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Abstract. In this note we give a detailed construction of a Λ-adic d-th Shintani lifting. We

derive a Λ-adic version of Kohnen’s formula relating Fourier coefficients of half-integral weight
modular forms and special values of twisted L-series. As a by-product we obtain a mild gener-

alization of such classical formula.

Contents

1. Introduction 1
2. d-th Shintani lifting 5
3. d-th Shintani liftings of p-stabilized newforms 11
4. Hida theory and modular symbols 19
5. The Λ-adic d-th Shintani lifting 25
References 34

1. Introduction

In his seminal paper [Shi73], Shimura unrevealed the first instance of what is nowadays called
theta (or Howe) correspondence, which was systematically studied later by Waldspurger [Wal80,
Wal91]. Shimura’s work contained an in-depth study of half-integral weight modular forms, and
provided Hecke-equivariant linear maps

Sk,N,χ,d : S+
k+1/2(N,χ) −→ S2k(N,χ2)

from Kohnen’s plus subspace of the space of half-integral weight modular forms to the space of
classical modular forms of even weight. The construction depends on an auxiliary discriminant d
and different choices yield different maps.

By means of certain cycle integrals along geodesic paths on the complex upper half plane, one
can define Hecke-equivariant linear maps

θk,N,χ,d : S2k(N,χ2) −→ S+
k+2/1(N,χ)

which are adjoint to Sk,N,χ,d with respect to the Petersson product, meaning that

〈g, θk,N,χ,d(f)〉 = 〈Sk,N,χ,d(g), f〉 for all f ∈ S2k(N,χ2), g ∈ S+
k+1/2(N,χ).

This construction was first studied by Shintani [Shi75], and subsequently extended by Kohnen and
Zagier [KZ81], Kohnen [Koh85], and Kojima–Tokuno [KT04], among others. The maps θk,N,χ,d are
referred to as d-th Shintani liftings. We will drop χ of the notation when it is the trivial character.

Under certain assumptions, for example when N is squarefree and χ is trivial, a theory of new-
forms of half-integral weight à la Atkin–Li–Miyake is available, and the d-th Shimura and d-th Shin-
tani liftings establish a Hecke-equivariant isomorphism1 between Snew2k (N,χ2) and S+,new

k+1/2 (N,χ):

this is the so-called Shimura–Shintani correspondence. In this direction, one of the main moti-
vations of the work of Kohnen and Zagier was to obtain an explicit Waldspurger-type formula
relating Fourier coefficients of half-integral weight modular forms and twisted L-values of classical
modular forms. For instance, suppose that N is odd and squarefree, and that g ∈ S+,new

k+1/2 (N) and

f ∈ Snew2k (N) are two non-zero new modular forms in Shimura–Shintani correspondence. Then,

Date: December 2019.
1We warn the reader that a single choice of d does not provide the isomorphism on the full spaces. In general

one has to consider a suitable combination of d-th liftings (cf. [Koh82, Theorem 2]).
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Kohnen’s formula [Koh85, Corollary 1] asserts that for any fundamental discriminant D with
(−1)kD > 0 and such that (D` ) = w` for all primes ` | D, where w` is the eigenvalue of the
Atkin–Lehner involution W` acting on f , one has

(1)
|a|D|(g)|2

〈g, g〉
= 2ν(N) (k − 1)!

πk
|D|k−1/2L(f,D, k)

〈f, f〉
.

Here, a|D|(g) denotes the |D|-th Fourier coefficient of g, and ν(N) is the number of prime divisors

of N . We insist that fixed a newform f ∈ Snew2k (N), this formula is valid for any g ∈ S+,new
k+1/2 (N) in

Shimura–Shintani correspondence with f ; any two such forms will be multiple one of each other,
and the formula is clearly invariant under replacing g with a non-zero multiple of it.

One of the key ingredients in the proof of (1) is actually a formula that relates directly the |d|-th
Fourier coefficient of the d-th Shintani lifting of f with the twisted special value L(f, d, k). Indeed,
assuming that (−1)kd > 0 and that (d

` ) = w` for all primes ` | N , it is shown in [Koh85] that

(2) a|d|(θk,N,d(f)) = (−1)[k/2]2ν(N)+k|d|k(k − 1)! · L(f, d, k)

(2πi)kg(χd)
,

where g(χd) is the Gauss sum attached to the quadratic character χd. While Kohnen’s formula
in (1) depends notably on having a good theory of newforms as cited above (which in particular
provides ‘multiplicity one’), and therefore it does not extend easily when dropping the assumptions
that N is squarefree and χ is trivial, the formula in (2) does generalize quite easily. We refer the
reader to Kojima–Tokuno [KT04] for an extension of Kohnen’s work and ideas, still under some
mild assumptions on the pair (N,χ).

The pioneering work of Shimura and Waldspurger not only motivated the above mentioned
works by Kohnen and Zagier, but it has also inspired many other investigations along several years.
For instance, Gross–Kohnen–Zagier studied in [GKZ87] the relation between Fourier coefficients
of half-integral weight modular forms (and actually, of Jacobi forms) and Heegner divisors. In
turn, several variants of the Gross–Kohnen–Zagier formula have been proved so far. For example,
Darmon–Tornaŕıa [DT08] proved a Gross–Kohnen–Zagier type formula for Stark–Heegner points
attached to real quadratic fields. This variant further allowed them to obtain a similar relationship
as in Kohnen’s formula for central critical derivatives, with the role of the Fourier coefficient a|D|(g)
being played by the first derivative of the |D|-th Fourier coefficient of a p-adic family of half-integral
forms. Also in this line, the p-adic variation of the Gross–Kohnen–Zagier theorem, including the
existence of Λ-adic families of Jacobi forms, is studied in [LN19a, LN19b]. In a different direction
and with a different flavour, there is also the work of Ono–Skinner [OS98], studying the divisibility
of Fourier coefficients of half-integral weight modular forms by looking at the residual Galois
representations of integral weight modular forms in correspondence with them. Their main result
has interesting arithmetic consequences about special L-values of even integral weight eigenforms,
twisted by quadratic characters, and about Tate–Shafarevich groups of elliptic curves.

In this paper we focus on the p-adic interpolation of the above liftings. Our main source of
inspiration is the work [Ste94] of Stevens, who successfully described the p-adic interpolation of
the first Shintani lifting. To achieve this, Stevens combined a cohomological interpretation of
Shintani’s cycle integrals with the theory of Λ-adic modular symbols developed in [GS93]. This
was yet another arithmetic application of the widely successful theory initiated by Hida in [Hid86].

The first goal of this note is to describe a Λ-adic d-th Shintani lifting interpolating p-adically
the classical d-th Shintani lifting. The main novelty of our approach is that we can derive a Λ-adic
version of Kohnen’s formula stated in (2). This formula, which will be further described below,
relates the |d|-th Fourier coefficient of the Λ-adic d-th Shintani lifting to a suitable p-adic L-function
interpolating twisted central L-values of p-ordinary eigenforms (built from the two-variable p-adic
L-function of Greenberg–Stevens). The reader may intepret this formula as a cuspidal analogue of
the well-known relation between the 0-th Fourier coefficient of a Λ-adic Eisenstein series and the
relevant Kubota–Leopoldt p-adic L-function.

In more detail, given a Hida family f of ordinary p-stabilized newforms of tame level N and
tame character χ2, we construct a p-adic family of half-integral weight modular forms interpolating
the d-th Shintani liftings of the classical specializations of f . To describe our main results, suppose
that f is given by a power series f ∈ R[[q]], where R is a finite flat integral extension of the Iwasawa
algebra Λ = Zp[[1 + pZp]] ' Zp[[T ]]. Let Ucl denote the subset of classical points in the p-adic
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weight space W = Hom(R, Q̄p), so that f(κ) ∈ S2k(Np, χ2) is the q-expansion of an ordinary
p-stabilized newform of level Np and character χ2 for all κ ∈ Ucl. We show in Theorem 5.9 that
the d-th Shintani liftings of the classical specializatons f(κ) are p-adically interpolated by a power

series Θd(f) ∈ R̃[[q]], where R̃ is the metaplectic covering of R (cf. Section 5). This induces a

natural map π : W̃ → W on p-adic weight spaces that ‘doubles’ the signatures of the arithmetic
points.

Theorem. Let d be a fundamental discriminant with d ≡ 0 (mod p). There exists a power series

Θd(f) =
∑
m≥1

am(Θd(f))qm ∈ R̃[[q]]

and a subset of classical points Ũcl ⊂ W̃ above Ucl such that

Θd(f)(κ̃) = C(k, χ, d)−1 Ωκ

Ω−f(κ)

θk,Np,χ,d(f(κ))

for all κ̃ ∈ Ũcl, where κ = π(κ̃) ∈ Ucl. Here, C(k, χ, d) is a constant defined in (11), and Ωf(κ)

and Ωκ are complex and p-adic periods attached to f(κ) and κ, respectively (cf. Section 4.3).

We refer the reader to Section 5 for the details of the construction and precise statements. We
point out that one can construct a priori two different Λ-adic d-th Shintani liftings of a given Hida
family f , each of them satisfying an interpolation property on a different dense subset of classical
points.

As a consequence of the existence of a Λ-adic d-th Shintani lifting, we prove in Theorem 5.13 a
Λ-adic version of Kohnen’s formula (2). In the simplified case in which χ is the trivial character

Theorem 5.13 reduces to the following identity in R̃:

a|d|(Θd(f)) = sgn(d) · 2ν(N) · ãp(f) · L̃GS
p (f , d).

Here, the p-adic L-function L̃GS
p (f , d) ∈ R̃ interpolates the values L(f(κ), d, k) and it is built from a

suitable restriction of the two-variable p-adic L-function studied by Greenberg–Stevens in [GS93],

and ãp(f) is the pull-back of ap(f) along the map π : W̃ → W. As a by-product, we obtain a mild
generalization of the classical formula in (2), and we also describe exceptional zero phenomena for
the coefficients a|d|(Θd(f)).

We should mention a few works that are in the orbit of this article. First of all, we must say
that Stevens’ Λ-adic version of the first Shintani lifting was generalized by Park [Par10] to the
non-ordinary finite slope case. Secondly, Park’s approach has recently been extended to the case
of the d-th Shintani lifting by Makiyama [Mak17], where d is chosen such that p - d. Our approach
is then complementary to Makiyama’s, and it is inspired by the preprint [Kaw] by Kawamura,
who constructs certain p-adic families of Siegel cusp forms of arbitrary genus interpolating Duke–
Imamoḡlu liftings of level N = 1. Our construction provides a much more general version of the
Λ-adic d-th Shintani lifting than the one needed in Kawamura’s discussion.

