. It is an easy exercise to 
see that UV = 1 while V U does not, so that V provides a right inverse to U . One 
can check that the action of U is the same as that of the expression (2.1), so that 
Uφ ∈ S2k(lcm(M, p)), and U coincides with the Hecke operator Up when p | M . We 
also remark that V = Vp := p1−2kVp,2k−1, where Vp,2k−1φ = p2k−1φ(pτ) is given by the 
(weight 2k) slash action of the matrix diag(p, 1), so that V φ ∈ S2k(Mp). This is why we 
will often write simply U and V and no confusion should arise.

Suppose that p does not divide M . Then one has the well-known relation

Tp = U + p2k−1V (2.2)

among the operators Tp, U , and V . If φ =
∑

n an(φ)qn ∈ S2k(M) is a normalised 
eigenform, and α = αp(φ), β = βp(φ) denote the roots of the p-th Hecke polynomial of 
φ, so that α + β = ap(φ) and αβ = p2k−1, we write

φα := (1 − βV )φ, φβ := (1 − αV )φ

for its so-called p-stabilisations. These forms belong to S2k(Mp), and U acts on φα (resp. 
φβ) as multiplication by α (resp. β).

We will write Snew
2k (M) ⊆ S2k(M) for the subspace of newforms of level M . It is the 

subspace orthogonal to the subspace of old forms in S2k(M) arising from lower levels, 
with respect to the Petersson product. When φ is a normalised eigenform for all Hecke 
operators, and M | M ′, we shall write

S2k(M ′)[φ] := {φ′ ∈ S2k(M ′) | Tpφ
′ = ap(φ)φ′, ∀p � M ′}.

We will write eφ for the projection onto the φ-component S2k(M ′)[φ]. By the strong 
multiplicity one theorem, if φ ∈ Snew

2k (M) is a newform then S2k(M)[φ] = 〈φ〉. From 
equation (2.2) and the definition of the p-stabilisations, one can also check that

S2k(Mp)[φ] = 〈φ, V φ〉 = 〈Uφ, φ〉 = 〈φα, φβ〉. (2.3)

2.2. Half-integral weight modular forms

Let M ≥ 1 and k ≥ 1 be integers, and assume for simplicity now that M is odd and 
squarefree. We will write Sk+1/2(M) for the space of cuspforms of half-integral weight 
k + 1/2, level Γ0(4M), and trivial nebentype character, in the sense of Shimura [Shi73]
(note that we omit the 4 in the notation as in [Koh82]). If h1, h2 ∈ Sk+1/2(M), their 
Petersson product is defined analogously to the case of integral weight modular forms, 
namely

〈h1, h2〉 = 1
[SL2(Z) : Γ0(4)]

∫
h1(z)h2(z)yk−3/2dxdy.
Γ0(4M)\H
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The choice of this normalization is peculiar, but it allows us to flat the discrepancies in the 
formulas from the references having automorphic flavors, in particular the forthcoming 
Theorem 3.2, and Theorem 1.1.

We will write Sk+1/2(M) ⊆ Sk+1/2(M) for the so-called ‘Kohnen’s plus subspace’, 
which consists of those forms h ∈ Sk+1/2(M) having q-expansion

h =
∑
n≥1,

(−1)rn≡0,1 (4)

c(n)qn.

That is to say, the n-th Fourier coefficient is required to vanish if (−1)rn is not a 
discriminant.1

As described in [Shi73] and [Koh82], there is a theory of Hecke operators similar to 
that of integral weight modular forms. For the purposes of this note, we just describe 
the analogues of the operators Tp, U , and V described above for integral weight. If p is 
an odd prime not dividing M , the Hecke operator Tp2 acting on Sk+1/2(M) (analogue 
of Tp) is described on q-expansions as

Tp2

⎛⎝∑
n≥1

c(n)qn
⎞⎠ =

∑
n≥1

(
c(p2n) + p2k−1c(n/p2) +

(
(−1)rn

p

)
pr−1c(n)

)
qn,

where we read c(n/p2) = 0 if n/p2 is not an integer. If p divides M , then one has an 
operator Up2 acting on Sk+1/2(M) (analogue of U), which on q-expansions reads

Up2

⎛⎝∑
n≥1

c(n)qn
⎞⎠ =

∑
n≥1

c(p2n)qn.

Finally, if p is any prime, then the operator Vp2 (analogue of V ) defined on q-expansions 
by

Vp2

⎛⎝∑
n≥1

c(n)qn
⎞⎠ =

∑
n≥1

c(n/p2)qn

maps Sk+1/2(M) into Sk+1/2(Mp2). This implies that Up2 = U2 and Vp2 = V 2, with the 

notation of the previous section. Let us write εp(n) :=
(

n
p

)
for the Legendre symbol. By 

the expression of the above operator one can rephrase the action of Tp2 as

Tp2h = Up2h + p2k−1Vp2h + (−1)r(p−1)/2h⊗ εp, (2.4)

1 Very often, Kohnen’s plus subspace is denoted S+
k+1/2(M), but we will drop the ‘+’ from the notation 

as we will only work with this subspace.
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where h ⊗ εp has q-expansion ∑
n≥1

εp(n)c(n)qn,

if c(n) denotes the n-th Fourier coefficient of h. Note that the identity (2.4) shows that 
the twisted form h ⊗ εp belongs to Sk+1/2(Mp2) (see [Shi73, Lemma 3.6] for a more 
general result about twists).

Because of our assumption that M is squarefree, on Sk+1/2(M) there is a well-
behaved theory of oldforms and newforms (see [Koh82]), and we will write Snew

k+1/2(M) ⊆
Sk+1/2(M) for the subspace of newforms. In particular, if h ∈ Snew

k+1/2(M) is an eigen-
form for all Hecke operators and p � M , then the h-isotypical subspace Sk+1/2(Mp)[h] ⊆
Sk+1/2(Mp) is the two-dimensional subspace 〈h, Up2h〉 spanned by h and Up2h.

Using equation (2.4) and the fact that Up2(h ⊗εp) = 0, one can diagonalize the action 
of Up2 . Indeed, let ap(h) be the eigenvalue of h for Tp2 and let α = αp(h), β = βp(h)
be such that α + β = ap(h) and αβ = p2k−1. Then one has Sk+1/2(Mp)[h] = 〈hα, hβ〉, 
where:

hα := α−1(Up2 − β)h, hβ := β−1(Up2 − α)h.

Proposition 2.1. We have the following equality:

hα = h− (−1)(p−1)/2p−kβh⊗ εp − βV 2h.

Proof. This easily follows from equation (2.4). �
Remark 2.2. We want to remark that in the half-integral case one needs to use the 
operator Up2 to produce old forms, and not the operators Up or Vp, which have different 
target (cf. [Shi73, Prop. 1.3, 1.5]). Indeed, one has

Up, Vp : Sk+1/2(M) → Sk+1/2(Mp,χp),

where χp :=
(

p
−

)
. In particular, one cannot define the p-stabilisation using Vp or Vp2 ; 

our choice has been normalised in such a way that it is compatible with that of classical 
modular forms.

2.3. Siegel modular forms

Let M, k ≥ 1 be odd integers. We write S(2)
k+1(M) for the space of (genus two) Siegel 

forms of weight k + 1 and level Γ(2)
0 (M), where

Γ(2)
0 (M) :=

{(
A B
C D

)
∈ Sp4(Z) : C ≡ 02 (mod M)

}
⊆ Sp4(Z)
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is the Hecke-type congruence subgroup of level M . Writing elements of Siegel’s upper 
half-space H2 of genus two as symmetric matrices

Z =
(
τ1 z

z τ2

)
, τi ∈ H, z ∈ C, Im(τ1)Im(τ2) − Im(z)2 > 0,

we may regard Siegel forms Φ ∈ S
(2)
k+1(M) as functions of (τ1, z, τ2). We will often write 

Z = (τ1, z, τ2) with the obvious meaning to simplify notation.
If Φ ∈ S

(2)
k+1(M), it is well-known that Φ admits a q-expansion that reads

Φ =
∑
B>0

A(B)qB , where qB = exp(2πiTr(BZ)),

where B runs over all positive definite, half-integral symmetric matrices

B =
(

m r/2
r/2 n

)
.

If Φ ∈ S
(2)
k+1(M) and γ ∈ GSp4(Q), then the slash operator (of weight k+1) is defined 

by

Φ|k+1γ(Z) = μ(γ)2k−1 det(CZ + D)−(k+1)Φ(γZ), γ =
(

A B

C D

)

where μ : GSp4 → Gm is the similitude morphism or scale map.
For a prime p, consider the double coset operator Γ(2)

0 (M)u(2)
p Γ(2)

0 (M) associated with 
the element u(2)

p = diag(1, 1, p, p) ∈ GSp4(Q). When p � M , we denote this operator by 
Tp, while if p | M we call it Up. In the literature, the latter is sometimes referred to 
as2 Up,0. Similarly as in the case of classical modular forms, the action of Up can be 
described as an average of slash operations. Namely, if p divides M and Φ ∈ S

(2)
k+1(M)

then

UpΦ(Z) =
∑
B

Φ|k+1αB(Z), αB =
(

Id2 B
0 pId2

)
∈ GSp4(Q),

where B ∈ Sym2(Z) runs over a set of representatives for the set Sym2(Z/pZ) of sym-
metric two-by-two matrices with coefficients in Z/pZ. By making explicit the slash action 
of the elements αB , this can be rewritten as

UpΦ(Z) = p−3
∑
B

Φ(αBZ) = p−3
∑
B

Φ
(
Z + B

p

)
. (2.5)

2 In contrast to Up,1, which is defined analogously with diag(1, p, p2, p).
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This last expression can also be applied to forms in S(2)
k+1(M) with M not divisible by p; 

in that case, the resulting form belongs to S(2)
k+1(Mp).

Finally, if p is an arbitrary prime and Φ ∈ S
(2)
k+1(M), the operator Vp can be defined 

by setting VpΦ(Z) = Φ(pZ). Equivalently, Vp = p1−2kVp,k+1, where

Vp,k+1Φ(Z) = Φ|k+1γ(Z) = p2k−1Φ(pZ), γ = diag(p, p, 1, 1).

As for the GL2 case, on the space of genus two Siegel modular forms we can define 
the operators

UF =
∑
B

A(pB)qB , V F =
∑
B

A(B)qpB =
∑
B

A(B/p)qB

by their action on q-expansions, where in the latter case we read A(B/p) = 0 whenever 
p � B. It is a straightforward computation to check that U acts as in equation (2.5), so it 
coincides with the Hecke operator Up when p divides M , and that V acts as the operator 
Vp. For this reason, and similarly as we do for classical forms, if the prime p is clear from 
the context and there is no risk of confusion we will just write U and V for Up and Vp, 
respectively.

3. Shimura–Shintani correspondence and Saito–Kurokawa lifts

Changing slightly the notation from the previous paragraphs, in this section we fix 
integers N, k ≥ 1, and assume for simplicity that N is odd and squarefree.

3.1. Shimura–Shintani correspondence and d-th Shintani liftings

One of the main reasons for the arithmetic interest of half-integral weight modular 
forms stems from the so-called Shimura–Shintani correspondence.

Theorem 3.1 (Shimura–Shintani correspondence). Let N, k ≥ 1 be as above. There is a 
Hecke-equivariant linear isomorphism

Snew
2k (N) �−→ Snew

k+1/2(N). (3.1)

In particular, given a normalised newform f ∈ Snew
2k (N), on which the Hecke operators 

T� at primes � � N act with eigenvalue a�, there is a unique h ∈ Snew
k+1/2(N), up to scalar, 

on which the Hecke operators T�2 , for primes � � N , act with eigenvalue a�. If h is such a 
half-integral weight modular form, one says that h is in Shimura–Shintani correspondence 
with f , or that h and f are in Shimura–Shintani correspondence. An example of how half-
integral weight modular forms carry over arithmetic information about integral weight 
modular forms via this correspondence is the following important formula due to Kohnen 
[Koh85, Corollary 1], generalizing a previous formula of Kohnen–Zagier [KZ81, Theorem 
1] for trivial level.
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Theorem 3.2 (Kohnen’s formula). Let N and k be as above. Let h ∈ Snew
k+1/2(N) be any 

non-zero cusp form in Shimura–Shintani correspondence with f ∈ Snew
2k (N), and let D

be a fundamental discriminant such that (−1)kD > 0 and 
(
D
�

)
= w�(f) for all primes 

� | N , where w�(f) = ±1 denotes the eigenvalue of the �-th Atkin–Lehner involution 
acting on f . Then one has

|c|D|(h)|2 = 2ν(N) (k − 1)!
πk

|D|k−1/2 · 〈h, h〉〈f, f〉 · L(f,D, k), (3.2)

where ν(N) is the number of primes dividing N .

The isomorphism in (3.1) can be made explicit by means of the so-called d-th Shintani 
liftings. Indeed, associated with each fundamental discriminant d such that (−1)kd > 0, 
the d-th Shintani lifting is a Hecke-equivariant linear map

θk,N,d : S2k(N) −→ Sk+1/2(N)

from S2k(N) to Kohnen’s plus subspace Sk+1/2(N) ⊆ Sk+1/2(N). It is defined by means 
of certain geodesic cycle integrals on the complex upper-half plane, firstly studied by 
Shintani [Shi75], and it is adjoint to the so-called d-th Shimura lifting with respect 
to the Petersson product. An appropriate combination of Shintani liftings, for various 
discriminants, provides a realisation of the isomorphism Snew

2k (N) � Snew
k+1/2(N) as in 

(3.1) (see [Koh82, Theorem 2]). Also, the proof of Theorem 3.2 shows that the |d|-th 
Fourier coefficient of the d-th Shintani lifting is in fact a multiple of the twisted L-value 
L(f, d, k). Namely, one has (see [Koh85, p. 243], [CdVP21, Eq. (15)])

c|d|(θk,N,d(f)) = (−1)[k/2]2ν(N)+k|d|k(k − 1)! · L(f, d, k)
(2πi)kg(χd)

, (3.3)

where [x] denotes the smallest integer such that [x] ≥ x, and g(χd) is the Gauss sum of 
the quadratic character associated with d.

For the p-adic interpolation and the computations of the next sections we will need 
the following:

Proposition 3.3. Let f ∈ Snew
2k (N), p � 2N be a prime, and let α be a root of the Hecke 

polynomial of f at p. If p | d, then we have the following equality:

θk,Np,d(fα) = θk,N,d(f)α.

Proof. This essentially follows from θk,Np,d(f) = θk,N,d(f), which is proven in [CdVP21, 
Prop. 3.8]. �

Another important feature of the d-th Shintani lifting, especially for the purposes of 
p-adic interpolation and hence for the topic of this note, is the fact that it can be made 
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algebraic. Namely, suppose that f ∈ Snew
2k (N), and choose a fundamental discriminant d

with (−1)kd > 0 and θk,N,d(f) �= 0 (such a choice is indeed possible: one can use the above 
formula (3.3) together with well-known results on the non-vanishing of (twisted) central 
values of L-series of modular forms, e.g. from [BFH90]). A cohomological description of 
the Shintani lifting in terms of modular symbols, due originally to Stevens [Ste94], shows 
that if f ∈ S2k(N) is a Hecke eigenform then (cf. [CdVP21, Section 5.1])

θalg
k,N,d(f) := 1

Ω−
f

θk,N,d(f) ∈ Sk+1/2(N ;Of ), (3.4)

where Of denotes the ring of integers in the Hecke field of f , and Ω−
f ∈ C× is a com-

plex period attached to f by Shimura. We do fix such a choice attached to each Hecke 
eigenform.

3.2. Saito–Kurokawa lift

The theory of Saito–Kurokawa liftings for arbitrary level and character in classical 
terms was established in [Ibu12], generalizing [EZ85] and [Maa79a,Maa79b,Maa79c]. For 
the purpose of this note, we restrict ourselves to the case of odd squarefree level and 
trivial character. Thus we continue to assume as above that N ≥ 1 is odd and squarefree, 
and suppose that k ≥ 1 is odd as well. Fix also an odd prime p not dividing N .

Let f ∈ Snew
2k (N) be a normalised eigenform, and h ∈ Snew

k+1/2(N) be any non-zero 
form in Shimura–Shintani correspondence with f (for example, we can normalize h to be 
the d-th Shintani of f for a particular choice of d as above, but it will not be necessary 
to fix such a choice now). The Saito–Kurokawa lift attaches to h a Siegel modular form

F := SKN (h) ∈ S
(2)
k+1(N)

of weight k + 1 and level N . This is sometimes referred to as the Saito–Kurokawa lift 
of f as well (although it is only defined up to a scalar multiple). On q-expansions, it is 
defined by setting (see, e.g., [Ibu12])

F =
∑
B>0

A(B)qB , with A(B) =
∑

0<d|gcd(B),
(d,N)=1

dkc(det(2B)/d2), (3.5)

where c(n) denotes the n-th Fourier coefficient in the q-expansion of h. Here, gcd(B)
denotes the greatest common divisor of m, r, n if B has entries m, r/2, n with the usual 
notation. Observe in particular that A(B) = c(det(2B)) when gcd(B) = 1.

From its very definition it is clear that F = SKN (h) depends heavily on N , meaning 
that if we consider h as an old form of level Nt for some integer t > 1, then the Siegel 
forms SKNt(h) and SKN (h) are a priori different in S(2)

k+1(Nt). Let us consider the Saito–
Kurokawa lift F (p) := SKNp(h) ∈ S

(2)
k+1(Np) of h in level Np. By definition, its q-

expansion is
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F (p) =
∑
B>0

A(p)(B)qB , A(p)(B) =
∑

0<d|gcd(B),
(d,Np)=1

dkc(det(2B)/d2).

An easy computation shows that A(p)(B) = A(B) − pkA(B/p), for all B, which implies 
the following equality:

F (p) = (1 − pkV )F.

This shows, in particular, that SKN (h) �= SKNp(h) (compare this with the identity 
θk,Np,d(f) = θk,N,d(f) mentioned in the proof of Proposition 3.3).

Similarly, let αf , βf be the roots of the p-th Hecke polynomial of f . We define

Fα := SKNp(hα) ∈ S
(2)
k+1(Np)

to be the Saito–Kurokawa lift of the p-stabilisation hα ∈ Sk+1/2(Np) of h corresponding 
to αf . This is a genus two Siegel form of weight k + 1 and level Np, whose q-expansion 
is given by:

Fα =
∑
B>0

Aα(B)qB , Aα(B) =
∑

0<d|gcd(B),
(d,Np)=1

dkcα(det(2B)/d2),

where cα(n) denotes the n-th Fourier coefficient of hα. Note that the expression for 
Aα(B) reads exactly as the one for A(p), but with the c(n)’s replaced now by cα(n)’s. 
By definition, we know that hα = α−1

f (Up2 − βf ) and since the Saito–Kurokawa lift is 
Hecke equivariant (in particular, SKNp ◦ Up2 = Up ◦ SKNp), one deduces that

Fα = α−1
f (U − βf )F (p) = α−1

f (U − βf )(1 − pkV )F. (3.6)

Remark 3.4. Following [Kaw, Theorem 1.3] in the genus 2 case, one may also define the 
Siegel modular form

F so := (U − βf )(U − pk)F ∈ S
(2)
k+1(Np),

which in [Kaw] is referred to as the semi-ordinary p-stabilisation of F (when αf is a 
p-adic unit). Notice that in the case of Saito-Kurokawa lifts, this is the best that we can 
hope for, as we cannot expect an ordinary p-stabilisation as explained in [SU02, Remark 
3.5]. One can easily compute that Fα = α−2

f F so, since U acts invertibly on S(2)
k+1(Np)[f ].

Proposition 3.5. With the above notation, we have

Fα = (1 − βfV )(1 − pkV )F − (−1)(p−1)/2p−kβfF ⊗ εp,

where F ⊗ εp is the Siegel form defined by the q-expansion
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F ⊗ εp =
∑
B>0

εp(det(2B))A(B)qB .

Proof. The equality follows from Proposition 2.1. Indeed, we have hα = h − σp−kβfh ⊗
εp − βfV

2h, where σ = (−1)(p−1)/2. Applying SKNp we get

Fα = F (p) − βfSKNp(σp−kh⊗ εp + V 2h).

If c(n) denotes the n-th Fourier coefficient of h, then the n-th Fourier coefficient of 
σp−kh ⊗ εp + V 2h is σp−k(np )c(n) + c(n/p2), and it easily follows that

SKNp(σp−kh⊗ εp + V 2h) = σp−kF (p) ⊗ εp + V F (p).

Noting that F (p)⊗εp = F⊗εp, the equality of the q-expansions follows. Since all the other 
terms in the identity are modular forms of level Np2, we see that F ⊗ εp ∈ S

(2)
k+1(Np2)

as well. �
Corollary 3.6. We have the following equality:

UF − (pk + ap(f))F + (p2k−1 + pkap(f))V F − p3k−1V 2F + (−1)(p−1)/2pk−1F ⊗ εp = 0.

Proof. This follows straightforward from the above proposition, replacing F (p) by (1 −
pkV )F and using the relations αfβf = p2k−1, αf + βf = ap(f). This result can also be 
directly derived by looking at the Fourier coefficients of F , using the properties of the 
Fourier coefficients of h. �
4. On the pullback of Saito–Kurokawa lifts to the diagonal

This section is devoted to describe the pullback of Siegel forms to the diagonal H×H ⊂
H2, where H denotes Poincaré’s upper half-plane, and H2 stands for Siegel’s upper 
half-space of genus two. In particular, we describe pullbacks of Saito–Kurokawa lifts as 
considered in the previous section.

Before focusing on the specific case of Saito–Kurokawa lifts, we may first consider some 
generalities about the pullback of Siegel forms. To do so, let us fix integers k, M ≥ 1, 
with k odd, and consider the spaces Sk+1(M) and S(2)

k+1(M) of classical and Siegel cusp 
forms of weight k + 1 and level M , respectively. Recall that H × H can be embedded 
diagonally in the Siegel upper half-space H2 of genus two via the map

(τ1, τ2) �→
(
τ1 0
0 τ2

)
.

This induces a linear map, referred to as pullback to the diagonal,
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� : S(2)
k+1(M) → Sk+1(M) ⊗ Sk+1(M)

Φ �→ �(Φ) = Φ|H×H,

provided by the restriction to z = 0. In terms of q-expansions, and adopting the notation 
of the previous section, suppose that

Φ =
∑
B

A(B)qB ,

where B runs over the half-integral positive definite symmetric two-by-two matrices, and 
write

A(n, r,m) = A

((
n r/2
r/2 m

))
, n, r,m ∈ Z, 4nm− r2 > 0.

Then the pullback map is described on q-expansions by

�(Φ)(τ1, τ2) =
∑

n,m≥1

⎛⎜⎜⎝ ∑
r∈Z,

r2<4nm

A(n, r,m)

⎞⎟⎟⎠ qn1 q
m
2 , qj = exp(2πiτj). (4.1)

We may write αn,m(�(Φ)) for the (n, m)-th Fourier coefficient in this expansion. Observe 
that given a basis {φi}i of Sk+1(M) we can write the pullback of Φ as

�(Φ) =
∑
i,j

λi,jφi(τ1) × φj(τ2),

where the scalars λi,j are uniquely determined by Φ.

Lemma 4.1. If p is a prime, then

�(V Φ) = V × V �(Φ).

Proof. It is clear from the definitions that �(Φ(pZ)) = �(Φ)(pτ1, pτ2), hence the state-
ment follows. �
Remark 4.2. More generally, consider the embedding ι : G(SL2 × SL2) ↪→ GSp4 given 
by

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

))
�−→

⎛⎜⎝a1 0 b1 0
0 a2 0 b2
c1 0 d1 0

⎞⎟⎠ ,
0 c2 0 d2
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where G(SL2 × SL2) = {(g, h) ∈ GL2 × GL2 : det(g) = det(h)}. Then the product slash 
action on Sk+1(M) ⊗ Sk+1(M) with elements in G(SL2 × SL2) can be compared with 
the slash action on S(2)

k+1(M) of their image under ι. For example, consider the element

(vp, vp) =
((

p 0
0 1

)
,

(
p 0
0 1

))
∈ G(SL2(Q) × SL2(Q)).

The slash action of this element on Sk+1(M) ⊗Sk+1(M) is the operator Vp,k+1×Vp,k+1 =
p2kV × V , while its image under the above embedding is γp = diag(p, p, 1, 1), and cor-
responds with the operator Vp,k+1 = p2k−1V for GSp(4). Taking care of the powers of 
p arising in each case, the above lemma can be rewritten as a comparison between the 
slash actions with γp and (vp, vp).