To close this introduction, let us briefly explain the organization of the article. In section 2
we set the basic definitions for integral binary quadratic forms, we describe Kojima–Tokuno’s
generalization of Kohnen’s d-th Shintani lifting, and we also explain the exact relation with special
values of L-functions. Section 3 is devoted to a classification result for integral binary quadratic
forms from [GKZ87], which we use to derive the exact relations between the liftings in level N
and Np, leading to a comparison of the Fourier coefficients of the lifting of a modular form with
those of its p-stabilization. In chapter 4 we settle the language of Hida theory, and we describe
classical modular symbols and their Λ-adic version à la Greenberg–Stevens. Section 5 contains the
main results and applications. In particular, the definition of Θd is given in equation (30), the
interpolation property is proved in Theorem 5.9, and the above mentioned Λ-adic Kohnen formula
is proved in Theorem 5.13.
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1.1. Notation. We shall fix the following general notation throughout the entire paper. As usual
Z, Q, R, and C will denote the ring of integers, the field of rational numbers, the field of real
numbers, and the field of complex numbers, respectively. If z ∈ C× and x ∈ C, we define
zx = ex log z, where log z = log |z|+ i arg(z) with −π < arg(z) ≤ π. If ψ is a Dirichlet character of
conductor c, we write

g(ψ) =
∑

a∈(Z/cZ)×

ψ(a)e2πia/c

for the Gauss sum of ψ. When ψ is primitive, one has |g(ψ)|2 = ψ(−1)g(ψ)g(ψ̄) = c. If ψ, ψ′

are primitive Dirichlet characters of relatively prime conductors c, c′, respectively, then g(ψψ′) =
ψ(c′)ψ′(c)g(ψ)g(ψ′).

For any commutative ring R with unit, SL2(R) will denote the special linear group over R. The
group SL2(R) acts as usual on the complex upper half plane H via linear fractional transformations.
If r,M ≥ 1 are integers, and ψ is a Dirichlet character modulo M , we write Sr(M,ψ) for the
(complex) space of cusp forms of weight r, level M and character ψ. We define the Petersson
product of two cusp forms f, g ∈ Sr(M,ψ) by

〈f, g〉 =
1

iM

∫
Γ0(M)\H

f(z)g(z)yr−2dxdy,

where z = x + iy and iM = [SL2(Z) : Γ0(M)]. With this normalization, the Petersson product of
f and g does not change if we replace M by a multiple of it and see f and g as forms of that level.

If N ≥ 1 is an odd integer, k ≥ 0 is an integer, and χ is a Dirichlet character modulo N ,
we write χ̃ for the Dirichlet character modulo 4N given by ( 4ε

· )χ, where ε = χ(−1), and write
Sk+1/2(4N, χ̃) for the (complex) space of cusp forms of half-integral weight k + 1/2, level 4N and
character χ̃, in the sense of Shimura [Shi73]. Observe that χ̃ is an even character by construction.
If f, g ∈ Sk+1/2(4N, χ̃), their Petersson product is

〈f, g〉 =
1

i4N

∫
Γ0(4N)\H

f(z)g(z)yk−3/2dxdy.

We will denote by S+
k+1/2(N,χ) the subspace of Sk+1/2(4N, χ̃) consisting of those forms f whose

q-expansion has the form

f(z) =
∑
n≥1,

ε(−1)kn≡0,1 (4)

a(n)qn.

This is usually referred to as ‘Kohnen’s plus space’.
For every positive integer m, we denote by ℘k,4N,m,χ̃ ∈ Sk+1/2(4N, χ̃) the m-th Poincaré series

characterized by the fact that

〈g, ℘k,4N,m,χ̃〉 = i−1
4N

Γ(k − 1/2)

(4πm)k−1/2
ag(m) for all g(z) =

∑
m≥1

ag(m)qm ∈ Sk+1/2(4N, χ̃),

and we denote by Pk,N,m,χ the projection of ℘k,4N,m,χ̃ in Kohnen’s plus space S+
k+1/2(N,χ).

We may recall the definition of Hecke operators acting on the space S+
k+1/2(N,χ). For a prime

p - N , and f =
∑
a(n)qn ∈ S+

k+1/2(N,χ), the action of the Hecke operator Tk+1/2,N,χ(p2) is given

by

Tk+1/2,N,χ(p2)f(z) =
∑
n≥1,

ε(−1)k≡0,1(4)

(
a(p2n) + χ(p)

(
ε(−1)kn

p

)
pk−1a(n) + χ(p2)p2k−1a(n/p2)

)
qn,

where one reads a(n/p2) = 0 if p2 - n. For primes p | N , one also defines operators U(p2) by setting

U(p2)f(z) =
∑
n≥1,

ε(−1)k≡0,1(4)

a(p2n)qn.
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2. d-th Shintani lifting

The aim of this section is to review the definition of the so-called d-th Shintani lifting, where d
is a fixed fundamental discriminant. This is a Hecke-equivariant linear map from integral weight
modular forms to half-integral weight modular forms, studied in detail by Kohnen in [Koh85],
building on the seminal work of Shintani [Shi75], and later generalized by others. We will briefly
summarize the approach in Kojima–Tokuno [KT04], which essentially adapts Kohnen’s work for
arbitrary odd level and arbitrary nebentype character.

Before entering into the proper construction of the d-th Shintani lifting, we fix some notations
concerning integral binary quadratic forms that will be of good use.

2.1. Integral binary quadratic forms. We write Q for the set of all integral binary quadratic
forms

[a, b, c](X,Y ) = aX2 + bXY + cY 2, a, b, c ∈ Z,

on which Γ0(1) = SL2(Z) acts by the rule

([a, b, c] ◦ γ)(X,Y ) = [a, b, c]((X,Y )tγ), γ ∈ SL2(Z).

If one identifies the quadratic form Q = [a, b, c] with the symmetric matrix

AQ =

(
a b/2
b/2 c

)
,

then [a, b, c] ◦ γ corresponds to the matrix tγAQγ. Given Q = [a, b, c] ∈ Q, its discriminant is by
definition b2− 4ac = det(2AQ). It is immediate that the discriminant is invariant under the above
Γ0(1)-action.

If ∆ is a discriminant, we write Q(∆) for the subset of quadratic forms in Q having discriminant
∆. There is an induced Γ0(1)-action on Q(∆). If d is a fundamental discriminant dividing ∆ and
Q = [a, b, c] ∈ Q(∆), then we set

ωd(Q) =

{
0 if gcd(a, b, c, d) > 1,(
d
r

)
if gcd(a, b, c, d) = 1 and Q represents r, gcd(r, d) = 1.

One can easily check that this definition does not depend on the choice of the integer r, when
gcd(a, b, c, d) = 1. In addition, the value of ωd(Q) depends only on the Γ0(1)-equivalence class of
Q. Besides the definition, when ∆ > 0 one can compute ωd(Q) by using the following explicit
formula (cf. [Koh85, p.263, Proposition 6])

(3) ωd([a, b, c]) =
∏
qν ||a

(
d/q∗

qν

)(
q∗

ac/qν

)
.

Here, q runs over the prime factors of a, qν ||a means that qν | a and gcd(q, a/qν) = 1, and

q∗ :=
(
−1
q

)
q.

We denote by Q0(∆) the subset of primitive forms in Q(∆), namely those forms for which
gcd(a, b, c) = 1. The induced function ωd : Q0(∆)/Γ0(1)→ {±1} is usually referred to as a genus
character. When endowing Q0(∆)/Γ0(1) with its natural group structure, ωd becomes a group
homomorphism; and conversely, every group homomorphism Q0(∆)/Γ0(1)→ {±1} is of the form
ωd′ for some fundamental discriminant d′ dividing ∆, the only relations being that ωd = ωd′ if
∆ = dd′m2 for some natural number m.

If M ≥ 1 is an integer, we also denote by QM (∆) the subset of forms Q = [a, b, c] ∈ Q(∆) such
that a ≡ 0 (mod M). One can easily check that the congruence subgroup Γ0(M) acts on QM (∆).
If t > 0 is a divisor of M , then the map

(4) Q = [a, b, c] 7→ Qt := Q ◦
(

t 0
0 1

)
= [at2, bt, c]

yields a bijection QM/t(∆)→ QMt(∆t
2). If d is a fundamental discriminant dividing ∆ as above,

one has

(5) ωd(Qt) = χd(t2)ωd(Q),

which equals ωd(Q) if gcd(t, d) = 1. When we do not want to specify the discriminant, QM will
denote the union of all the sets QM (∆).
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2.2. The d-th Shimura and Shintani liftings. Fix through all this paragraph an odd integer
N ≥ 1 and an integer k ≥ 1, and fix also a Dirichlet character χ modulo N . Let N0 ≥ 1 be the
conductor of χ, χ0 be the primitive character modulo N0 associated with χ, and put N1 = N/N0

and ε = χ(−1). Although it is not always needed, for simplicity we assume through all our
discussion that gcd(N0, N1) = 1. Also, for technical reasons that will be apparent below, we make
the following hypothesis.

(?) if k = 1, either N is squarefree or χ is trivial and N is cubefree.

Fix also a fundamental discriminant d satisfying gcd(N0, d) = 1.
If Q = [a, b, c] ∈ Q is an integral binary quadratic form, we set χ0(Q) := χ0(c). For an integer

u ≥ 1 such that gcd(N0, u) = 1, and d′ a discriminant with dd′ > 0, we consider the set of integral
binary quadratic forms

QN0u(N2
0 dd
′) = {Q = [a, b, c] ∈ Q : b2 − 4ac = N2

0 dd
′, N0u | a},

as defined in the previous paragraph. Recall that there is a natural action of Γ0(N0u) on this set.
We consider now the subset

LN0u(N2
0 dd
′) := {Q = [a, b, c] ∈ QN0u(N2

0 dd
′) : gcd(N0, c) = 1},

which is also invariant under Γ0(N0u). For k ≥ 2, define a function fk,χ0

N0,u
(z; d, d′) of z ∈ H by

(6) fk,χ0

N0,u
(z; d, d′) :=

∑
Q∈LN0u

(N2
0dd
′)

χ0(Q)ωd(Q)Q(z, 1)−k.

These functions converge absolutely uniformly on compact sets, and further enjoy the following
properties:

i) fk,χ0

N0,u
(g · z; d, d′) = χ̄2

0(δ)(γz + δ)2kfk,χ0

N0,u
(z; d, d′) for all

g =

(
α β
γ δ

)
∈ Γ0(N0u);

ii) fk,χ0

N0,u
(−z; d, d′) = fk,χ0

N0,u
(z; d, d′) (the map [a, b, c] 7→ [a,−b, c] gives a bijection of LN0u(N2

0 dd
′)

onto itself);

iii) fk,χ0

N0,u
(z̄; d, d′) = fk,χ̄0

N0,u
(z; d, d′).

The functions fk,χ0

N0,u
(z; d, d′) yield cusp forms of weight 2k, level N0u, and character χ̄2

0. For

k = 1, the series in (6) is not absolutely convergent. However, one can apply “Hecke’s convergence

trick” to define fk,χ0

N0,u
(z; d, d′) in a similar manner (cf. [Koh85, p. 239]). In this case, hypothesis

(?) ensures that these functions are cusp forms as well. An explicit description of their Fourier
coefficients (for k ≥ 2) can be found in [KT04, Proposition 1.2].

Remark 2.1. The functions fk,χ0

N0,u
(z; d, d′) as above coincide with those denoted by fk,N2

0 ,u
(z; d, d′, χ0)

in [KT04]. Indeed, the sum in equation (6) could be taken over the sets QN0u(N2
0 dd
′) and even

QN2
0u

(N2
0 dd
′) remaining unchanged, due to the presence of the term χ0(Q).

Next consider the ‘kernel function’ Ωk,N,χ(z, τ ; d) of (z, τ) ∈ H× H defined by

Ωk,N,χ(z, τ ; d) = iNc
−1
k,d,χ

∑
m≥1,

ε(−1)km≡0,1(4)

mk−1/2

∑
t|N1

µ(t)χdχ̄0(t)tk−1fk,χ0

N0,N1/t
(tz; d, ε(−1)km)

 e2πimτ ,

where

iN = [Γ0(1) : Γ0(N)], ck,d,χ = (−1)[k/2]|d|−k+1/2π

(
2k − 2

k − 1

)
2−3k+2εk−1/2N1−k

0

g(χd)

g(χdχ̄0)
.

For a fixed τ ∈ H, the function Ωk,N,χ(·, τ ; d) on H is a cusp form of weight 2k, level N and
character χ̄2

0 (for k = 1, one needs again hypothesis (?)). One has the basic identity (cf. [KT04,
Theorem 2.2])

Ωk,N,χ(z, τ ; d) = C
∑
n≥1

nk−1

∑
d|n

χdχ̄(d)(n/d)kPk,N,n2|d|/d2,χ(τ)

 e2πinz,
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where the Pk,N,n2|d|/d2,χ are the Poincaré series as defined above, and

C = iNc
−1
k,d,χ

(−1)[k/2]3(2π)k

(k − 1)!
εk−1/2N1−k

0

g(χd)

g(χdχ̄0)
.

With our running assumptions on N , k, χ and d, for each cusp form

g(τ) =
∑
n≥1,

ε(−1)kn≡0,1(4)

c(n)e2πinτ ∈ S+
k+1/2(N,χ)

in Kohnen’s plus space, one can define a function

Sk,N,χ,d(g)(z) =
∑
n≥1

∑
d|n

χdχ(d)dk−1c(n2|d|/d2)

 e2πinz.

which satisfies the following property:

Sk,N,χ,d(g)(z) = 〈g,Ωk,N,χ(−z̄, ·; d)〉.

It follows that, for a fixed τ , z 7→ Ωk,N,χ(−z̄, τ ; d) defines a cusp form of weight 2k, level N , and
character χ2. As a consequence, g 7→ Sk,N,χ,d(g) yields a linear map

Sk,N,χ,d : S+
k+1/2(N,χ) −→ S2k(N,χ2)

with kernel function Ωk,N,χ(−z̄, ·; d). In addition, this map commutes with Hecke operators (mean-
ing that Tk+1/2,N,χ(p2) corresponds to T2k,N,χ2(p) for p - N and U(q2) corresponds to T2k,N,χ2(q)
for q | N). The linear map Sk,N,χ,d is the so-called d-th Shimura lifting.

We denote by θk,N,χ,d : S2k(N,χ2)→ S+
k+1/2(N,χ) the adjoint map with respect to the Peters-

son product, meaning that for all g ∈ S+
k+1/2(N,χ) and f ∈ S2k(N,χ2)

〈g, θk,N,χ,d(f)〉 = 〈Sk,N,χ,d(g), f〉.

Thus for any f ∈ S2k(N,χ2) we have that:

θk,N,χ,d(f) = 〈f(z),Ωk,N,χ(−z̄, τ ; d)〉 = i−1
N

∫
Γ0(N)\H

f(z)Ωk,N,χ(−z̄, τ ; d)y2k−2dxdy =

= iNc
−1
k,d,χ

∑
m≥1,

ε(−1)km≡0,1(4)

mk−1/2

∑
t|N1

µ(t)χdχ̄0(t)tk−1〈f, fk,χ̄0

N0,N1/t
(−tz; d, ε(−1)km)〉

 qm.

In particular, an explicit expression for θk,N,χ,d(f) can be determined by computing the Petersson
products

〈f, fk,χ̄0

N0,N1/t
(−tz; d, ε(−1)km)〉,

for m ≥ 1 with ε(−1)km ≡ 0, 1 (mod 4). Using property ii) listed above for the functions fk,N0,u,
we see that

fk,χ̄0

N0,N1/t
(−tz; d, ε(−1)km) = fk,χ̄0

N0,N1/t
(tz; d, ε(−1)km).

Secondly, using the bijection in (4) and that ωd(Qt) = χd(t2)ωd(Q) by (5), we deduce that

(7) fk,χ̄0

N0,N1t
(z; d, ε(−1)kmt2) = χd(t2)fk,χ̄0

N0,N1/t
(−tz; d, ε(−1)km)

for all divisors t of N1. Therefore, we may rewrite the above expression for θk,N,χ,d(f) as

θk,N,χ,d(f) = iNc
−1
k,d,χ

∑
m≥1,

ε(−1)km≡0,1(4)

mk−1/2

∑
t|N1

µ(t)χdχ̄0(t)tk−1〈f, fk,χ̄0

N0,N1t
(z; d, ε(−1)kmt2)〉

 qm.

Finally, proceeding similarly as in [Koh85, p. 265-266], one can check that for t | N1

(8) 〈f, fk,χ̄0

N0,N1t
(z; d, ε(−1)kmt2)〉 = i−1

Ntπ

(
2k − 2

k − 1

)
2−2k+2(|d|mt2)−k+1/2rk,Nt,χ(f ; d, ε(−1)kmt2),
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where for any discriminant d′ with dd′ > 0 we set

rk,Nt,χ(f ; d, d′) :=
∑

Q∈LNt(N2
0dd
′)/Γ0(Nt)

ωd(Q)χ0(Q)

∫
CQ

f(z)Q(z, 1)k−1dz.

Here, for each Q = [a, b, c], CQ denotes the image in Γ0(N)\H of a geodesic in the upper half plane
associated with Q. Namely, consider the semicircle SQ in the complex upper half plane defined by
the equation a|z|2 + bRe(z) + c = 0, and denote by ωQ, ω′Q ∈ P1(R) the pair of points

(ωQ, ω
′
Q) :=


(
b−
√

disc(Q)

2a ,
b+
√

disc(Q)

2a

)
if a 6= 0,

(−c/b, i∞) if a = 0, b > 0,

(i∞,−c/b) if a = 0, b < 0.

Notice that ωQ and ω′Q are the endpoints of the semicircle. When disc(Q) is a perfect square, we

let CQ be the image of SQ (oriented from ωQ to ω′Q) in Γ0(N)\H. If disc(Q) is not a perfect square,

then let Γ0(N)Q be the stabilizer of Q in Γ0(N), Γ0(N)+
Q be its index two subgroup of positive

trace elements, and

γQ =

(
r s
t u

)
∈ Γ0(N)+

Q

be the unique generator such that r − tωQ > 1. Then, we let CQ be the image in Γ0(N)\H of the
oriented geodesic path from γQ(i∞) to i∞. Note that with this construction, the endpoints of CQ
are always rational cusps. We will write

Ik,χ(f,Q) := χ0(Q)

∫
CQ

f(z)Q(z, 1)k−1dz,

so that

(9) rk,Nt,χ(f ; d, d′) =
∑

Q∈LNt(N2
0dd
′)/Γ0(Nt)

ωd(Q)Ik,χ(f,Q).

With this, one eventually concludes that

(10) θk,N,χ,d(f) = C(k, χ, d)
∑
m≥1,

ε(−1)km≡0,1(4)

∑
t|N1

µ(t)χdχ̄0(t)t−k−1rk,Nt,χ(f ; d, ε(−1)kmt2)

 qm,

where

(11) C(k, χ, d) := c−1
k,d,χπ

(
2k − 2

k − 1

)
2−2k+2|d|1/2−k = (−1)[k/2]εk+1/22kNk−1

0

g(χdχ̄0)

g(χd)
.

When the character χ is trivial, we will denote this constant by C(k, d) = (−1)[k/2]2k.

Remark 2.2. One can easily check that the quantities rk,Nt,χ(f ; d, d′) in (9) are all zero when
ε(−1)kd < 0, so that θk,N,χ,d(f) vanishes identically. Therefore we may assume that d is chosen
such that ε(−1)kd > 0.

Remark 2.3. The explicit expression for θk,N,χ,d in [KT04, Theorem 3.2] reads slightly different,
with t−k instead of t−k−1, since they use a slight variation of the sum of cycle integrals rk,Nt,χ,
considering equivalence by Γ0(N) instead of Γ0(Nt). The two sums yield the same result, and the
reason for the extra factor t−1 showing up in our expression is due to the fact that iNt = t · iN . For
trivial character, (10) recovers the expression in [Koh85, Eq. (8)], where the constant C(k,1, d) =
(−1)[k/2]2k seems to be missing.

When f ∈ S2k(N,χ2) is new, the expression in (10) gets simplified. Indeed, the identity in (7)

shows that the forms fk,χ̄0

N0,N1t
(z; d, ε(−1)kmt2) are old when t > 1, and hence the left hand side of

(8) vanishes, so that rk,Nt,χ(f ; d, ε(−1)kmt2) = 0 for t > 1. Therefore, when f ∈ S2k(N,χ2) is new
one finds

(12) θk,N,χ,d(f) = C(k, χ, d)
∑
m≥1,

ε(−1)km≡0,1(4)

rk,N,χ(f ; d, ε(−1)km)qm.
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In particular, if m ≥ 1 is such that ε(−1)km ≡ 0, 1 (mod 4), then the m-th coefficient of θk,N,χ,d(f)
is just

am(θk,N,χ,d(f)) = C(k, χ, d)rk,N,χ(f ; d, ε(−1)km).