The analogue of Lemma 4.1 for the operators U and U×U does not hold, and this will 
be important from now on. To proceed in understanding how the U -operator behaves 
with respect to pullback, we restrict ourselves to the case of Saito–Kurokawa lifts. We 
thus assume from now on that N ≥ 1 is odd and squarefree, k ≥ 1 is an odd integer, 
and p is an odd prime not dividing N . With this, let F = SK(h) ∈ S

(2)
k+1(N) be a Saito–

Kurokawa lift as in the previous section. In this setting, recall that we have a well-defined 
twisted Siegel form F ⊗ εp ∈ Sk+1(Np2) as in Proposition 3.5. The main result of the 
section is the following:

Theorem 4.3. Let F = SKN (h) ∈ S
(2)
k+1(N) be a Saito–Kurokawa lifting and let φ ∈

Snew
k+1(N) be a normalised eigenform. Let �φ := eφ ⊗ eφ ◦ �, where eφ is the projector 

onto the φ-component as defined in Section 2.1, and let λφ be such that �φ(F ) = λφφ ×φ. 
Then

�φ(UF ) = λφ (Aφ× φ + Bφ× V φ + CV φ× φ + DV φ× V φ) ,

where

A = (pk−1(p− 1) + ap)ap(φ)2 − pk(p + 1)(pk−1(p + 1) + ap)
ap(φ)2 − pk−1(p + 1)2 ,

and B, C, D are given by the formulae

B = C = pap(φ)
p + 1 (pk − pk−1 + ap −A), D = −pk+1(pk + ap −A).

In the proof of the above theorem we will use several results. In particular, the hypoth-
esis that F is a Saito-Kurokawa lift is fundamental and it is localised in Corollary 4.6. 
As a consequence of the above theorem, we have the following:
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Corollary 4.4. Let φ ∈ Snew
k+1(N) be a normalised eigenform, and suppose that �φ(F ) =

λφφ × φ. If Fα = SKNp(hα) ∈ S
(2)
k+1(Np) is a p-stabilisation of F as described in Sec-

tion 2.3, then we have

�φ(Fα) = λφ

(
1 − β

pk

)
(Aαφ× φ + Bαφ× V φ + CαV φ× φ + DαV φ× V φ) ,

where β is the other eigenvalue of the Up2-action on Sk+1/2(Np)[h],

Aα = 1 −
(p + 1)

(
1 − β

pk−1

)
(
p− αφ

βφ

)(
p− βφ

αφ

)
and Bα, Cα, Dα are given by the formulae

Bα = Cα = pap(φ)
p + 1 (1 −Aα), Dα = pk+1(Aα − 1) − pβ.

Proof. From equation (3.6), we know that

αFα = (U − β)(1 − pkV )F = UF − (pk + β)F + βpkV F.

Therefore,

α�φ(Fα) = �φ(UF ) − (pk + β)�φ(F ) + βpkV × V �φ(F )

Letting A, B, C, and D be as in Theorem 4.3, and using that αβ = p2k−1, we deduce 
that

(α− pk−1)Aα = A− (pk + β), (α− pk−1)Bα = B, (α− pk−1)Cα = C,

(α− pk−1)Dα = D + βpk.

Substituting A, B, C, and D by their expression as in Theorem 4.3, one eventually gets 
the claimed formulae (see Corollary A.2 in the Appendix for details). �

The rest of this section is devoted to the proof of Theorem 4.3. The key ingredient is 
the following simple and yet striking relation between the operators U and U × U via 
pullback.

Proposition 4.5. Let F ∈ S
(2)
k+1(N) be as above. Then we have the following equality:

(−1)(p−1)/2U × U�(F ⊗ εp) = U × U�(F ) −�(UF ).
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Proof. Using the q-expansion, let us focus our attention on the (n, m)-th coefficient of 
�(F ⊗ εp), which is

αn,m

(
�(F ⊗ εp)) =

∑
r2<4mn

A(n, r,m)εp(4nm− r2).

By applying U × U , the (n, m)-th coefficient becomes

αn,m

(
U × U�(F ⊗ εp))

=
∑

r2<4mnp2

A(pn, r, pm)εp(−r2) = (−1)(p−1)/2
∑

r2<4mnp2

p�r

A(pn, r, pm) =

= (−1)(p−1)/2
∑

r2<4mnp2

A(pn, r, pm) − (−1)(p−1)/2
∑

r2<4mnp2

p|r

A(pn, r, pm) =

= (−1)(p−1)/2
∑

r2<4mnp2

A(pn, r, pm) − (−1)(p−1)/2
∑

r2<4mn

A(pn, pr, pm).

We identify in the last expression the (n, m)-th coefficients of U×U�(F ) and of �(UF ), 
respectively. Therefore, we deduce that

U × U�(F ⊗ εp) = (−1)(p−1)/2U × U�(F ) − (−1)(p−1)/2�(UF ),

which multiplying by (−1)(p−1)/2 yields the result. �
An immediate consequence of this proposition is the following identity, which avoids 

the presence of F ⊗ εp, and is better suited for determining �(UF ).

Corollary 4.6. Let F = SKN (h) ∈ S
(2)
k+1(N) be a Saito–Kurokawa lift. Then we have

(U×U−pk−1)�(UF )=(pk−pk−1+ap)U×U�(F )−pk(pk−1+ap)�(F )+p3k−1V×V �(F ),

where ap = ap(f).

Proof. This follows by combining Corollary 3.6 and Proposition 4.5. Indeed, Corollary 3.6
tells us that

UF = (pk + ap)F − (p2k−1 + pkap)V F + p3k−1V 2F − (−1)(p−1)/2pk−1F ⊗ εp.

Applying pullback and then U × U yields the relation

U × U�(UF ) = (pk + ap)U × U�(F ) − (p2k−1 + pkap)�(F ) + p3k−1V × V �(F )

− (−1)(p−1)/2pk−1U × U�(F ⊗ εp),
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where we have used � ◦ V = V × V �. And now, Proposition 4.5 tells us that

(−1)(p−1)/2pk−1U × U�(F ⊗ εp) = U × Upk−1�(F ) − pk−1�(UF ),

and hence we obtain

(U×U−pk−1)�(UF )=(pk−pk−1+ap)U×U�(F )−pk(pk−1+ap)�(F )+p3k−1V×V �(F ),

which is the claimed relation. �
Fix now a normalised newform φ ∈ Snew

k+1(N). The φ × φ-component of Sk+1(Np) ⊗
Sk+1(Np) is spanned by the forms φ × φ, φ × V φ, V φ × φ, and V φ × V φ. The following 
lemma, describing the action of the operator Ξ := U × U − pk−1 on such a component, 
will be of good use for our computation below.

Lemma 4.7. Let φ ∈ Sk+1(N) be a normalised eigenform. The matrix of the operator 
Ξ := U × U − pk−1 acting on the φ × φ component of the space Sk+1(Np) ⊗ Sk+1(Np), 
relative to the basis

φ× φ, φ× V φ, V φ× φ, V φ× V φ,

is given by:

MΞ =

⎛⎜⎜⎝
ap(φ)2 − pk−1 −ap(φ)pk −ap(φ)pk p2k

ap(φ) −pk−1 −pk 0
ap(φ) −pk −pk−1 0

1 0 0 −pk−1

⎞⎟⎟⎠ .

Proof. We know that UV φ = φ and, from equation (2.2), that Uφ = ap(φ)φ − pkV φ. 
From this, we can easily describe the action of U × U on the elements of the basis for 
Sk+1(Np)[φ] × Sk+1(Np)[φ]. The result follows using that MΞ = MU×U − pk−1Id4. �
Proof of Theorem 4.3. First of all, it is clear from Corollary 4.6 that �(UF ) = 0 if 
�(F ) = 0, which is coherent with the statement. Thus we may assume that λφ �= 0
from now on, and write �(UF ) in terms of unknown coefficients A, B, C, D as in the 
statement, to be determined.

The proof boils down to restricting the identity in Corollary 4.6 to the φ × φ-
component, and solving the resulting equation for �φ(UF ). We have

Ξ�φ(UF ) = (pk − pk−1 + ap)U × U�φ(F )− pk(pk−1 + ap)�φ(F ) + p3k−1V × V �φ(F ),
(4.2)

where Ξ = U ×U − pk−1. On the right hand side of (4.2), expanding U ×Uφ ×φ we find

λφ(pk − pk−1 + ap)
(
ap(φ)2φ× φ− ap(φ)pkφ× V φ− ap(φ)pkV φ× φ + p2kV φ× V φ

)
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−λφp
k(pk−1 + ap)φ× φ + λφp

3k−1V φ× V φ.

And the left hand side of (4.2), in matrix notation, reads

λφ (A B C D )MΞ,

where MΞ is as in Lemma 4.7. Equating these expressions yields a linear system of four 
equations with four unknowns, whose solution is the one given in the statement. We give 
the complete computation in Proposition A.1 in the Appendix. �
5. p-adic families of modular forms

Let p be an odd prime number. Fix algebraic closures Q̄ and Q̄p of Q and Qp, 
respectively, and field embeddings Q̄ ↪→ C, Q̄ ↪→ Q̄p. Fix also an isomorphism of fields 
C � Cp, compatible with the previous embeddings, meaning that the following diagram 
commutes:

Q̄ Q̄p

C
�

Cp.

Let O be the ring of integers of a finite extension of Qp and let Γ := 1 + pZp be the 
group of principal units in Zp. We write Λ = ΛO := O[[Γ]] for the usual Iwasawa algebra 
over O, L for its fraction field, and consider the space

W := HomO−cont(Λ,Cp)

of continuous O-algebra homomorphisms from Λ to Cp. Elements a ∈ Λ can be seen as 
functions on W through evaluation at a, i.e. by setting a(κ) := κ(a), and elements a ∈ L

can be seen as meromorphic functions having finitely many poles. The set W is endowed 
with the analytic structure induced from the natural identification

W � Homcont(Γ,C×
p ) (5.1)

between W and the group of continuous characters κ : Γ → C×
p . A character κ : Γ → C×

p

is called arithmetic (resp. classical) if there exists an integer k ≥ 0 such that κ(t) = tk

for all t sufficiently close to 1 in Γ (resp. for all t ∈ Γ). A point κ ∈ W is said to be 
arithmetic (resp. classical) if the associated character of Γ under (5.1) is arithmetic (resp. 
classical). If this is the case, we refer to the integer k as the weight of κ, and we write 
k = wt(κ). In this note, we will restrict to classical points; write Wcl ⊂ W for the subset 
of all such points.
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If R is a finite flat Λ-algebra, then we write

W(R) := HomO−cont(R,Cp)

for the set of continuous O-algebra homomorphisms from R to Cp, to which we also refer 
as ‘points of R’. Elements of K := Frac(R) can be regarded as meromorphic functions 
on W(R). The restriction to Λ (via the structure morphism Λ → R) induces a surjective 
finite-to-one map

π : W(R) −→ W.

One can define analytic charts around all points κ of W(R) which are unramified over Λ, 
by building sections Sκ of the map π, so that X (R) inherits the structure of rigid analytic 
cover of W. A function f : U ⊆ W(R) → Cp defined on an analytic neighbourhood of 
κ is analytic if so is f ◦ Sκ. The evaluation at an element a ∈ R yields a function 
a : W(R) → Cp, a(κ) := κ(a), which is analytic at every unramified point of W(R). 
A point κ ∈ W(R) is said to be classical if the point π(κ) ∈ W is classical. We write 
Wcl(R) ⊆ W(R) for the subset of classical points in W(R), and if κ ∈ Wcl(R) we 
continue to use the notation wt(κ) = wt(π(κ)) for the weight of κ.

At last, we want to remark an example that will be of particular interest for us: if 
R := R1 ⊗Λ R2 then elements of K1 ⊗Λ K2 can be regarded as meromorphic functions 
on the fiber product W(R1) ×W W(R2), having poles at finitely many points.