2.3. Fourier coefficients and L-values. It is well-known that Fourier coefficients of half-integral
weight modular forms encode special values of (twisted) L-series of integral weight modular forms.
We will review this phenomenon in this paragraph, assuming for simplicity of exposition that N
and d are relatively prime.

Indeed, suppose first that N is odd and squarefree, and let f ∈
∑
an(f)qn ∈ S2k(N) be a

normalized Hecke eigenform of weight 2k, level Γ0(N), and trivial nebentype character. For each
prime divisor ` of N , let W` denote the `-th Atkin–Lehner involution, and w` ∈ {±1} be the
Atkin–Lehner eigenvalue of f at `, so that f |W` = w`f . Let d be a fundamental discriminant with
(−1)kd > 0 and such that gcd(N, d) = 1. Let L(f, χd, s) be the complex L-series of f twisted
by the quadratic character χd. This L-series has holomorphic continuation to the whole complex
plane, yielding a completed L-series Λ(f, χd, s) that satisfies the functional equation

Λ(f, χd, s) = (−1)kχd(−N)wNΛ(f, χd, 2k − s),

where wN ∈ {±1} is the product of all the w` for ` | N prime. In this setting, Kohnen’s formula
asserts that if g =

∑
an(g)qn ∈ S+

k+1/2(4N)[f ] is any non-zero half-integral weight modular form

of weight k+ 1/2 and level 4N in Shimura–Shintani correspondence with f , and χd(`) = w` for all
prime divisors ` of N , then (see [Koh85, Corollary 1])

(13)
|a|d|(g)|2

〈g, g〉
= 2ν(N) (k − 1)!

πk
|d|k−1/2L(f, χd, k)

〈f, f〉
,

where ν(N) is the number of prime divisors of N . A key point in the proof of this formula is the
identity

(14) rk,N (f ; d, d) = 2ν(N)|d|k(k − 1)! · L(f, χd, k)

(2πi)kg(χd)
,

which the reader can check in p. 243 of op. cit. (note that g(χd) = χd(−1)|d|/g(χd) =
(−1)k|d|/g(χd)). Assuming that f is new, we have a|d|(θk,N,d(f)) = C(k, d)rk,N (f ; d, d), and
hence we deduce that

(15) a|d|(θk,N,d(f))) = C(k, d)2ν(N)|d|k(k − 1)! · L(f, χd, k)

(2πi)kg(χd)
.

Kohnen’s formula in (13) has been generalized by Kojima–Tokuno to the case where f has non-
squarefree level and non-trivial nebentype character, under a suitable multiplicity one assumption.
We refer the reader to [KT04, Theorems 4.1, 4.2] for the details. We will rather focus on the
identity analogous to (14), which is also a key step in the proof of the generalization of (13) but it
holds unconditionally. In order to describe such identity, we need to introduce some notation.

Let f ∈ Snew
2k (N,χ2) be a normalized newform of weight 2k, odd level N ≥ 1, and nebentype

character χ2. As before, N0 will denote the conductor of χ, χ0 the primitive character associated
with χ, and ε = χ(−1). We continue to assume that gcd(N0, N1) = 1, where N1 = N/N0, and
hypothesis (?). With this, let d be a fundamental discriminant such that ε(−1)kd > 0, and assume
further that2 gcd(N, d) = 1. We will briefly explain how does one relate rk,N,χ(f ; d, d), as defined
in (9), to the special value L(f, χdχ̄0, k) of the L-series of f twisted by χdχ̄0, yielding the analogous
identity to (14) above.

For each positive divisor d of N1, with gcd(d,N1/d) = 1 (we write d||N1), let Wd be the d-th
Atkin–Lehner element in GL+

2 (R) defined by any matrix

Wd =
1√
d

(
d αd
N βdd

)
where αd, βd ∈ Z are such that βdd

2 − αdN = d.

Since d divides exactly N1, observe from the definition that βd ≡ d−1 modulo N/d.
Since we are considering divisors of N1, the above elements Wd act as automorphisms of

S2k(N,χ2) via the weight 2k slash operator. Furthermore, since f is a normalized newform,

2Notice that this is stronger than our previous assumption gcd(N0, d) = 1.
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for each d as above there exists a normalized newform fd ∈ S2k(N,χ2) and a non-zero constant
wd(f) such that

f |2kWd = wd(f)fd.

These constants are multiplicative, meaning that if dd′||N1 with gcd(d, d′) = 1, then wdd′(f) =
wd(f)wd′(f).

The elements Wd also act on quadratic forms, by the rule

Q ◦Wd := tWdQWd, Q ∈ LN (N2
0 d

2).

It is straightforward to check that Q◦Wd belongs again to LN (N2
0 d

2). Since Wd normalizes Γ0(N),
the map Q 7→ Q ◦Wd establishes a bijection from LN (N2

0 d
2)/Γ0(N) to itself. In addition, one can

take the set

{
Qµ ◦Wd : µ ∈ Z/dZ× (Z/N0Z)×, d||N1

}
, Qµ =

(
0 dN0/2

dN0/2 µ

)
,

as a complete set of representatives for LN (N2
0 d

2)/Γ0(N). One can therefore rewrite the sum
defining rk,N,χ(f ; d, d) as a sum over the above set, and use the explicit representatives to compute
the involved cycle integrals and eventually deduce the following formula (cf. [KT04, (4-21), (4-22)]).
We sketch a proof for completeness.

Proposition 2.4 (Kojima–Tokuno). Let k ≥ 1 be an integer and N ≥ 1 be an odd integer. Let
χ be a Dirichlet character modulo N , with conductor N0 and associated primitive character χ0,
and let ε = χ(−1). Assume gcd(N0, N1) = 1, where N1 = N/N0, and let d be a fundamental
discriminant such that gcd(N, d) = 1 and ε(−1)kd > 0. If f ∈ S2k(N,χ2) is a normalized Hecke
eigenform, then

(16) rk,N,χ(f ; d, d) = χd(−1)Rd(f)(−1)k|d|kNk
0 (k − 1)! · L(f, χdχ̄0, k)

(2πi)kg(χdχ̄0)
,

where

Rd(f) =
∏
`e||N1

(
1 + χdχ̄0(`e)w`e(f)

1− χdχ̄0(`)a`(f)`−k

1− χdχ0(`)a`(f)`−k

)
.

Here, the product is over the prime divisors ` of N1, and for each such prime, with `e||N1, w`e(f)
denotes the constant associated with W`e as above.

Proof. By definition of rk,N,χ(f ; d, d), and choosing the above set of representatives, we must
compute

rk,N,χ(f ; d, d) =
∑
µ,d

ωd(Qµ ◦Wd)χ0(Qµ ◦Wd)

∫
CQµ◦Wd

f(z)(Qµ ◦Wd)(z, 1)k−1dz.

To do so, first observe that for an arbitrary Q

ωd(Q ◦Wd) = χd(d)ωd(Q) and χ0(Q ◦Wd) = χ0(β2
dd)χ0(Q) = χ̄0(d)χ0(Q),

where in the last equality we use that βd ≡ d−1 modulo N0. Also, notice that ωd(Qµ) = χd(µ)
because µ is represented by Qµ, and χ0(Qµ) = χ0(µ). Finally, for a quadratic form Q and

γ ∈ GL+
2 (R), one has∫

CQ

f(z)Q(z, 1)k−1dz =

∫
CQ◦γ

(f |2kγ)(z)(Q ◦ γ)(z, 1)k−1dz.
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With this, and recalling that f |2kWd = wd(f)fd, we see that

rk,N,χ(f ; d, d) =
∑
d

χd(d)χ0(β2
dd)wd(f)

∑
µ

χd(µ)χ0(µ)

∫
CQµ

fd(z)Qµ(z, 1)k−1dz =

=
∑
d

χdχ̄0(d)wd(f)
∑
µ

χdχ0(µ)

∫ i∞

−µ/dN0

fd(z)(dN0z + µ)k−1dz =

=
∑
d

χdχ̄0(d)wd(f)
∑
µ

χdχ0(µ)(idN0)k−1i

∫ ∞
0

fd

(
it− µ

dN0

)
tk−1dt =

= (idN0)k−1i
∑
d

χdχ̄0(d)wd(f)
∑
µ

χdχ0(−sgn(d)µ)

∫ ∞
0

fd

(
it+

µ

|d|N0

)
tk−1dt.

Now, notice that χd(sgn(d)) = χd(−1), hence χd(−sgn(d)µ) = χd(µ). Besides, by our choice of d
we have sgn(d) = ε(−1)k. Therefore, χ0(−sgn(d)µ) = εkχ0(µ). Thus,

rk,N,χ(f ; d, d) = ikεk(dN0)k−1
∑
d

χdχ̄0(d)wd(f)

∫ ∞
0

∑
µ

χdχ0(µ)fd

(
it+

µ

|d|N0

)
tk−1dt =

= ikεk(dN0)k−1
∑
d

χdχ̄0(d)wd(f)g(χdχ0)

∫ ∞
0

fd,χdχ̄0
(it)tk−1dt =

= ikεkχd(−1)k−1(|d|N0)k−1g(χdχ0)
(k − 1)!

(2π)k

∑
d

χdχ̄0(d)wd(f)L(fd, χdχ̄0, k),

where we have used Birch’s Lemma and the integral representation of L(fd, χdχ̄0, s). Now, using
[Miy06, Theorem 4.6.16], one checks that the sum over d equals

Rd(f) · L(f, χdχ̄0, k).

In addition, using that ik = (−1)ki−k, εk = χd(−1)k(−1)k, and that

g(χdχ0) = χd(−1)ε
|d|N0

g(χdχ̄0)
= (−1)k

|d|N0

g(χdχ̄0)
,

we can rewrite the above expression as

rk,N,χ(f ; d, d) = χd(−1)Rd(f)(−1)k|d|kNk
0 (k − 1)! · L(f, χdχ̄0, k)

(2πi)kg(χdχ̄0)
.

�

Note that the identity in (16) reduces to (14) when one assumes that χ is trivial, N is square-
free and χd(`) = w`(f) for all primes ` | N . Indeed, when χ is trivial we have N0 = 1 and
χd(−1)(−1)k = 1, and the Fourier coefficients of f are real, thus the assumption that N is square-
free yields Rd(f) = 2ν(N). Finally, recalling that when f is new we have a|d|(θk,N,χ,d(f)) =
C(k, χ, d)rk,N,χ(f ; d, d), with C(k, χ, d) as in (11), we immediately deduce the following conse-
quence.

Corollary 2.5. With the same assumptions as in the theorem, if f is new then

(17) a|d|(θk,N,χ,d(f)) = C(k, χ, d)χd(−1)Rd(f)(−1)k|d|kNk
0 (k − 1)! · L(f, χdχ̄0, k)

(2πi)kg(χdχ̄0)
.

Again, note that (17) reduces to (15) when χ is trivial, N is squarefree, and the same assumption
on Atkin–Lehner eigenvalues as above.

3. d-th Shintani liftings of p-stabilized newforms

We now investigate the relation between the Fourier coefficients of the d-th Shintani lifting of
a newform f ∈ S2k(N,χ2) and those of its ordinary p-stabilization in S2k(Np, χ2). To do so, we
need first to discuss a detailed study of the classification of integral binary quadratic forms up to
equivalence by congruence subgroups.
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3.1. Discussion on integral binary quadratic forms. Let N ≥ 1 be an odd integer, and let
∆ be a discriminant. Recall that we have introduced the set

QN (∆) = {[a, b, c] ∈ Q(∆) : a ≡ 0 (mod N)},

on which Γ0(N) acts. Our aim is to classify the Γ0(N)-orbits in this set, following the discussion
in [GKZ87] and emphasizing some aspects that will be of special interest for us. As a matter
of notation, we will write forms in QN (∆) as [aN, b, c], where a, b, c are integers. Yet another
invariant for the action of Γ0(N) on QN (∆) is the residue class of b modulo 2N . Notice that not
every residue class is allowed: one must have b2 ≡ ∆ (mod 4N). Setting

RN (∆) := {% ∈ Z/2NZ : %2 ≡ ∆ (mod 4N)},

and defining

QN,%(∆) = {[a, b, c] ∈ Q(∆) : a ≡ 0 (mod N), b ≡ % (mod 2N)}

for each % ∈ RN (∆), observe that one has a Γ0(N)-invariant decomposition

QN (∆) =
⊔

%∈RN (∆)

QN,%(∆).

The sets QN,%(∆) being Γ0(N)-invariant, we are reduced to study their Γ0(N)-orbits. We further
define the subset of Γ0(N)-primitive forms in QN,%(∆) by

Q0
N,%(∆) = {[aN, b, c] ∈ QN,%(∆) : gcd(a, b, c) = 1}.

Remark 3.1. Observe that we consider the greatest common divisor of a, b, and c, not of aN , b,
and c.

One has a Γ0(N)-invariant bijection of sets

QN,%(∆) =
⊔
d2|∆

⊔
`∈RN (∆/d2),
d`≡% (2N)

d · Q0
N,`(∆/d

2),

where d varies over the positive integers such that d2 divides ∆, and ` varies over the elements in
RN (∆/d2) such that d` ≡ % modulo 2N . Via this last decomposition, it is enough to study the
Γ0(N)-orbits in the sets of the form Q0

N,%(∆), where N ≥ 1 is an integer, ∆ is a discriminant, and

% ∈ RN (∆).
Continue to fix parameters N and ∆ as before. For each % ∈ RN (∆), associated with the set

Q0
N,%(∆) there is the integer

m% := gcd

(
N, %,

%2 −∆

4N

)
,

which is well-defined even if % is only defined modulo 2N . Indeed, replacing % by %+ 2N replaces
%2−∆

4N by %2−∆
4N + %+N . Thus m% is an invariant of the subset Q0

N,%(∆). One can check that

m% = gcd(N, b, ac) for any Q = [aN, b, c] ∈ Q0
N,%(∆).

In particular, notice that m% | gcd(N,∆). Using this, one can further decompose m% as

m% = m1m2, where m1 = gcd(N, b, a), m2 = gcd(N, b, c).

Notice that gcd(m1,m2) = 1 because gcd(a, b, c) = 1. In view of this, we have a Γ0(N)-invariant
decomposition

Q0
N,%(∆) =

⊔
m1,m2

Q0
N,%,m1,m2

(∆),

where m1,m2 run over the pairs of positive divisors of m% which satisfy m1m2 = m% and
gcd(m1,m2) = 1. There are 2ν such pairs, where ν denotes the number of prime factors of
m%.

The following statement is the Proposition in p. 505 of [GKZ87]:
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Proposition 3.2. Let m% be defined as above and fix any decomposition m% = m1m2 with
m1,m2 > 0 integers such that gcd(m1,m2) = 1. Fix also any decomposition N = N1N2 of N
into coprime factors satisfying gcd(m1, N2) = gcd(m2, N1) = 1. Then the map Q = [aN, b, c] 7→
Q̃ = [aN1, b, cN2] yields a one-to-one correspondence

Q0
N,%,m1,m2

(∆)/Γ0(N)
1:1−→ Q0(∆)/Γ0(1).

In particular, |Q0
N,%(∆)/Γ0(N)| = 2ν |Q0(∆)/Γ0(1)| where ν is the number of prime factors of m%.

Notice that this proposition finishes the precise description of the set of integral binary quadratic
forms QN (∆), up to Γ0(N)-action. Indeed, as a summary of the above discussion we have a disjoint
union of Γ0(N)-invariant sets

(18) QN (∆) =
⊔
d2|∆

⊔
%∈RN (∆/d2)

⊔
(m1,m2)

d · Q0
N,%,m1,m2

(∆/d2),

where d varies over the positive integers such that d2 | ∆, and for each % ∈ RN (∆/d2) the pair
(m1,m2) ranges over the pairs of coprime positive integers with m1m2 = m%. For each tuple
(d, %,m1,m2), the set of classes Q0

N,%,m1,m2
(∆/d2)/Γ0(N) is in bijection with Q0(∆/d2)/Γ0(1),

which is a class group à la Gauss.
Let us close this paragraph by pointing out some particular instances of the above proposition

that will be useful for our later discussion. We will look at sets of the form

LN (N2
0 ∆)/Γ0(N) and LNp(N2

0 ∆)/Γ0(Np),

where N0 divides exactly N (meaning that gcd(N0, N/N0) = 1), p is an odd prime not divid-
ing N , and ∆ is a discriminant. Recall also that the sets ‘L’ consist of forms in the sets ‘Q’
with gcd(N0, c) = 1. We will naturally write L0

N,%(·), L0
N,%,m1,m2

(·), etc., for the intersection of

Q0
N,%(·), Q0

N,%,m1,m2
(·), etc. with LN (·). An important observation for the following statements

is that, via the decomposition as in (18), the subset LN (N2
0 ∆) (resp. LNp(N2

0 ∆)) of QN (N2
0 ∆)

(resp. QNp(N2
0 ∆)), corresponds to the union of those subsets d · Q0

N,%,m1,m2
(N2

0 ∆/d2) (resp.

d · Q0
Np,%,m1,m2

(N2
0 ∆/d2)) with gcd(N0,m2) = 1. We assume for simplicity that

(†) gcd(N,N2
0 ∆) = N0 (equivalently, gcd(N1,∆) = 1).

Corollary 3.3. Under the above assumptions,

(19) LN (N2
0 ∆) =

⊔
d2|N2

0 ∆

⊔
%∈RN (N2

0 ∆/d2)

d · L0
N,%(N

2
0 ∆/d2),

and moreover the identity map [aN, b, c] 7→ [aN, b, c] yields a bijection between each of the sets
L0
N,%(N

2
0 ∆/d2)/Γ0(N) and L0(N2

0 ∆/d2)/Γ0(1).

Proof. For every Q = [aN, b, c] ∈ LN (N2
0 ∆) one has gcd(N0, c) = 1. Since m% | gcd(N,N2

0 ∆) and
m2 divides both c and m%, condition (†) implies m2 = 1. In particular, we must have m1 = m%,
and L0

N,%(N
2
0 ∆/d2) = L0

N,%,m%,1
(N2

0 ∆/d2) for all % ∈ RN (N2
0 ∆/d2), hence we can take N1 = N

and N2 = 1 in Proposition 3.2. �

Corollary 3.4. Let N , N0 and ∆ be as in the above corollary. If p > 2 is a prime such that
p || ∆, then

(20) LNp(N2
0 ∆) =

⊔
d2|N2

0 ∆

⊔
%∈RNp(N2

0 ∆/d2)

d · L0
Np,%(N

2
0 ∆/d2),

and both maps [aNp, b, c] 7→ [aNp, b, c] and [aNp, b, c] 7→ [aN, b, cp] yield bijections between each of
the sets L0

Np,%(N
2
0 ∆/d2) and L0(N2

0 ∆/d2)/Γ0(1).

Proof. This follows similarly as the previous corollary, noticing that the assumption p || ∆ implies
that one still has m2 = 1 and m1 = m%. Therefore, we can use both maps in the statement to
establish the claimed bijections, by virtue of Proposition 3.2. �

In the above corollaries, the fact that the invariant m2 is always 1 when restricted to the
decompositions of the sets LN (N2

0 ∆) and LNp(N2
0 ∆) simplifies significantly the discussion. The
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situation becomes a bit more involved if p2 | ∆. Indeed, let N and ∆ be as above, and fix a prime
p > 2 with p2 | ∆. Then we can write a Γ0(Np)-invariant decomposition

LNp(N2
0 ∆) = LpNp(N

2
0 ∆) t L(p)

Np(N
2
0 ∆),

where

LpNp(N
2
0 ∆) =

⊔
d2|N2

0 ∆,
p|d

⊔
%∈RNp(

N2
0 ∆

d2 )

d · L0
Np,%(N

2
0 ∆/d2),

L(p)
Np(N

2
0 ∆) =

⊔
d2|N2

0 ∆,
p-d

⊔
%∈RNp(

N2
0 ∆

d2 )

d · L0
Np,%(N

2
0 ∆/d2).

Notice that LpNp(N2
0 ∆) = p · LNp(N2

0 ∆/p2), and hence one could apply the first of the above two
corollaries to describe the decomposition of this set into primitive subsets. Thus we may focus

our attention on the set L(p)
Np(N

2
0 ∆). To do so, first notice that if [aNp, b, c] ∈ L0

Np,%(N
2
0 ∆/d2) for

some d and % arising in the union defining L(p)
Np(N

2
0 ∆), then either

i) p | a and p - c, or
ii) p - a and p | c.

Indeed, this follows easily from the fact that p2 divides the discriminant of [aNp, b, c] and p -
gcd(a, b, c). We call L0,a

Np,%(N
2
0 ∆/d2), resp. L0,c

Np,%(N
2
0 ∆/d2), the subset of forms in L0

Np,%(N
2
0 ∆/d2)

falling in case i), resp. ii). In a natural way, we also define L(p),a
Np (N2

0 ∆) and L(p),c
Np (N2

0 ∆), so that

L(p)
Np(N

2
0 ∆) = L(p),a

Np (N2
0 ∆) t L(p),c

Np (N2
0 ∆).