5.1. Hida theory for GL2

Let N ≥ 1 be an integer, assume that p � N , and fix an integer k ≥ 2. The action of 
the operator Up on the space Sk(Np, Q̄p) yields Hida’s ordinary projector

eord := lim
n→∞

Un!
p , (5.2)

which is an idempotent in End(Sk(Np, Q̄p)). The subspace of ordinary cusp forms in 
Sk(Np, Q̄p) will be denoted

Sord
k (Np, Q̄p) := eordSk(Np, Q̄p) ⊆ Sk(Np, Q̄p).

It is well-known that the dimension of Sord
k (Np, Q̄p) is finite and independent of k for 

k ≥ 2 (cf. [Hid93, §7.2]). If ϕ ∈ Sk(Np, Q̄p) is an eigenform for Up, then either eordϕ = ϕ

or eordϕ = 0. In the first case, ϕ is either

• new at p, which can only happen when k = 2 (cf. [Miy06]) and we will exclude this 
case from now on, or
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• the ordinary p-stabilisation of a normalised eigenform φ ∈ Sk(N, Q̄p): that is to say, 
ϕ = φα = (q − βV )φ, where α and β are the roots of the p-th Hecke polynomial of 
g (see section 2.1), labelled so that |α|p ≥ |β|p, hence α is a p-adic unit. We will say 
that such a φ is ordinary at p, or just ordinary.

If φ ∈ Snew
k (N, Q̄p) is ordinary at p, the action of eord on the φ-isotypic subspace 

Sk(Np, Q̄p)[φ] of Sk(Np, Q̄p) is characterised by the fact that eordφα = φα and eordφβ =
0.

Let now R be a finite flat Λ-algebra. We denote by S(N, R) the space of Λ-adic cusp 
forms of tame level Γ0(N) over R, namely the R-module of formal power series

φφφ =
∑
n≥1

an(φφφ)qn ∈ R[[q]]

such that φφφ(κ) is the q-expansion of a classical modular form in Sk(Γ0(N) ∩Γ1(p)), which 
we still denote φφφ(κ), for every classical point κ ∈ Wcl(R) of weight wt(κ) = k − 2 ≥ 0. 
By restricting to classical points whose weights are all contained in a suitable residue 
class modulo p − 1, we may assume that all the φφφ(κ) ∈ Sk(Np).

A Λ-adic cusp form φφφ ∈ S(N, R) is said to be ordinary if for every classical point 
κ ∈ Wcl(R) the specialisation φφφ(κ) is an ordinary cusp form, i.e. belongs to Sord

k (Np). 
Write Sord(N, R) for the subspace of ordinary Λ-adic forms in S(N, R). By the work 
of Hida, there exists a unique idempotent on S(N, R), which by abuse of notation we 
continue to denote eord, such that

Sord(N,R) = eordS(N,R).

For the purpose of this note, as we will only need to consider classical (crystalline) 
specialisations (see Remark 1.3) we consider the following definition of Hida family as a 
family of ordinary p-stabilised newforms:

Definition 5.1. A Hida family of tame level N is a quadruple (Rf , Uf , Ucl
f , f) where:

• Rf is a finite flat integral domain extension of Λ;
• Uf ⊂ W(Rf ) is an open subset for the rigid analytic topology;
• Ucl

f ⊂ Uf ∩Wcl(Rf ) is a dense subset of Uf whose weights are contained in a single 
residue class k0 − 2 modulo p − 1;

• f ∈ Sord(N, Rf ) is an ordinary Λ-adic cusp form over Rf such that for all κ ∈ Ucl
f of 

weight k − 2 > 0,

f(κ) ∈ Sord
k (Np, Q̄p)

is the ordinary p-stabilisation of a normalised Hecke eigenform fκ ∈ Snew
k (N, Q̄p).
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For a Hida family as in the definition we will abbreviate Wf := W(Rf ), and similarly 
Wcl

f := Wcl(Rf ). Given an ordinary p-stabilised newform f0 ∈ Sk0(Np, Q̄p) with k0 ≥ 2, 
Hida’s theory ensures the existence of a unique Hida family f as in the definition passing 
through f0 at a distinguished classical point κ0 of weight k0 − 2 (cf. [Hid86]).

Remark 5.2. When k = wt(κ) +2 = 2, the form f(κ) can be either old or new at p. Only 
in the first case, f(κ) will be the p-stabilisation of a weight 2 newform of level N .

Lemma 5.3. Let g be a Hida family as above and let Kg := Frac(Rg). There exists a 
unique element Jg : Sord(N, R) → R ⊗Λ Kg such that for every φφφ ∈ Sord(N, R)

Jg(φφφ)(κ, κ′) = 〈φφφ(κ),g(κ′)〉
〈g(κ′),g(κ′)〉

for all (κ, κ′) ∈ Ucl
φφφ ×Wcl Ucl

g .

Proof. This is a standard argument. Indeed, Sord(N, R) ⊗ Kg is a finite-dimensional 
vector space over Kg, and Hida theory provides an idempotent eg of the Λ-adic Hecke 
algebra over Kg whose specialization at a classical weight κ′ is the usual idempotent 
eg(κ′) associated with the classical cusp form g(κ′). Therefore, the desired element Jg is 
defined by requiring that eg(φφφ) = Jg(φφφ) · g for each φφφ ∈ Sord(N, R) (a detailed proof in 
a slightly more general setting can be found in [DR14, Lemma 2.19]). �
Remark 5.4. Notice that if g(κ′) is the ordinary p-stabilisation gα of a modular form of 
level N , then Jg(φφφ)(κ, κ′) is the coefficient of φφφ(κ) in the gα-direction.

We conclude the section with the following result about the existence of a p-adic 
L-function associated with a Hida family. In [GS93], Greenberg and Stevens defined 
a two-variable p-adic L-function interpolating the special values of the completed L-
functions

Λ(fκ, ψ, s) := L∞(fκ, ψ, s)·L(fκ, ψ, s), with L∞(fκ, ψ, s) = ΓC(s) = 2(2π)−sΓ(s),

where fκ are the specialisations of a Hida family and ψ is a Dirichlet character.

Theorem 5.5 (Mazur, Kitagawa, Greenberg–Stevens). Let f ∈ Rf [[q]] be a Hida family 
and let ψ be a Dirichlet character such that pm||cond(ψ). Then there exists a unique 
element Lp(f , ψ) ∈ Rf ⊗Λ satisfying the following interpolation property: for all (κ, σ) ∈
Ucl

f ×Wcl of weight (2k − 2, s), where 0 < s < 2k, we have

Lp(f , ψ)(κ, σ) = Ωsgn(ψ)
κ · E(fκ, ψ, s) · α1−m

fκ
· c

s · ψ(−1)ω(−1)s−1

isg(ψ̄ωs−1)
· Λ(fκ, ψ̄ω1−s, s)

Ωsgn(ψ)
fκ

,

where c = cond(ψ̄ωs−1), Ω±
κ are the p-adic periods defined as in [GS93], and
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E(fκ, ψ, s) =
(

1 − ψω1−s(p)ps−1

αfκ

)(
1 − ψ̄ωs−1χ0(p)p2k−1−s

αfκ

)
.

Remark 5.6. This is essentially the construction and interpolation formula of [GS93]. 
The main discrepancies are the power 1 − m of the factor ap := ap(f) ∈ Rf and the 
different normalisation of the periods. While the first choice is mainly due to the fact 
that we use some formulas from [CdVP21], where this normalization is used, a further 
remark about the periods is due.

We use the periods arising in formula (3.4), which depends on the choice of a Eichler-
Shimura isomorphism used in [CdVP21], chosen as in [Ste94, Theorem (4.2.3)]. In 
contrast to this, the normalization of [GS93, Def. 4.7, Thm. 4.8] gives rise to periods 
Ω±

fκ
(GS), such that Ω±

fκ
(GS) = π ·Ω±

fκ
, modulo Q̄×. Our normalization of these periods 

is the same as [Och06, Theorem 6.7, p. 1184], or [Vat99], and feels more natural both 
from the motivic prospective and for our normalisation of the Petersson inner product 
of Section 2.2 (which is more coherent with the discussion of Section 7).

5.2. Tensor products of Hida families

Let N and p be as before, and fix an integer k ≥ 1. Recall Hida’s ordinary pro-
jector eord acting on Sk+1(Np, Q̄p), as defined in (5.2). Consider now the tensor space 
Sk+1(Np, Q̄p) ⊗ Sk+1(Np, Q̄p), whose Hecke algebra contains the elements of the form 
T1⊗T2 with T1, T2 in the usual Hecke algebra of level N and weight k+1. In particular, 
we can form the limit of (U ⊗ U)n!, which yields the idempotent eord ⊗ eord, and the 
corresponding projector

eord ⊗ eord : Sk+1(Np, χ) ⊗ Sk+1(Np, χ) → Sord
k+1(Np) ⊗ Sord

k+1(Np).

By a slight abuse of notation, we will write eord for eord ⊗ eord, and it will be clear from 
the context which projector we are using.

Let φ ∈ Sk+1(N, Q̄p) be a normalised ordinary eigenform, and let φα, φβ denote the 
p-stabilisations of φ with respect to the roots α = αφ and β = βφ of its p-th Hecke 
polynomial. If α is the unit root, similarly as in the GL2-case now the ordinary projector 
on the φ ×φ-isotypic component 

(
Sk+1(Np, Q̄p) ⊗ Sk+1(Np, Q̄p)

)
[φ] is characterised by 

the fact that

eordφα × φα = φα × φα, eordφα × φβ = eordφβ × φα = eordφβ × φβ = 0.

In particular, eord
((
Sk+1(Np, Q̄p) ⊗ Sk+1(Np, Q̄p)

)
[φ]

)
= 〈φα × φα〉.

Let now R be a finite flat Λ-algebra, and S(N, R) denote the space of Λ-adic cusp 
forms of level Γ0(Np) over R as above. We can then consider the R-module S(N, R) ⊗R
S(N, R), equipped with the corresponding ordinary projector

eord ⊗ eord : S(N,R) ⊗R S(N,R) −→ Sord(N,R) ⊗R Sord(N,R).
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The GL2 × GL2 analogue of Lemma 5.3 is given by the following:

Lemma 5.7. Let g be a Hida family and write Kg := Frac(Rg). Then there exists a 
unique functional Jg×g : Sord(N, R) ⊗R Sord(N, R) → R ⊗Λ Kg such that for every 
F ∈ Sord(N, R) ⊗R Sord(N, R) we have

Jg×g(F)(κ, λ) = 〈F(κ),g(λ) × g(λ)〉
〈g(λ) × g(λ),g(λ) × g(λ)〉

for all (κ, λ) ∈ Ucl
F ×Wcl Ucl

g .

5.3. p-adic families of half-integral weight modular forms: a Λ-adic d-th Shintani lifting

The theory of p-adic families of half-integral weight modular forms is not yet developed 
in full generality and most known results are based on the Shintani lifting construction. 
We will describe a construction in a context broad enough to suite our needs. For this 
reason, we fix a Hida family (Rf , Uf , Ucl

f , f) of tame level N (and trivial tame character) as 
above. Recall that by definition of Hida family, there exists an integer k0 (only determined 
modulo (p −1)/2) such that every classical point κ ∈ Ucl

f has weight 2k−2 with 2k ≡ 2k0

(mod p − 1). We define

R̃f := Rf ⊗Λ,σ Λ,

where σ : Λ → Λ is the O-algebra isomorphism induced by [t] �→ [t2] on Γ = 1 +pZp, and 
write W̃f := W(R̃f ) for the associated weight space. We equip R̃f with the structure of 
Λ-algebra via the map λ �→ 1 ⊗ λ. The natural homomorphism

Rf −→ R̃f , α �−→ α⊗ 1

is an isomorphism of O-algebras, but it is not a homomorphism of Λ-algebras. Indeed, 
this is reflected in the fact that the induced map

π : W̃f −→ Wf (5.3)

on weight spaces doubles the weights: if κ̃ ∈ W̃cl
f := Wcl(R̃f ) has weight k, then π(κ̃) ∈

Wcl
f has weight 2k.
Fix once and for all a solution r0 of the congruence 2x ≡ 2k0 (mod p − 1), write 

Ũf := π−1(Uf ), Ũcl
f := π−1(Ucl

f ), and let Ũcl
f (r0) denote the subset of classical points in 

Ũcl
f whose weights are congruent to r0 − 1 modulo p − 1. Observe that this is only half

of Ũcl
f , the other half consisting of points whose weights are congruent to r0 + (p − 1)/2

modulo p − 1.
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Theorem 5.8. Fix a discriminant d with p | d and (−1)r0d > 0. There exists a unique 
element

ΘΘΘ =
∑
m≥1

c(m)qm ∈ R̃f [[q]],

such that for all κ̃ ∈ Ũcl
f (r0) of weight k − 1 we have

ΘΘΘ(κ̃) = Ω−
κ · (−1)[k/2]2−k · θalg

k,Np,d(f(κ)),

where κ := π(κ̃) ∈ Ucl
f and θalg

k,Np,d(f(κ)) = θk,Np,d(f(κ))/Ω−
fκ

denotes the algebraic d-
th Shintani lifting as explained in (3.4). Here, the p-adic periods {Ω−

κ }κ∈Ucl
f

are as in 
Theorem 5.5.