Corollary 3.5. Let N , ∆, and p be as above. For ? ∈ {a, c}, there is a Γ0(Np)-invariant decom-
position

L(p),?
Np (N2

0 ∆) =
⊔

d2|N2
0 ∆,

p-d

⊔
%∈RNp(N2

0 ∆/d2)

d · L0,?
Np,%(N

2
0 ∆/d2).

A bijection between each of the sets L0,?
Np,%(N

2
0 ∆/d2)/Γ0(Np) and L0(N2

0 ∆/d2)/Γ0(1) is induced

by the identity map [aNp, b, c] 7→ [aNp, b, c] if ? = a, and by the map τ : [aNp, b, c] 7→ [aN, b, pc] if
? = c.

Proof. In this case, the assumption (†) together with the definition of m% imply that p || m% for
all % ∈ RNp(N2

0 ∆/d2), with d2 | N2
0 ∆, p - d. In addition, m2 can only be either 1 or p because

gcd(N0, c) = 1. Thus the only possibilities for the pair (m1,m2) are (m%, 1) and (m%/p, p). By

construction, one easily checks that the set L0,a
Np,%(N

2
0 ∆/d2) is exactly L0

Np,%,m%,1
(N2

0 ∆/d2), while

the set L0,c
Np,%(N

2
0 ∆/d2) coincides with L0

Np,%,m%/p,p
(N2

0 ∆/d2), thus the result follows by applying

Proposition 3.2. �

3.2. Relating level N and level Np. Continue to assume that gcd(N1,∆) = 1 as before (see
(†)), and let p be an odd prime with p - N . After our careful study of the previous paragraph, we
now want to compare the sets

LNp(N2
0 ∆)/Γ0(Np) and LN (N2

0 ∆)/Γ0(N).

To begin with, we need to understand how the sets RN (N2
0 ∆) and RNp(N

2
0 ∆) are related.

Observe that RN (N2
0 ∆) is the subset of Z/2NZ consisting of the residue classes % ∈ Z/2NZ such

that %2 ≡ N2
0 ∆ (mod 4N) (in particular, notice that % must be congruent to 0 modulo N0). And

similarly for RNp(N
2
0 ∆). Of course, these sets could be empty.

The natural projection morphism

Z/2NpZ = Z/2NZ× Z/pZ � Z/2NZ

induces a surjective map RNp(N
2
0 ∆) � RN (N2

0 ∆), and we have

]RNp(N
2
0 ∆) =

(
1 +

(
N2

0 ∆

p

))
]RN (N2

0 ∆) =

(
1 +

(
∆

p

))
]RN (N2

0 ∆).
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Suppose that both RN (N2
0 ∆) and RNp(N

2
0 ∆) are non-empty. Then the above map is a bi-

jection if (∆
p ) = 0, and it is a 2-to-1 map if (∆

p ) = 1. For a given % ∈ RN (N2
0 ∆), observe that

L0
Np,%′(N

2
0 ∆) ⊆ LN,%(N2

0 ∆) for all %′ ∈ RNp(N2
0 ∆) mapping to %. However, notice that if %′ ≡ 0

(mod p) (equivalently, if p divides ∆, so that there is a unique %′ mapping to %), it could happen
that a Γ0(Np)-primitive form Q = [aNp, b, c] is not Γ0(N)-primitive3 as a form in LN,%(N2

0 ∆). If

p does not divide ∆ and (∆
p ) = 1, we will certainly have⊔
%′∈RNp(N2

0 ∆),

%′ 7→%

L0
Np,%′(N

2
0 ∆) ⊆ L0

N,%(N
2
0 ∆),

where on the left hand side there are exactly two %′ mapping to %.
When p2 - ∆, we have the following:

Proposition 3.6. Suppose that p - N , p2 - ∆, and assume (†). If (∆
p ) = −1, then the set

LNp(N2
0 ∆)/Γ0(Np) is empty. Otherwise, both maps [aNp, b, c] 7→ [(ap)N, b, c] and τ : [aNp, b, c] 7→

[aN, b, pc] from LNp(N2
0 ∆) to LN (N2

0 ∆) yield surjective maps

LNp(N2
0 ∆)/Γ0(Np) −→ LN (N2

0 ∆)/Γ0(N).

If (∆
p ) = 0, these maps are bijections, whereas if (∆

p ) = 1, these maps are 2-to-1.

Proof. The assertion in the case (∆
p ) = −1 is clear from our above discussion, as all of the sets

RNp(N
2
0 ∆/d2) will be empty. Otherwise, recall that we have natural surjective maps

RNp(N
2
0 ∆/d2) −→ RN (N2

0 ∆/d2), %′ 7−→ %,

for each positive d with d2 | N2
0 ∆. By Corollaries 3.3, 3.4 applied with levels N and Np, for every

%′ above %, we have bijections

L0
Np,%′(N

2
0 ∆/d2)/Γ0(Np)

β−→ L0(N2
0 ∆/d2)/Γ0(1)

id←− L0
N,%(N

2
0 ∆/d2)/Γ0(N),

where β can be induced by either the identity map or by τ . Choosing β to be induced by the
identity map (resp. by τ) for all choices of d and %′, yields the desired result, noticing that the
map RNp(N

2
0 ∆/d2)→ RN (N2

0 ∆/d2) is a bijection when (∆
p ) = 0 and 2-to-1 when (∆

p ) = 1. �

When p2 | ∆, we find the following:

Proposition 3.7. Suppose that p - N , p2 | ∆, and assume (†). Then, for each ? ∈ {a, c}, we have
a bijection

L(p),?
Np (N2

0 ∆)/Γ0(Np) −→ L(p)
N (N2

0 ∆)/Γ0(N).

Such a bijection is induced by the identity map if ? = a, and by the map τ if ? = c.

Proof. Using Corollaries 3.3 and 3.5 one can deduce that for each positive d such that d2 | ∆ and
p - d, and for each pair %′ 7→ %, there are bijections

L0,?
Np,%′(N

2
0 ∆/d2)/Γ0(Np)

β−→ L0(N2
0 ∆/d2)/Γ0(1)

id←− L0
N,%(N

2
0 ∆/d2)/Γ0(N),

where β can be induced by the identity map when ? = a and by the map τ when ? = c. Since
p | ∆/d2 we also have bijections RNp(N

2
0 ∆/d2)→ RN (N2

0 ∆/d2), %′ 7→ %, and hence we deduce the
desired result. �

3.3. d-th Shintani lifting and p-stabilization. Fix an odd integer N ≥ 1, an integer k ≥ 1, and
a Dirichlet character χ modulo N . Let f ∈ Snew2k (N,χ2) be a newform, and p be an odd prime not
dividing N for which f is p-ordinary. Let α = αp(f) and β = βp(f) be the roots of the p-th Hecke
polynomial of f , labelled so that α is a p-adic unit. The ordinary p-stabilization fα ∈ S2k(Np) of
f is defined by

fα = f − βVpf = (1− βVp)f,
where the operator Vp : S2k(N,χ2) → S2k(Np, χ2) is given by Vpf(z) = f(pz). Notice that
fα ∈ S2k(Np, χ2) is an old form by construction (however, it is only old at p, and new at all primes
dividing N).

3The form [aNp, b, c] is seen as [(ap)N, b, c]. Thus, even if gcd(a, b, c) = 1 it could be that gcd(ap, b, c) = p. This

will happen if both b and c are multiple of p and a is not, although this implies that ∆ is divisible by p.
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Continue to use N0, N1 χ0, ε with the same meaning and assumptions as in Section 2, and fix
a fundamental discriminant d satisfying the following conditions:

(i) gcd(N, d) = 1, ε(−1)kd > 0;
(ii) d ≡ 0 (mod p);
(iii) θk,N,χ,d(f) 6= 0.

Notice that we need to assume gcd(N0, d) = 1 for the construction of the d-th Shintani lifting. In
order to apply the result from the previous paragraph, we will also need to assume gcd(N1, d) = 1
to fulfill hypothesis (†) when considering discriminants divisible by d.

Remark 3.8. With our working assumptions, the existence of such a discriminant d is guaranteed
by non-vanishing results for special values of twisted L-series (combine, for example, [BFH90] and
[Wal91, Théorème 4]) together with Corollary 2.5.

Having made the above choice for d, we want to relate the d-th Shintani lifting

θk,Np,χ,d(fα) = θk,Np,χ,d(f)− βθk,Np,χ,d(Vpf)

of the ordinary p-stabilization of f with θk,N,χ,d(f). Notice that the lifting θk,Np,χ,d(fα) occurs at
level Np.

Let n ≥ 1 be an integer such that ε(−1)kn ≡ 0, 1 (mod 4). By definition of the d-th Shintani
lifting, the n-th Fourier coefficient of θk,N,χ,d(f) is given by the expression

an(θk,N,χ,d(f)) = C(k, χ, d)
∑

0<t|N

µ(t)χdχ̄0(t)t−k−1rk,Nt,χ(f ; d, ε(−1)knt2) =

= C(k, χ, d)rk,N,χ(f ; d, ε(−1)kn),

where the second equality is due to the fact that f is new (see equation (12)). Similarly, if

f̆ ∈ S2k(Np, χ2), then the n-th Fourier coefficient of θk,Np,χ,d(f̆) is given by

an(θk,Np,χ,d(f̆)) = C(k, χ, d)
∑

0<t|Np

µ(t)χdχ̄0(t)t−k−1rk,Npt,χ(f̆ ; d, ε(−1)knt2).

Using that p does not divide N , that µ(pt) = −µ(t), and that χdχ̄0(pt) = χdχ̄0(p)χdχ̄0(t), we may
rewrite the sum in the previous expression as∑

0<t|N

µ(t)χdχ̄0(t)t−k−1
(
rk,Npt,χ(f̆ ; d, ε(−1)knt2)− χdχ̄0(p)p−k−1rk,Np2t,χ(f̆ ; d, ε(−1)knp2t2)

)
.

Our choice of d implies that χd(p) = 0, so that we actually have

(21) an(θk,Np,χ,d(f̆)) = C(k, χ, d)
∑

0<t|N

µ(t)χdχ̄0(t)t−k−1rk,Npt,χ(f̆ ; d, ε(−1)knt2).