Proof. The collection of p-adic periods, the construction of the element, and its interpo-
lation property are described, respectively, in Corollary 4.6, equation (29) and Theorem 
5.10 of [CdVP21]. �

The element ΘΘΘ ≡ Θr0
d (f) of the above theorem is attached to the Hida family f , but it 

depends on both choices d and r0. Anyway, we will drop them from the notation as we 
will see that in our setting we will only have a suitable choice for r0 and that our final 
result is independent on the choice of d. We point out that the specialisation of ΘΘΘ at a 
classical point κ̃ ∈ Ũcl

f (r0) of weight k − 1 has weight k + 1/2.

Remark 5.9. It may happen that ΘΘΘ vanishes identically, but as soon as there exists a 
classical point κ̃0 ∈ Ũcl

f (r0) with θk,Np,d(f(κ0)) �= 0, where κ0 = π(κ̃0), one can choose 
the p-adic periods Ω−

κ to be non-vanishing in a neighbourhood of κ0 and ΘΘΘ will not 
vanish identically in that neighbourhood.

Proposition 5.10. With the above notation, there exists a unique element L̃p(f , ψ) ∈ R̃f
satisfying the following interpolation property. For every κ̃ ∈ Ũcl

f (r0) of weight k − 1, 
setting κ = π(κ̃) we have

L̃p(f , ψ)(κ̃) = Ωsgn(ψ)
κ · E(fκ, ψ, k) · α1−m

fκ
· c

k · ψ(−1)ω(−1)k−1

ikg(ψ̄ωk−1)
· Λ(fκ, ψ̄ωk−1, k)

Ωsgn(ψ)
fκ

where c = cond(ψ̄ωk−1), the p-adic periods Ω±
κ are as in Theorem 5.5, and

E(fκ, ψ, k) =
(

1 − ψω1−k(p)pk−1

αfκ

)(
1 − ψ̄ωk−1pk−1

αfκ

)
.

Proof. This follows from Theorem 5.5 taking the pullback along the map Ũf → Uf →
Uf × W, where the second map is the extension of κ → (κ, wt(κ)/2 + 1) on classical 
points. �
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5.4. p-adic families of Siegel forms: a Λ-adic Saito–Kurokawa lifting

Let Sym2 denote the set of half-integral, symmetric, positive-definite two-by-two ma-
trices, and let R be a finite flat Λ-algebra. A Λ-adic Siegel form of tame level Γ(2)

0 (Np)
over R is a formal power series

ΦΦΦ =
∑

B∈Sym2

A(B)qB ∈ R[[q1, q2, ζ]],

where

qB = qn1 q
m
2 ζr if B =

(
n r/2
r/2 m

)
,

whose specialisations ΦΦΦ at classical points in Wcl(R) of weight k ≥ 0 are the q-expansions 
of Siegel forms in S(2)

k+2(Np, Q̄p). For notational purposes, we may sometimes write 
A(n, r, m) instead of A(B) if B is as above. Write S(2)(N, R) for the space of Λ-adic 
Siegel forms of tame level Γ(2)

0 (N) over R, which is naturally an R-module.
We will be interested in a very specific type of Λ-adic Siegel forms, namely Λ-adic 

Saito–Kurokawa lifts. Recall the notation Ũcl
f (r0) of specializations of weight congruent 

to r0 − 1, introduced just before Theorem 5.8.

Proposition 5.11. Let f be a Hida family and let d, r0, Ωκ, and C(k, d) as in Theorem 5.8. 
There exists a unique element

SK =
∑
B

A(B)qB ∈ R̃f [[q1, q2, ζ]]

such that for every classical point κ̃ ∈ Ũcl
f (r0) of weight k− 1, setting κ = π(κ̃) ∈ Ucl

f we 
have

SK(κ̃) = Ω−
κ · C(k, d)−1 · SKNp(θalg

k,Np,d(f(κ))) ∈ S
(2)
k+1(Np, Q̄p).

Proof. Consider the element ΘΘΘ =
∑

m≥1 c(m)qm ∈ R̃f [[q]] of Theorem 5.8 and define

A(B) =
∑

d|gcd(n,r,m),
(d,Np)=1

ω(d)r0−1d · [〈d〉] · c(det(2B)/d2) ∈ R̃f .

The interpolation property follows directly from that of Theorem 5.8. �
Therefore, the formal power series SK is clearly a Λ-adic Siegel form in S(2)(N, R̃f ). 

If we write
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SK =
∑

B=
(

n r/2
r/2 m

)A(n, r,m)qB ∈ R̃f [[q1, q2, ζ]],

then under the natural ‘pullback’ morphism � : R̃f [[q1, q2, ζ]] → R̃f [[q1, q2]] (defined by 
setting ζ = 1), SK yields the formal power series

�(SK) =
∑

n,m≥1

⎛⎜⎜⎝ ∑
r∈Z,

r2<4nm

A(n, r,m)

⎞⎟⎟⎠ qn1 q
m
2 .

If κ̃ ∈ Ũcl
f (r0) has weight k− 1 and κ = π(κ̃), it follows from the above proposition that

�(SK)(κ̃) = Ω−
κ · C(k, d)−1 ·�(SKNp(θalg

k,Np,d(f(κ)))) ∈ Sk+1(Np, Q̄p) ⊗ Sk+1(Np, Q̄p).
(5.4)

In fact, �(SK) belongs to S(N, R̃f ) ⊗R̃f

S(N, R̃f ).

6. The p-adic L-function

Let (Rf , Uf , Ucl
f , f) and (Rg, Ug, Ucl

g , g) be two Hida families of tame level N and trivial 
tame nebentype character as defined in Section 5.1. As explained in Definition 5.1, the 
Hida family g determines a unique class r0 modulo p − 1, such that wt(λ) ≡ r0 − 1
(mod p − 1) for all λ ∈ Ucl

g . We recall from Section 5.3 that the map σ : Λ → Λ sending 

[t] �→ [t2] induces the Zp-algebra isomorphism Rf → R̃f which induces a map on weight 
spaces

π : W̃f −→ Wf , κ̃ �−→ κ := π(κ̃).

As described in Section 5.3, let us fix a fundamental discriminant d such that 
(−1)r0d > 0 and d ≡ 0 (mod p), and consider its Λ-adic d-th Shintani lifting ΘΘΘ as 
in Theorem 5.8,

ΘΘΘ =
∑
m≥1

c(m)qm ∈ R̃f [[q]].

As customary, we will write Θκ̃ ∈ Sk+1/2(N) for the half-integral weight modular form 
whose ordinary p-stabilisation is ΘΘΘ(κ̃). In order to lighten the notation, we will also 
write h(κ̃) = θalg

k,Np,d(f(κ)) ∈ Sk+1/2(Np) and hκ̃ = θalg
k,N,d(fκ) ∈ Sk+1/2(N) for each κ̃ as 

above (see (3.4)). In particular, h(κ̃) is the ordinary p-stabilisation of hκ̃ as described in 
Section 2.2. Note, however, that the forms h(κ̃) do not define a Λ-adic form h a priori, 
due to the presence of the periods. With this notation, recall from Theorem 5.8 that the 
specialisation of ΘΘΘ at a classical point κ̃ ∈ Ũcl

f of weight k − 1 satisfies
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ΘΘΘ(κ̃) = (−1)[k/2]2−k · Ω−
κ · h(κ̃), Θκ̃ = (−1)[k/2]2−k · Ω−

κ · hκ̃,

where the p-adic periods Ω−
κ , one for each κ ∈ Ucl

f , are as in Theorem 5.5. As we did 
for ΘΘΘ, here and afterwards we also drop the reference to r0 in the notation, so that Ũcl

f
stands for Ũcl

f (r0). We may fix the choice of p-adic periods {Ω−
κ }κ to be ‘centered’ with 

respect to a point κ0 ∈ Ucl
f , meaning that Ω−

κ0
�= 0. Such a choice can be made at a point 

for which h(κ̃0) = θk,Np,d(f(κ0)) �= 0. This guarantees that ΘΘΘ does not vanish in a small 
enough neighbourhood of a point κ̃0 with π(κ̃0) = κ0 (cf. Remark 5.9). For this reason, 
by shrinking Uf if necessary, from now on we will assume that

ΘΘΘ does not vanish on Ũf .

After this discussion we are ready to prove the following:

Proposition 6.1. Assume N is odd and squarefree. There exists a unique element 
P(f , ΘΘΘ) ∈ Frac(R̃f ) satisfying the following interpolation property. For every κ̃ ∈ Ũcl

f
of weight k − 1, one has

P(f ,ΘΘΘ)(κ̃) = 1
Ω−

κ
· (−1)[k/2] · 2k+1 · 〈fκ, fκ〉

〈hκ̃, hκ̃〉Ω−
fκ

,

where κ = π(κ̃) and the periods Ω−
κ are as above.

Proof. Let D be an auxiliary fundamental discriminant with (−1)r0D > 0, and χD(�) =
w�(f) for each prime � | N , where w�(f) denotes the eigenvalue of the �-th Atkin–Lehner 
involution. Define

PD(f ,ΘΘΘ) := 2ν(N) L̃p(f , χDωr0−1)
c(|D|)2 ∈ Frac(R̃f ),

where L̃p(f , χDωr0−1) ∈ R̃f is the central critical twist of Greenberg–Stevens’ p-adic 
L-function defined in Proposition 5.10. We are going to prove that this element satisfies 
the claimed property. Let us assume that κ̃ ∈ Ũcl

f is of weight k− 1, and that f(κ) is old 
at p, where κ = π(κ̃). In this case, we have

L̃p(f , χDωr0−1)(κ̃) = 21−k · Ω−
κ

(
1 − βfκχD(p)

pk

)2

χD(−1)Dk

· 1
ikg(χD) · (k − 1)!

πk
· L(fκ, D, k)

Ω−
fκ

.

Since k must be odd, and r0 has the same parity, we have χD(−1) = sgn(D) = sgn(Dk), 
and hence the above interpolation formula reads
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L̃p(f , χDωr0−1)(κ̃) = (−1)[k/2]21−k ·Ω−
κ

(
1 − βfκχD(p)

pk

)2

|D|k−1/2 (k − 1)!
πk

·L(fκ, D, k)
Ω−

fκ

.

(6.1)
Since D is fundamental, from Proposition 2.1 we have c|D|(h(κ̃)) = (1 − βfκχD(p)p−k) ·
c|D|(hκ̃), hence

c(|D|)(κ̃)2 = 2−2k · (Ω−
κ )2 ·

(
1 − βfκχD(p)

pk

)2

· c|D|(hκ̃)2. (6.2)

And by Theorem 3.2 applied with f = fκ and h = hκ̃ (notice that the latter has real 
coefficients) we find that

〈fκ, fκ〉
〈hκ̃, hκ̃〉Ω−

fκ

= 2ν(N)

(k−1)!
πk |D|k−1/2 · L(fκ,D,k)

Ω−
fκ

c|D|(hκ̃)2 .

Combining the last formula with the expressions (6.1) and (6.2), we find that PD(f , ΘΘΘ)
satisfies the interpolation formula of the statement at points κ̃ where f(κ) is old at p. 
One can easily check that the same proof as above adapts also to the case when f(κ) is 
new. As we clearly see that the quantity that we interpolate is independent on the choice 
of the auxiliary discriminant D, we may define P(f , ΘΘΘ) := PD(f , ΘΘΘ) for any fundamental 
discriminant D satisfying the above hypotheses. �

Consider now the Λ-algebra

R := R̃f ⊗Λ Rg, (6.3)

where the tensor product is taken with respect to the structure morphism, which can be 
read at the level of weight spaces as

WR := W(R) = W̃f ×W Wg.

At the level of classical points, we may write Ucl
R = Wcl

R ∩ Ũcl
f × Ucl

g , where:

Wcl
R = {(κ̃, λ) ∈ W̃cl

f ×Wcl
g : wt(κ̃) = wt(λ)}.

For such a point x = (κ̃, λ) ∈ Ucl
R it makes sense for use to write wt(x) = wt(κ̃) = wt(λ). 

We also notice that there is a natural isomorphism

R � Rf ⊗Λ,σ Rg,

where σ : Λ → Λ is as in Section 5.3. Via this isomorphism, we may instead see WR as 
the fibered product

WR � Wf ×W,σ Wg,
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which we can read on classical points as:

Wcl
R � {(κ, λ) ∈ Wcl

f ×Wcl
g : wt(κ) = 2wt(λ)}.

Because of the above isomorphism, if ν ∈ Wcl
R, then we will identify it with either (κ̃, λ)

or (κ, λ), where κ = π(κ̃). We note that Wcl
R is non-empty if and only if the residue class 

(mod p − 1) determined by Ucl
f is the same as 2r0. We may assume this compatibility 

condition everywhere from now on.
With this, let SK ∈ S(2)(N, R̃f ) be the Λ-adic Saito–Kurokawa lift of ΘΘΘ described in 

Proposition 5.11, set Fκ̃ := SKN (hκ̃), and let F(κ) := SKNp(h(κ̃)) be its semi-ordinary 
p-stabilisation as described in equation (3.6) (note that despite the notation, the latter 
is not a Λ-adic family). If κ̃ ∈ Ũcl

f is a classical point of weight k−1, and κ = π(κ̃), recall 
that

SK(κ̃) = (−1)[k/2]2−k · Ω−
κ · F(κ̃).

Proposition 6.2. Let Jg×g be the Λ-adic functional defined in Lemma 5.7. Then the 
element

Jg×g(eord�(SK)) ∈ Frac(R)

satisfies the following interpolation property. If ν = (κ̃, λ) ≡ (κ, λ) ∈ Ucl
R is of weight k−1, 

and f(κ) and g(λ) are the ordinary p-stabilisations of fκ ∈ Snew
2k (N) and gλ ∈ Snew

k+1(N), 
then we have

Jg×g(eord�(SK))(ν) = (−1)[k/2]2−k · Ω−
κ · E

◦(fκ,Ad0(gλ))
E(Ad0(gλ))

· 〈�(Fκ̃), gλ × gλ〉
〈gλ, gλ〉2

,

where E◦(fκ, Ad0(gλ)) and E(Ad0(gλ)) are defined as in equation (1.4).

Proof. Directly from Lemma 5.7, together with (5.4), we know that

Jg×g(eord�(SK))(ν) = (−1)[k/2]2−k · Ω−
κ · 〈eord�(F(κ̃)),g(λ) × g(λ)〉

〈g(λ),g(λ)〉2 ,

where we have also used the interpolation property of the Λ-adic Saito–Kurokawa lift. In 
order to lighten the notation, fix ν = (κ, λ) ∈ Ucl

R, write f := fκ and g := gλ, gα := g(λ)
for the ordinary p-stabilisation of g, and write also Fα for F(κ̃) and F := Fκ̃. Then the 
ratio of Petersson products on the right hand side of the above identity reads

〈eord�(Fα), gα × gα〉
〈gα, gα〉2

.

From the description of eord on the g × g-isotypical subspace of Sk+1(Np) ⊗ Sk+1(Np), 
the above is just the coefficient of gα × gα when expressing Fα in terms of the basis 
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gα × gα, gα × gβ , gβ × gα, gβ × gβ . By Corollary 4.4 we know how to express �(Fα)[g]
with respect to the basis g × g, g × V g, V g × g, V g × V g, so that we just have to do a 
change of basis. Indeed, observe that

g = αggα − βggβ
αg − βg

, V g = gα − gβ
αg − βg

.

In other words, the matrix

1
αg − βg

(
αg 1
−βg −1

)
gives the change of basis from {g, V g} to {gα, gβ} on Sk+1(Np). Taking the tensor 
product of this matrix with itself, it follows that

1
(αg − βg)2

⎛⎜⎝ α2
g αg αg 1

−αgβg −αg −βg −1
−αgβg −βg −αg −1
β2
g βg βg 1

⎞⎟⎠
gives the change on (Sk+1(Np) ⊗ Sk+1(Np))[g × g] = Sk+1(Np)[g] ⊗ Sk+1(Np)[g] from 
the basis {g×g, g×V g, V g×g, V g×V g} to the basis {gα×gα, gα×gβ , gβ×gα, gβ×gβ}. 
By Corollary 4.4, we find

eord(�g(Fα)) =
λg

(
1 − βf

pk

)
(
1 − βg

αg

)2 (Aα + Bαα
−1
g + Cαα

−1
g + Dαα

−2
g )gα × gα,

where λg = 〈�(F ),g×g〉
〈g,g〉2 and the coefficients Aα, Bα, Cα, and Dα are given by the recipe 

in Corollary 4.4. A laborious but elementary computation shows that the coefficient of 
gα×gα in this expression is precisely E(f, g)λg, which proves the formula in the statement 
(check Corollary A.3 in the Appendix for the detailed calculation). �

We are finally in position to prove the main result of the paper, as putting together 
the above discussion we obtain the following:

Theorem 6.3. Let (f , g) be a pair of Hida families of ordinary p-stabilised newforms of 
squarefree and odd tame level N ≥ 1, defined on a neighbourhood UR of a classical point 
of weight k0 − 1, such that (N, k0) satisfies the hypothesis (Sign). There exists a unique 
element L◦

p(f , Ad0(g)) ∈ Frac(R), such that for every classical point ν = (κ, λ) ∈ Ucl
R of 

weight k − 1 where f and g are p-old the following interpolation formula holds:

L◦
p(f ,Ad0(g))(ν) = Ω−

κ · C (N, k) · E
◦(fκ,Ad0(gλ))2

E(Ad0(g ))2
· Λ(fκ ⊗ Ad0(gλ), k)

Ω− 〈g , g 〉2
λ fκ λ λ
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where E(fκ, Ad0(gλ)) and E(Ad0(gλ)) are as in equation (1.4) and C (N, k) = (−1)[k/2] ×
2−2kN .

Proof. Uniqueness follows immediately from the interpolation property. In order to prove 
the existence, recall the element P(f , ΘΘΘ) ∈ Frac(R̃f ) from Proposition 6.1. After identi-
fying it with P(f , ΘΘΘ) ⊗ 1 ∈ Frac(R), we define

L◦
p(f ,Ad0(g)) := P(f ,ΘΘΘ) · Jg×g(eord�(SK))2 ∈ Frac(R). (6.4)

By the previous propositions, we find that

L◦
p(f ,Ad0(g))(ν) = P(f ,ΘΘΘ) · Jg×g(eord�(SK))2(ν) =

= Ω−
κ · 21−k · E

◦(fκ,Ad0(gλ))2

E(Ad0(gλ))2
· 〈fκ, fκ〉〈hκ̃, hκ̃〉

· 〈�(Fκ), gλ × gλ〉2
〈gλ, gλ〉4 Ω−

fκ

.

Now, from the central value formula in Theorem 1.1 in the introduction and its alge-
braicity consequence stated in equation (1.2), we have that:

Λ(fκ ⊗ Ad0(gλ), k)
Ω−

fκ
〈gλ, gλ〉2

= C(fκ, gλ) · 〈fκ, fκ〉〈hκ̃, hκ̃〉
· 〈�(Fκ̃), gλ × gλ〉2

〈gλ, gλ〉4Ω−
fκ

,

where the absence of the absolute value in the last quotient is due to the fact that Fκ

has real coefficients, since we have chosen hκ̃ = θalg
k,d,Np(fκ), with real coefficients (see 

equation (3.4)). Joining the two equations and replacing C(fκ, gλ) with its explicit value 
given in Theorem 1.1, the result is achieved. �

One may note that the construction seems to heavily depend on the choice of ΘΘΘ, 
while the interpolation formula does not. Indeed, it is easy to see that for any nonzero 
λ ∈ Frac(R̃f ) we have

P(f , λΘΘΘ) = λ−2P(f ,ΘΘΘ).

However, the choice of λΘΘΘ also implies the use of λSK at the Saito–Kurokawa level, so 
that

Jg×g(eord�(λSK))2 = λ2Jg×g(eord�(SK))2.

And the product does not depend on such a choice. On the same note, a different choice 
of d for the construction of the Λ-adic Shintani lifting would give rise to a lift of the form 
λΘΘΘ due to multiplicity one results that hold in our case (since N is odd and square-free), 
so the construction does not depend on d either. Last, the p-adic period Ω−

κ only depends 
on the theory of Λ-adic modular symbol and, as such, is entirely described in terms of 
f , so that the final construction solely depends on the pair (f , g).
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Remark 6.4. We remark that our p-adic L-function belongs to Frac(R), but that a deeper 
study should reveal its integrality, up to certain factors. Indeed, the integrality of the 
factors Jg×g(eord�(SK)) can be achieved using Hida’s congruence ideal (see [Hid88, 
Theorem 0.1], and [Hsi21] for the case of triple products of the next section). However, 
P(f , ΘΘΘ) has the factor c(|D|)2 at the denominator. We expect that a careful study of 
this factor would show that the denominator is very much bounded. We will address 
this question in a subsequent work where we attack the two variable construction of 
Lp(f ⊗ Ad0(g)).

7. A factorisation of p-adic L-functions

Let N ≥ 1 be an odd, squarefree integer, and let f , g, and h be three Hida families 
of ordinary p-stabilised newforms of tame level N as in Definition 5.1. Let Rf ,g,h :=
Rf ⊗Rg ⊗Rh, and

Uf ,g,h = Uf × Ug × Uh ⊂ Wf ×Wg ×Wh

be the associated weight space. For a classical point x = (κ, λ, μ) ∈ Ucl
f ,g,h := Ucl

f ×Ucl
g ×

Ucl
h we write:

f = fκ ∈ Snew
k (N), g = gλ ∈ Snew

� (N), h = hμ ∈ Snew
m (N) (7.1)

for the three associated normalised newforms of weights k = wt(κ) +2, � = wt(λ) +2, m =
wt(μ) + 2, respectively, and of common level Γ0(N) for simplicity. Let L(f ⊗ g ⊗ h, s)
denote the Garret–Rankin L-series associated with the tensor product Vf ⊗ Vg ⊗ Vh of 
(compatible systems of) Galois representations attached to f , g, and h. This can be 
written as an Euler product

L(f ⊗ g ⊗ h, s) =
∏
q

L(q)(f ⊗ g ⊗ h, q−s)−1,

for Re(s) � 0, where for a prime q � N one has

L(q)(f ⊗ g ⊗ h, T ) =(1 − αq(f)αq(g)αq(h)T )(1 − αq(f)αq(g)βq(h)T )

(1 − αq(f)βq(g)αq(h)T )(1 − αq(f)βq(g)βq(h)T )

(1 − βq(f)αq(g)αq(h)T )(1 − βq(f)αq(g)βq(h)T )

(1 − βq(f)βq(g)αq(h)T )(1 − βq(f)βq(g)βq(h)T ).

This complex L-series can be completed with an archimedean factor, whose definition 
depends on the weights of f , g, and h. The triple of weights (k, �, m) is said to be balanced
if k + � + m > 2max{k, �, m}. If (k, �, m) is not balanced, reordering the newforms we 
may assume that the ‘dominant’ weight is the one of f , so that k ≥ � + m. With this, 
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the completed L-series Λ(f ⊗ g ⊗ h, s) := L∞(f ⊗ g ⊗ h, s)L(f ⊗ g ⊗ h, s) is defined by 
setting

L∞(f ⊗ g ⊗ h, s)

:=
{

ΓC(s) · ΓC(s + k − 2c) · ΓC(s + 1 − �) · ΓC(s + 1 −m) if k ≥ � + m,

ΓC(s) · ΓC(s + 1 − k) · ΓC(s + 1 − �) · ΓC(s + 1 −m) if (k, �,m) is balanced,

where c = (k+ � +m −2)/2. It admits analytic continuation to the whole complex plane, 
and satisfies a functional equation relating the values Λ(f⊗g⊗h, s) and Λ(f⊗g⊗h, 2c −s), 
so that s = c is the center of symmetry for the functional equation. The global sign 
ε(f ⊗ g ⊗ h) = ±1 appearing in this functional equation determines the parity of the 
order of vanishing for Λ(f ⊗g⊗h, s) at s = c, and can be expressed as a product of local 
signs

ε(f ⊗ g ⊗ h) =
∏
v

εv(f ⊗ g ⊗ h), εv(f ⊗ g ⊗ h) ∈ {±1},

varying over all the rational places. It is known that εv(f ⊗ g ⊗ h) = +1 for all v � N∞, 
and

ε∞(f ⊗ g ⊗ h) =
{

+1 if (k, �,m) is not balanced,
−1 if (k, �,m) is balanced.