We are interested in the cases f̆ = f and f̆ = Vpf . In the following lemmas, we will see that
since f ∈ S2k(N,χ2) is new, all the terms in (21) corresponding to non-trivial divisors of N vanish,
and the remaining term can be related to the d-th Shintani lifting of f at level N . This will
lead to the precise comparison between the coefficients of θk,Np,χ,d(fα) and θk,N,χ,d(f) stated in

Proposition 3.13 below. We start dealing with the case f̆ = f .

Lemma 3.9. With the above notation and assumptions, the d-th Shintani lifting of f at level Np
satisfies

an(θk,Np,χ,d(f)) = C(k, χ, d) · rk,Np,χ(f ; d, ε(−1)kn).

Proof. In view of (21), it suffices to show that rk,Npt,χ(f ; d, ε(−1)knt2) = 0 for all divisors t of N
with t > 1. From (8) (with N1p in place of N1) and (7) we have

rk,Npt,χ(f ; d, ε(−1)knt2) = iNptπ
−1

(
2k − 2

k − 1

)−1

22k−2(|d|nt2)k−1/2 · 〈f, Vtfk,χ̄0

N0,N1p/t
(−; d, ε(−1)kn)〉,

and we observe that

〈f, Vtfk,χ̄0

N0,N1p/t
(−; d, ε(−1)kn)〉 = 〈f, trNpN (Vtf

k,χ̄0

N0,N1p/t
(−; d, ε(−1)kn))〉,
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where trNpN : S2k(Np, χ2) → S2k(N,χ2) is the usual trace operator. Furthermore, one can check
that

trNpN (Vtf
k,χ̄0

N0,N1p/t
(−; d, ε(−1)kn)) = Vt(tr

Np/t
N/t f

k,χ̄0

N0,N1p/t
(−; d, ε(−1)kn)),

and hence the Petersson product on the right hand side of the above identity vanishes. Hence, the
terms rk,Npt,χ(f ; d, ε(−1)knt2) vanish when t > 1 as we wanted to prove. �

Thanks to the above lemma, it suffices to compute rk,Np,χ(f ; d, ε(−1)kn) in order to determine
an(θk,Np,χ,d(f)). Notice that the coefficient an(θk,Np,χ,d(f)) is forced to vanish unless n satisfies
ε(−1)kn ≡ 0, 1 (mod 4), because θk,Np,χ,d(f) belongs to Kohnen’s plus subspace. Let d′ be a
discriminant with dd′ > 0 (note that this is equivalent to ε(−1)kd′ > 0, and that therefore one has
ε(−1)k|d′| = d′).

Lemma 3.10. With the above notation, suppose that gcd(N1, d
′) = 1. Then we have

a|d′|(θk,Np,χ,d(f)) = a|d′|(θk,N,χ,d(f)).

Proof. By the previous lemma, we know that a|d′|(θk,Np,χ,d(f)) = C(k, χ, d)rk,Np,χ(f ; d, d′), so it
suffices to compute

rk,Np,χ(f ; d, d′) =
∑

Q∈LNp(N2
0dd
′)/Γ0(Np)

ωd(Q)Ik,χ(f,Q).

Suppose first that p - d′, so that p divides exactly N2
0 dd
′. Notice that our assumptions on d and

d′ imply that (†) is satisfied for ∆ = dd′. By our discussion in the previous paragraph, and more
precisely by Proposition 3.6, we can use the identity map [aNp, b, c] 7→ [(ap)N, b, c] to induce a
bijection from LNp(N2

0 dd
′)/Γ0(Np) to LN (N2

0 dd
′)/Γ0(N). Therefore, we have

rk,Np,χ(f ; d, d′) =
∑

Q∈LN (N2
0dd
′)/Γ0(N)

ωd(Q)Ik,χ(f,Q) = rk,N,χ(f ; d, d′),

and it follows that a|d′|(θk,Np,χ,d(f)) = a|d′|(θk,N,χ,d(f)).

Suppose now that p | d′, hence p2 divides dd′. In this case, we use the decomposition

LNp(N2
0 dd
′)/Γ0(Np) = LpNp(N

2
0 dd
′)/Γ0(Np) t L(p)

Np(N
2
0 dd
′)/Γ0(Np)

already introduced in the previous paragraph. Since ωd(Q) = 0 for all forms Q ∈ LpNp(N2
0 dd
′), we

see that the sum over the first set does not contribute to rk,Np,χ(f ; d, d′). Therefore,

rk,Np,χ(f ; d, d′) =
∑

Q∈L(p),a
Np (N2

0dd
′)/Γ0(Np)

ωd(Q)Ik,χ(f,Q) +
∑

Q∈L(p),c
Np (N2

0dd
′)/Γ0(Np)

ωd(Q)Ik,χ(f,Q)

By Proposition 3.7, the second sum equals∑
Q∈L(p)

N (N2
0dd
′)/Γ0(N)

ωd(τ−1(Q))Ik,χ(f, τ−1(Q)) = 0,

because ωd(τ−1(Q)) = χd′(p)ωd(Q) = 0 for all Q ∈ L(p)
N (N2

0 dd
′). Hence the above expression

simplifies to

(22) rk,Np,χ(f ; d, d′) =
∑

Q∈L(p),a
Np (N2

0dd
′)/Γ0(Np)

ωd(Q)Ik,χ(f,Q).

Again by Proposition 3.7, we deduce that

rk,Np,χ(f ; d, d′) =
∑

Q∈L(p)
N (N2

0dd
′)/Γ0(N)

ωd(Q)Ik,χ(f,Q).

This sum equals rk,N,χ(f ; d, d′), since we can replace L(p)
N (N2

0 dd
′) by LN (N2

0 dd
′) using again that

ωd(Q) = 0 for all Q ∈ LpN (N2
0 dd
′), which implies the result. �

We proceed now in a similar fashion with Vpf . First, let n ≥ 1 be an arbitrary positive integer
with ε(−1)kn ≡ 0, 1 (mod 4). We have the following observation.

Lemma 3.11. With the above notation, we have that

an(θk,Np,χ,d(Vpf)) = C(k, χ, d) · rk,Np,χ(Vpf ; d, ε(−1)kn).
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Proof. The argument is similar to the one for the case f̆ = f . We must show now that for
all t > 1 the terms rk,Npt,χ(Vpf ; d, ε(−1)knt2) vanish. One checks that these are multiples of

〈Vpf, Vtfk,χ̄0

N0,N1p/t
(−; d, ε(−1)kn)〉, and this Petersson product vanishes if t > 1 because the second

form is old at t while the first one is new at t. �

As above, we focus on fundamental discriminants d′ with dd′ > 0, and study the |d′|-th Fourier
coefficient of θk,Np,χ,d(Vpf).

Lemma 3.12. With the above notation, suppose that gcd(N1, d
′) = 1. Then we have

a|d′|(θk,Np,χ,d(Vpf)) = χd′ χ̄0(p)p−ka|d′|(θk,Np,χ,d(f)).

Proof. By the previous lemma, we know that a|d′|(θk,Np,χ,d(Vpf)) = C(k, χ, d)rk,Np,χ(Vpf ; d, d′),
thus we have to compute

rk,Np,χ(Vpf ; d, d′) =
∑

Q∈LNp(N2
0dd
′)/Γ0(Np)

ωd(Q)Ik,χ(Vpf,Q).

Suppose first that p - d′. From Proposition 3.6 the set LNp(N2
0 dd
′)/Γ0(Np) is in bijection

with LN (N2
0 dd
′)/Γ0(N), but in contrast with the case of f̆ = f , we may now use the map

τ : [aNp, b, c] 7→ [aN, b, pc] to induce that bijection. Thus we have

rk,Np,χ(Vpf ; d, d′) =
∑

Q∈LN (N2
0dd
′)/Γ0(N)

ωd(τ−1(Q))Ik,χ(Vpf, τ
−1(Q)).

Now, for Q ∈ LN (N2
0 dd
′), using (3) one sees that ωd(τ−1(Q)) = χd′(p)ωd(Q), and one also has

Ik,χ(Vpf, τ
−1(Q)) = χ̄0(p)p−kIk,χ(f,Q).

Indeed, we have χ0(τ−1Q) = χ̄0(p)χ0(Q), and therefore if Q = [aN, b, c] we find

Ik,χ(Vpf, τ
−1(Q)) = χ0(τ−1(Q))

∫
Cτ−1(Q)

f(pz)(paNz2 + bz + c/p)k−1dz =

= χ̄0(p)p1−k
∫
p−1CQ

f(pz)(aN(pz)2 + b(pz) + c)k−1dz =

= χ̄0(p)p−k
∫
CQ

f(z)(aNz2 + bz + c)k−1dz = χ̄0(p)p−kIk,χ(f,Q).

Therefore, we get

rk,Np,χ(Vpf ; d, d′) = χd′ χ̄0(p)p−krk,N,χ(f ; d, d′)

and the claim follows from this.
Suppose now that p | d′. Since χd′(p) = 0, we must prove that rk,Np,χ(Vpf ; d, d′) = 0. Notice

that p2 divides exactly N2
0 dd
′, so we can use again the decomposition

LNp(N2
0 dd
′)/Γ0(Np) = LpNp(N

2
0 dd
′)/Γ0(Np) t L(p)

Np(N
2
0 dd
′)/Γ0(Np).

Observe that the sum over the first subset does not contribute to rk,Np,χ(Vpf ; d, d′). Using Propo-
sition 3.7 as in Lemma 3.10, we obtain (compare with (22))

rk,Np,χ(Vpf ; d, d′) =
∑

Q∈L(p),a
Np (N2

0dd
′)/Γ0(Np)

ωd(Q)Ik,χ(Vpf,Q).

We claim that this sum vanishes, and the lemma will follow. Indeed, let Q = [aNp, b, c] ∈
L(p),a
Np (N2

0 dd
′) be any representative of one of the classes appearing in the sum. By definition

of this set, we know that p | a, hence

Q = Q′ ◦
(
p 0
0 1

)
for Q′ = [apN,

b
p , c] ∈ LN (N2

0 dd
′/p2). By equation (5), we deduce that ωd(Q) = 0. �

Lemmas 3.10 and 3.12 prove the following precise relation between coefficients of θk,Np,χ,d(fα)
and θk,N,χ,d(f):
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Proposition 3.13. Let N , k, χ, f ∈ Snew2k (N,χ2), and d be as above. Let d′ be a discriminant
such that

i) dd′ > 0,
ii) gcd(N1, d

′) = 1.

Then, one has
a|d′|(θk,Np,χ,d(fα)) = (1− βχd′ χ̄0(p)p−k)a|d′|(θk,N,χ,d(f)).