Recall that we are considering a classical point x = (κ, λ, μ) ∈ Ucl
f ,g,h := Ucl

f ×Ucl
g ×Ucl

h , 
and we will now focus on the balanced region3

Ubal
f ,g,h :=

{
(κ, λ, μ) ∈ Ucl

f ,g,h : wt(κ) + wt(λ) + wt(μ) > 2max{wt(κ),wt(λ),wt(μ)} − 2
}
.

Let Σ−(x) denote the set of primes q | N such that the local sign εq(fκ⊗ gλ⊗hμ) in the 
functional equation for the Garret–Rankin L-series L(f⊗g⊗h, s) is −1. It is well-known 
that Σ−(x) actually does not depend on the choice of classical point x, and so we may 
write just Σ− in analogy with the above classical discussion. Assume that

Σ− has odd cardinality. (7.2)

Then, the global sign ε(f ⊗g⊗h) is +1, and hence Λ(f ⊗g⊗h, c) is not forced to vanish 
by sign reasons. In this case, the value

Λ(f ⊗ g ⊗ h, c)
〈f, f〉〈g, g〉〈h, h〉 ∈ Q̄

3 Recall our convention that the weight of a classical specialisation of a Hida family differs by two with 
the weight of the corresponding classical point in the weight space.
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is algebraic. Assume also that the Hida families f , g, and h fulfill Hypothesis (CR, Σ−) in 
[Hsi21]. Then, by Theorem B in [Hsi21], there exists a unique Lbal

p (f , g, h) ∈ Frac(Rf ,g,h), 
which we will regard as a function Lbal

p (f , g, h) : Uf ,g,h → Cp, satisfying the interpolation 
property that

(Lbal
p (f ,g,h)(κ, λ, μ))2 = 2−(k+�+m+3) E(f, g, h)2

E(Ad0(f))E(Ad0(g))E(Ad0(h))
· Λ(f ⊗ g ⊗ h, c)
〈f, f〉〈g, g〉〈h, h〉

(7.3)
for every triple (κ, λ, μ) ∈ Ubal

f ,g,h (recall our notation (7.1)). Here, E(Ad0(−)) is defined 
as in (1.4), and

E(f, g, h) :=
(

1 − αfβgβh

pc

)(
1 − βfαgβh

pc

)(
1 − βfβgαh

pc

)(
1 − βfβgβh

pc

)
.

We warn the reader that our normalisation for Lbal
p (f , g, h) differs slightly from the 

one in [Hsi21] because of the absence of the congruence numbers and the presence of 
Hida’s periods instead of Gross periods (see [Hsi21], Def. 4.12, for the definition and 
comparison); in particular, we do not claim that Lbal

p (f , g, h) belongs to Rf ,g,h, but only 
to its fraction field.

Consider now a pair of Hida families (f , g) of (again) squarefree tame level N ≥ 1. 
Let � ≥ k ≥ 1 be odd integers, and consider now weights such that wt(κ) = 2k − 2, 
wt(λ) = � + 1 as in the previous sections, so that f = fκ ∈ Snew

2k (N), g = gλ ∈ Snew
�+1 (N)

are normalised newforms of level N and weights 2k and � +1, respectively. In this setting, 
the decomposition of representations

Vf ⊗ Vg ⊗ Vg � Vf ⊗ (1 ⊕ Ad0(Vg)) ⊗ det(Vg)

yields, by Artin formalism, a factorisation of complex L-functions

L(f ⊗ g ⊗ g, s) = L(f, s− �)L(f ⊗ Ad0(g), s− �). (7.4)

Note that the choice of weights for f and g implies that the triple (2k, � + 1, � + 1)
is balanced, according to the above introduced terminology. Assuming the same sign 
hypothesis as above, one expects the above complex factorisations to be mirrored on 
the p-adic side by a (two-variable) factorisation of the corresponding p-adic L-functions. 
Falling a bit short in this wish, we prove in this section the expected factorisation when 
restricted to � = k, i.e. we prove a one-variable factorisation of p-adic L-functions sug-
gested by the above complex discussion.

Using the same notation as in previous sections, consider the Λ-algebra

R := R̃f ⊗Λ Rg � Rf ⊗Λ,σ Rg,

and its associated weight space
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WR = W̃f ×W Wg � Wf ×W,σ Wg.

Recall that, on classical weights, we have

WR �
{
(κ, λ) ∈ Wcl

f ×Wcl
g : wt(κ) = 2wt(λ)

}
.

In particular, observe that there is a natural embedding

ι : WR ↪→ Wf ,g,g = Wf ×Wg ×Wg, (κ, λ) �→ (κ, λ, λ),

through which we can identify Ucl
R with the classical triples (κ, λ, λ) ∈ Ucl

f ,g,g with wt(κ) =
2wt(λ). The image of Ucl

R lies actually in the balanced region Ubal
f ,g,g ⊂ Ucl

f ,g,g defined as 
above. Also, the hypothesis (7.2) is equivalent to ε(f) = +1, thanks to our assumption
(Sign) (see the discussion before the latter, and the above discussion about the sign of 
triple products). Therefore, assuming that ε(f) = 1 and the hypothesis (CR, Σ−) of 
[Hsi21] as above, let

Lbal,◦
p (f ,g,g) : UR

ι
↪→ Uf ,g,g → Cp

be the restriction of the p-adic L-function Lbal
p (f , g, g) explained above (with h = g) to 

UR through the embedding ι. Also, consider the pullback

L◦
p(f , ωr0−1) : UR −→ Ũf −→ Cp

of the one-variable Greenberg–Stevens p-adic L-function L̃p(f , ωr0−1) normalised as in 
Proposition 5.10, via the natural map UR → Ũf , ν �→ κ̃, which is generically nonvanishing 
thanks to our assumption ε(f) = 1.

Theorem 7.1. Let (f , g) be a pair of Hida families as in Theorem 6.3. If ε(f) = 1, then 
we have a factorisation of p-adic L-functions

Lbal,◦
p (f ,g,g)2 = η · C ·

(
1 −

a◦p(f)
a◦p(g)2

)2

· L◦
p(f ,Ad0(g)) · L◦

p(f , ωr0−1),

where η, C ∈ Frac(R) are non trivial functions such that

η(ν) =
(
E(Ad0(fκ))Ω+

κ Ω−
κ

)−1
, C(ν) = 25−2kiN−1,

for all ν = (κ, λ) ∈ Ucl
R, and where a◦p(f), a◦p(g) are naturally defined by setting a◦p(f)(ν) =

ap(f(κ)) and a◦p(g)(ν) = ap(g(λ)).

Proof. We will check the claimed factorisation at an arbitrary classical point ν = (κ, λ) ∈
Ucl
R for which f(κ) and g(λ) are the ordinary p-stabilisations of newforms fκ ∈ Snew

2k (N)
and gλ ∈ Snew

k+1(N), respectively. So let us fix such a point for the rest of the proof.
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After completing each of the three complex L-functions in (7.4) with the corresponding 
archimedean Euler factors, one gets a factorisation of completed L-functions

Λ(fκ ⊗ gλ ⊗ gλ, s) = Λ(fκ ⊗ Ad0(gλ), s− k) · Λ(fκ, s− k). (7.5)

In addition, recalling that at the end of section 3.1 we choose Shimura’s complex periods 
Ω±

fκ
∈ C× attached to fκ with the extra property that Ω+

fκ
Ω−

fκ
= 〈fκ, fκ〉, the above 

identity also yields a factorisation of algebraic central values

Λ(fκ ⊗ gλ ⊗ gλ, 2k)
〈fκ, fκ〉〈gλ, gλ〉2

= Λ(fκ ⊗ Ad0(gλ), k)
〈gλ, gλ〉2Ω−

fκ

· Λ(fκ, k)
Ω+

fκ

∈ Q(fκ, gλ). (7.6)

One easily checks that the interpolation property in (7.3) implies that

(Lbal,◦
p (f ,g,g)(ν))2 = 2−(4k+5) E(fκ, gλ, gλ)2

E(Ad0(fκ))E(Ad0(gλ))2
· Λ(fκ ⊗ gλ ⊗ gλ, 2k)

〈fκ, fκ〉〈gλ, gλ〉2
, (7.7)

whereas the interpolation property for the p-adic L-function L◦
p(f , ωr0−1) tells us that

L◦
p(f , ωr0−1)(ν) = Ω+

κ E(fκ, ωr0−1, k)i−k · Λ(fκ, k)
Ω+

fκ

. (7.8)

Using αgλβgλ = pk it is easily seen that

E(fκ, gλ, gλ)2 =
(

1 − αfκ

α2
gλ

)2

E◦(fκ,Ad0(gλ))2 · E(fκ, ωr0−1, k).

Thus combining equation (7.6) with equations (7.7), (7.8), and the interpolation formula 
in Theorem 6.3 we find

(Lbal,◦
p (f ,g,g)(ν))2

= (Ω+
κ Ω−

κ E(Ad0(fκ))−1 i
kC (N, k)−1

24k+5

(
1 − αfκ

α2
gλ

)2

L◦
p(f ,Ad0(g))(ν) · L◦

p(f , ωr0−1)(ν).

Using the expression of Theorem 1.2 for C (N, k), and the fact that ik(−1)[k/2] = i · ik−1 ·
(−1)(k−1)/2 = i since k is odd, we obtain

(Lbal,◦
p (f ,g,g)(ν))2 = η(ν) · C(ν) ·

(
1 − αfκ

α2
gλ

)2

· L◦
p(f ,Ad0(g))(ν) · L◦

p(f , ωr0−1)(ν).

Since all the functions appearing are Λ-adic, possibly except η, it follows that there exists 
a unique Λ-adic function η ∈ R extending η(ν) in a small enough neighbourhood of a 
point of weight k0 − 1 (see [BD14, Theorem 3.4] and [BSV22, Lemma 3.4] where they 
consider the neighbourhood of a point of weight 0 in our notation). �



174 D. Casazza, C. de Vera-Piquero / Journal of Number Theory 249 (2023) 131–182
As our notation suggests, the factorisation in this theorem must be seen as the one-
variable shadow of more general factorisations of p-adic L-functions in two and three 
variables. Indeed, the balanced p-adic triple product L-function introduced above has 
been recently extended in the works of [HY] and [GS20] to a four-variable p-adic L-
function incorporating a cyclotomic variable, that we still denote Lbal

p (f , g, g) by abuse 
of notation. Write

Lbal,�
p (f ,g,g) : Uf ,g ×W −→ Cp

for its restriction via the natural embedding

Uf ,g ×W −→ Uf ,g,g ×W, (κ, λ, σ) �−→ (κ, λ, λ, σ).

And similarly, write

L�
p(f , ωr0−1) : Uf ,g ×W −→ Cp

for the pullback of Lp(f , ωr0−1) via the natural morphism

Uf ,g ×W −→ Uf ×W.

Then, we can envisage a three-variable p-adic L-function

L�
p(f ,Ad0(g)) :=

Lbal,�
p (f ,g,g)
η · C · L�

p(f)
,

always under the relevant sign assumption. The following diagram may help to under-
stand the sources of the different p-adic L-functions involved in the above digression, 
with the different embeddings used for the restrictions.

UR
ν �→(κ,λ)

Uf × Ug

(κ,λ) �→(κ,λ,λ)

Uf × Ug ×W L�
p(f ,Ad0(g)) ?

Uf × Ug × Ug Uf × Ug × Ug ×W Lbal
p (f ,g,g)

Uf
κ�→(κ,wt(κ)/2+1)

Uf ×W Lp(f , ωr0−1)

(7.9)

On the right hand side, each of the p-adic L-functions listed is written next to its nat-
ural domain. On the left hand side, the one-variable p-adic L-functions L◦

p(f , Ad0(g)), 
Lbal,◦
p (f , g, g), and L◦

p(f , ωr0−1) are defined on UR, and Lbal,◦
p (f , g, g) and L◦

p(f) are re-
strictions of Lbal

p (f , g, g) and Lp(f , ωr0−1) through the obvious maps. The (expected) 
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two-variable p-adic L-function alluded to in Remark 1.4 would be the restriction of 
L�
p(f , Ad0(g)) under the obvious map.
It would be interesting to put the above picture into a broader framework, by em-

bedding it within the line of work started by Schmidt [Sch93] and culminating with 
Januszewski’s contributions in [Jan15,Jan]. Without entering into a detailed study, let us 
just mention here that our p-adic L-function and the one-variable (cyclotomic) Rankin–
Selberg p-adic L-function by Schmidt (further generalized in [Jan15]) are defined in 
different domains. However, the recent work of Januszewski in [Jan] provides a p-adic 
L-function (varying both on the weight variable and the cyclotomic one) that should 
specialize to both, in the corresponding domains. This idea is represented in the dia-
gram

L◦
p(f ,Ad0(g)) UR

ν �→(κ,λ)

W

σ �→(κ0,λ0,σ)

LSchmidt
p (fκ0 ⊗ Ad0(gλ0))

Uf × Ug ×W L�
p(f ,Ad0(g)) ?

(7.10)
For arithmetic purposes, it would be desirable to achieve a direct construction of 
L�
p(f , Ad0(g)), which relies on explicit formulas and that is independent of any sign 

assumption, fitting in this big picture.
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Appendix A. Computations from Section 4

In this appendix we complete the proofs of Theorem 4.3 and Corollary 4.4 in Section 4. 
Recall the notation in that passage: f ∈ Snew

2k (N) is a normalised newform, and F ∈
S

(2)
k+1(N) is the Saito–Kurokawa lift of a (non-zero) half-integral weight cusp form h ∈

S+,new
k+1/2 (N) in Shimura–Shintani correspondence with f . To lighten the notation, in what 

follows we will abbreviate ap = ap(f). We start with the following proposition, which 
fills the omitted computations in the proof of Theorem 4.3.

Proposition A.1. Let φ ∈ Sk+1(N) be a normalised eigenform, and suppose that �φ(F ) =
λφφ × φ. Then

�φ(UF ) = λφ (Aφ× φ + Bφ× V φ + CV φ× φ + DV φ× V φ) ,

where

A = (pk−1(p− 1) + ap)ap(φ)2 − pk(p + 1)(pk−1(p + 1) + ap)
2 k−1 2 ,
ap(φ) − p (p + 1)
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and B, C, D are given by the formulae

B = C = pap(φ)
p + 1 (pk − pk−1 + ap −A), D = −pk+1(pk + ap −A).

Proof. As indicated in the proof of Theorem 4.3, one has to solve the system of linear 
equations arising from the identity (4.2). One easily checks that C = B, and then the 
system to solve becomes⎧⎪⎪⎨⎪⎪⎩

(pk − pk−1 + ap)ap(φ)2 − pk(pk−1 + ap) = A(ap(φ)2 − pk−1) + 2Bap(φ) + D,

ap(φ)p(pk − pk−1 + ap) = Aap(φ)p + B(p + 1),
pk+1(pk + ap) = Apk+1 −D.

From the last equation, we get

D = −pk+1 (pk + ap −A
)
,

and from the second one,

B = pap(φ)
p + 1

(
pk − pk−1 + ap −A

)
.

Plugging these expressions into the first equation of the above system yields(
pk−1(p− 1) + ap −

2pk+1 − 2pk + 2pap
p + 1

)
ap(φ)2 − pk(1 − p)(pk−1(p + 1) + ap) =

= A

(
ap(φ)2 + pk−1(p2 − 1) − 2ap(φ)2p

p + 1

)
.

Multiplying by p +1 and dividing by 1 −p both sides of the equality, one eventually finds

A = (pk−1(p− 1) + ap)ap(φ)2 − pk(p + 1)(pk−1(p + 1) + ap)
ap(φ)2 − pk−1(p + 1)2 . �

Once we have described �(UF ), the following corollary completes the proof of Corol-
lary 4.4. As usual, write αf , βf for the roots of the p-th Hecke polynomial of f , and let 
Fα = SKNp(hα) ∈ S+

k+1/2(Np) be the Saito–Kurokawa lift of the p-stabilisation of h on 
which Up2 acts with eigenvalue αf .

Corollary A.2. Let φ ∈ Sk+1(N) be a normalised eigenform, and αφ, βφ be the roots of 
its p-th Hecke polynomial. Then we have

�φ(Fα) = λφ

(
1 − βf

k

)
(Aαφ× φ + Bαφ× V φ + CαV φ× φ + DαV φ× V φ) ,
p
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where the coefficients Aα, Bα, Cα, and Dα are given by the formulae

Aα = 1 −
(p + 1)

(
1 − βf

pk−1

)
(
p− αφ

βφ

)(
1 − βφ

pαφ

) ,
Bα = Cα = pap(φ)

p + 1 (1 −Aα), Dα = pk+1(Aα − 1) − pβf .

Proof. From equation (3.6), we know that

αfFα = (U − βf )(1 − pkV )F = UF − (pk + βf )F + βfp
kV F.

Therefore,

αf�φ(Fα) = �φ(UF ) − (pk + βf )�φ(F ) + βfp
kV × V �φ(F ).

Writing �φ(F ) = λφφ × φ, it follows from Proposition A.1 that �φ(Fα) vanishes if 
λφ = 0. Thus we may write

�φ(Fα) = λφ

(
1 − βf

pk

)
(Aαφ× φ + Bαφ× V φ + CαV φ× φ + DαV φ× V φ)

for some coefficients Aα, Bα, Cα, Dα to determine. Letting A, B, C, and D be as in 
Proposition A.1, and using that αfβf = p2k−1, we deduce that

(αf − pk−1)Aα = A− (pk + βf ), (αf − pk−1)Bα = B, (αf − pk−1)Cα = C,

(αf − pk−1)Dα = D + βfp
k.

And now we only have to use the values for A, B, C, D obtained in Proposition A.1. 
Indeed, noticing that

(pk + βf )(ap(φ)2 − pk−1(p+ 1)2) = pkap(φ)2 + βfap(φ)2 − p2k−1(p+ 1)2 − βf

p
pk(p+ 1)2,

from Proposition A.1 we have

A− (pk + βf ) = (αf − pk−1)ap(φ)2 − (αf − pk−1)(pk + βf )(p + 1)
ap(φ)2 − pk−1(p + 1)2 ,

and hence we deduce that

Aα = ap(φ)2 − (pk + βf )(p + 1)
2 k−1 2 .
ap(φ) − p (p + 1)
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Letting αφ and βφ denote the roots of the p-th Hecke polynomial for φ, so that αφ+βφ =
ap(φ) and αφβφ = pk, one checks that the above is equivalent to the expression given in 
the statement.

Once we have determined Aα, the rest of coefficients follow easily. First, observe that 
C = B implies Cα = Bα. And to find Bα, notice that

B = pap(φ)
p + 1 (pk − pk−1 + ap −A) = pap(φ)

p + 1 (αf − pk−1 − (αf − pk−1)Aα),

and therefore

Bα = pap(φ)
p + 1 (1 −Aα).

Finally, one can proceed similarly for Dα. Indeed, we have

D + βfp
k = pk+1(A− ap − pk) + βfp

k = pk+1((αf − pk−1)Aα − αf ) + βfp
k =

= (αf − pk−1)pk+1Aα − pk+1αf + βfp
k

= (αf − pk−1)pk+1(Aα − 1) − (αf − pk−1)pβf ,

which implies that

Dα = pk+1(Aα − 1) − pβf . �
Finally, with the same notation as above, in the proof of Proposition 6.2 we have 

omitted part of the computation of

〈eord(�φ(Fα)), φα × φα〉
〈φα, φα〉2

,

which equals the coefficient of φα × φα when expressing �φ(Fα) in terms of the basis 
φα × φα, φα × φβ , φβ × φα, φβ × φβ . We complete this in the corollary below.

Corollary A.3. Let φ ∈ Sk+1(N) be a normalised eigenform. Then

〈eord(�φ(Fα)), φα × φα〉
〈φα, φα〉2

= E◦(f,Ad0(φ))
E(Ad0(φ))

· 〈�(F ), φ× φ〉
〈φ, φ〉2 ,

where

E◦(f,Ad0(φ)) :=
(

1 − βf

k

)(
1 − βfβφ/αφ

k

)
, E(Ad0(φ)) :=

(
1 − βφ

)(
1 − βφ

)
.

p p αφ pαφ
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Proof. From the definitions of p-adic stabilisations we have that

φ = αφφα − βφφβ

αφ − βφ
, V φ = φα − φβ

αφ − βφ
.

In other words, the matrix

1
αφ − βφ

(
αφ 1
−βφ −1

)
gives the change of basis from {φ, V φ} to {φα, φβ} on Sk+1(Np). Taking the tensor 
product of this matrix with itself, it follows that

1
(αφ − βφ)2

⎛⎜⎝ α2
φ αφ αφ 1

−αφβφ −αφ −βφ −1
−αφβφ −βφ −αφ −1
β2
φ βφ βφ 1

⎞⎟⎠
gives the change on Sk+1(Np)[φ] ⊗ Sk+1(Np)[φ] from the basis {φ × φ, φ × V φ, V φ ×
φ, V φ × V φ} to the basis {φα ×φα, φα ×φβ , φβ ×φα, φβ ×φβ}. Using the expression for 
�φ(Fα) computed in the previous corollary, we find that

eord(�φ(Fα)) =
λφ

(
1 − βf

pk

)
(
1 − βφ

αφ

)2 (Aα + Bαα
−1
φ + Cαα

−1
φ + Dαα

−2
φ )φα × φα,

where λφ = 〈�(F ),φ×φ〉
〈φ,φ〉2 . And using the expressions for Aα, Bα, Cα, Dα from Corollary A.2

we find that

eord(�φ(Fα))

=
λφ

(
1 − βf

pk

)
(
1 − βφ

αφ

)2

(
Aα − (Aα − 1) 2pap(φ)

α(p + 1) + ((Aα − 1)pk+1 − pβf ) 1
α2

)
φα × φα =

=
λφ

(
1 − βf

pk

)
(
1 − βφ

αφ

)2

(
(Aα − 1)

(
1 − 2pap(φ)

αφ(p + 1) + pβφ

αφ

)
+ 1 − pβf

α2

)
φα × φα =

=
λφ

(
1 − βf

pk

)
(
1 − βφ

αφ

)2

⎛⎝ (p− 1)
(
1 − pβφ

αφ

)(
1 − βf

pk−1

)
(
p− αφ

βφ

)(
p− βφ

αφ

) +
(

1 − βfβφ/αφ

pk−1

)⎞⎠φα × φα,

where we have used that
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1 − 2pap(φ)
αφ(p + 1) + pβφ

αφ
= pαφ + αφ − 2pαφ − 2pβφ + p2βφ + pβφ

αφ(p + 1)

= αφ − pαφ − pβφ + p2βφ

αφ(p + 1) =

= 1 − p− pβφ/αφ + p2βφ/αφ

p + 1 = −
(p− 1)

(
1 − pβφ

αφ

)
p + 1

and that

Aα − 1 = −
(p + 1)

(
1 − βf

pk−1

)
(
p− αφ

βφ

)(
p− βφ

αφ

) .
After some elementary algebra, the above computation eventually yields

〈eord(�φ(Fα)), φα × φα〉
〈φα × φα, φα × φα〉

=
p
(
1 − βf

pk

)(
1 − βfβφ/αφ

pk

)(
p− αφ

βφ

)(
1 − βφ

αφ

)
(
p− αφ

βφ

)(
p− βφ

αφ

)(
1 − βφ

αφ

)2 λφ =

=
p
(
1 − βf

pk

)(
1 − βfβφ/αφ

pk

)
(
p− βφ

αφ

)(
1 − βφ

αφ

) λφ =

(
1 − βf

pk

)(
1 − βfβφ/αφ

pk

)
(
1 − βφ

αφ

)(
1 − βφ

pαφ

) λφ,

thereby proving the result. �
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