Remark 3.14. By Lemma 3.10, we have a|d′|(θk,N,χ,d(f)) = a|d′|(θk,Np,χ,d(f)), hence we can
rewrite the identity in Proposition 3.13 as

a|d′|(θk,Np,χ,d(fα)) = (1− βχd′ χ̄0(p)p−k)a|d′|(θk,Np,χ,d(f)).

In this form, this formula holds true also when f ∈ Snew2k (Np, χ2) is new of level Np (hence its
ordinary p-stabilization is f itself, and β = 0).

Remark 3.15. The above proposition should be read as complementary to [Mak17, Proposition
2.10], as he imposes the condition gcd(Np, d) = 1 whereas we choose d such that gcd(N, d) = 1
and d ≡ 0 (mod p).

4. Hida theory and modular symbols

As a preparation for the next section, we now review some basic material of Hida theory and
modular symbols, and set the conventions that will be used later. In most of the discussion, we
follow closely the approach in [GS93, Ste94].

4.1. Hida theory. Let O be a finite extension of Zp and let Γ := 1 + pZp. We write Λ = ΛO =
O[[Γ]] for the usual Iwasawa algebra and consider the space:

X (Λ) := HomO−cont(Λ, Q̄p).

Elements a ∈ Λ can be seen as functions on X (Λ) through evaluation at a, i.e. by setting a(κ) :=
κ(a). The set X (Λ) is endowed with the analytic structure induced from the natural identification

(23) X (Λ) ' Homcont(Γ, Q̄
×
p )

between X (Λ) and the group of continuous characters κ : Γ → Q̄×p . A character κ : Γ → Q̄p is
called arithmetic if there exists an integer r ≥ 0 such that κ(t) = tr for all t sufficiently close to
1 in Γ. A point κ ∈ X (Λ) is said to be arithmetic if the associated character of Γ under (23) is
arithmetic. We refer to the integer r as the weight of κ.

If R is a finite flat Λ-algebra then we write

X (R) := HomO−cont(R, Q̄p)

for the set of continuous homomorphisms from R to Q̄p, to which we also refer as ‘points of R’.
The restriction to Λ (via the structure morphism Λ→ R) induces a surjective finite-to-one map

π : X (R) −→ X (Λ).

One can define analytic charts around all points κ of X (R) which are unramified over Λ, by building
sections Sκ of the map π, so that X (R) inherits the structure of rigid analytic cover of X (Λ). A
function f : U ⊆ X (R)→ Q̄p defined on an analytic neighborhood of κ is analytic if so is f ◦ Sκ.
The evaluation at an element a ∈ R yields a function a : X (R) → Q̄p, a(κ) := κ(a), which is
analytic at every unramified point of X (R). A point κ ∈ X (R) is said to be arithmetic if the point
π(κ) ∈ X (Λ) is arithmetic. We will write X arith(R) ⊆ X (R) for the subset of arithmetic points in
X (R).

If N is a positive integer, with p - N , consider the Λ-algebra

ΛN := O[[Z×p,N ]] ' Λ[∆Np]

associated with the completed group ring on Z×p,N := lim←−(Z/NpmZ)×. Under the natural isomor-
phisms

Z×p,N ' Z×p ×∆N ' Γ×∆Np, where ∆M := (Z/MZ)×,

we will write tp ∈ Z×p and tN ∈ ∆N for the projections of t ∈ Z×p,N in Z×p and ∆×N . We will

further write 〈tp〉 ∈ Γ for the projection of tp in Γ. Observe that tp = 〈tp〉ω(tp), where ω denotes
the Teichmuller character. Notice also that the analytic space X (ΛN ) is naturally isomorphic to a
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product of ϕ(Np) copies of X (Λ), with the components being in one-to-one correspondence with
the Q̄p-valued characters of ∆Np.

If R is a ΛN -algebra, r ≥ 0 is an integer, and ψ is a finite order character of Z×p,N , we say that

κ ∈ X arith(R) has signature (r, ψ) if its restriction to ΛN is of the form κ([t]) = ψ(t)〈tp〉r for all
t ∈ Z×p,N . Notice that any finite order character ψ as before can be uniquely written as ψ = χωiε,
where χ is a Dirichlet character modulo N , and ε is a finite order character of Γ. We will refer to
χωi (resp. ε) as the tame (resp. wild) part of ψ. Using this decomposition and restricting ourselves
to tame characters, an arithmetic point κ has signature (r, χωi) if

κ([t]) = χ(tN )ωi(tp)〈tp〉r = χ(tN )ωi−r(tp)t
r
p

for all t ∈ Z×p,N . If t ∈ Z×p,N we will simply write 〈t〉, ω(t) and χ(t) to denote 〈tp〉, ω(tp) and χ(tN )
respectively.

Fix a prime p ≥ 5, and an integer N ≥ 1 such that p - N . If r ≥ 0 and m ≥ 1 are integers,
recall that an eigenform f ∈ Sr+2(Γ1(Npm), Q̄p) is said to be ordinary (at p) if the eigenvalue ap
of Tp acting on f is a p-adic unit. If f is also normalized (a1 = 1) and the prime-to-p part of the
conductor is N , one then says that f is a p-stabilized newform of tame conductor N . One can
check that if f is an ordinary p-stabilized newform of tame conductor N , then either f is already
a newform, or f is related to a newform g of conductor N by the so-called process of ordinary
p-stabilization (and in this case the level of f is Np). In the second case, if α and β denote the
roots of the p-th Hecke polynomial for g, labelled so that α is the unit root and β is the non-unit
root, then one has f(z) = g(z) − βg(pz). We write Sord

r+2(Γ1(Npm), Q̄p) for the set of ordinary

p-stabilized newforms in Sr+2(Γ1(Npm), Q̄p).
Consider the abstract Hecke algebra over ΛN obtainend by considering all the Hecke operators,

where group-like elements of ΛN act as diamond operators. In his work, Hida studied the action
of H on certain spaces of modular forms and defined a ΛN -algebra RN , interpolating all ordinary
p-stabilised newforms of tame level N . This algebra comes equipped with a natural morphism
h : H → RN . Writing an := h(Tn) ∈ RN for the image of the Hecke operators, one defines the
universal ordinary p-stabilized newform of tame level N to be

fN :=
∑
n≥1

anq
n ∈ RN [[q]].

Then we have the following:

Theorem 4.1 (Hida theory). The ΛN -algebra RN is reduced, finite and flat over Λ, and it is
unramified at every arithmetic point. The map X (RN )→ Q̄p[[q]], κ 7→ fN (κ) defines a bijection:{

κ ∈ X arith(RN )
of signature (r, ψ)

}
1:1←→

{
ordinary p-stabilized newforms of tame level N ,

weight r + 2 and nebentype character ψω−r.

}
Assume from now on that O contains the values of the characters of ∆Np. The localization at

maximal ideals of RN yields natural decompositions

RN
∼−→
⊕
m

Rm,
⊔
m

X (Rm)
∼−→ X (RN ),

where each of the localizations Rm := (RN )m is a finite flat integral domain extension of Λ. The
universal family can be seen as a collection fN = (fm)m, where fm denotes the image of fN under
the natural morphism RN → Rm induced by the above decomposition. For each maximal ideal
m, we have the following commutative diagram of ΛN -algebras, where Λm ' Λ is the localization
of ΛN at m ∩ ΛN :

RN // Rm

ΛN

OO

// Λm

OO

The maximal ideals m are in bijection with the characters of ∆Np: if m corresponds to the character
χωi, identifying Λm ' Λ, the morphism

locm : ΛN −→ Λm ' Λ
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in the bottom row of the above diagram is determined by the fact that

locm([t]) = χ(t)ωi(t)[〈t〉] for all t ∈ Z×p,N .

In particular, all the arithmetic points in X (Rm) have the same character in their signature.
Finally, by the Weierstrass preparation theorem, each of the power series fm is uniquely deter-

mined locally by its values fm(κ) at arithmetic points κ having trivial wild character. We define
the set of classical points in X (Rm) as the set

X cl(Rm) := {κ ∈ X arith(Rm) : ∃k ∈ Z such that κ([t]) = tk,∀t ∈ Γ}.

In fact, fm is also uniquely determined by the values fm(κ) when restricting to classical points
κ whose images in X cl(Λ) have big enough weights and are contained in a single residue class4

modulo p− 1. This justifies the following definition:

Definition 4.2. A Hida family of tame level N and tame character χ modulo N is a quadruple
(Rf ,Uf ,Ucl

f , f) where:

• Rf is a finite flat integral domain extension of Λ;
• Uf ⊂ X (Rf ) is an open subset for the rigid analytic topology;
• Ucl

f ⊂ Uf ∩X cl(Rf ) is a dense subset of Uf whose weights are contained in a single residue
class modulo p− 1;
• f ∈ Rf [[q]] is a power series in q with coefficients in Rf , such that for all κ ∈ Ucl

f of weight
r > 0,

f(κ) ∈ Sord
r+2(Np, χ)

is the ordinary p-stabilization of a newform fκ ∈ Sr+2(N,χ).

Let (Rf ,Uf ,Ucl
f , f) be a Hida family as in the definition. By the universal property of RN , there

is a unique Λ-algebra homomorphism RN → Rf , which gives Rf the structure of ΛN -algebra. This
fits in a commutative diagram

RN // Rf

ΛN

OO

locf // Λ,

OO

where the vertical arrows are the structure maps ofRN andRf as ΛN - and Λ-algebras, respectively,
and the morphism locf is determined by the property that

locf ([t]) = χ(t)ωr0(t)[〈t〉] for all t ∈ Z×p,N ,

where r0 is an integer (only defined modulo p− 1) determined by the quadruple (Rf ,Uf ,Ucl
f , f). In

particular, every classical point κ ∈ Ucl
f has weight r congruent to r0 modulo p− 1.

Remark 4.3. When r = 0, the form f(κ) can be either old or new at p. Only in the first case,
f(κ) would be the p-stabilization of a weight 2 newform of level N .

4.2. Modular symbols. Let M ≥ 1 be an integer and let Γ0(M). Let ∆0 := Div0(P1(Q))
be the group of degree 0 divisors on the set of rational cusps of Poincaré’s upper half plane H.
The congruence group Γ0(M) acts by linear fractional transformations on ∆0. Let V be a right
Z[1/6][Γ0(M)]-module. There is a natural right action of Γ0(M) on the set Hom(∆0, V ) of additive
homomorphisms from ∆0 to V , defined by the rule

(Φ|γ)(D) := Φ(γD)|γ, γ ∈ Γ0(M), D ∈ ∆0.

The group of V -valued modular symbols over Γ0(M) is the set of Φ : ∆0 → V such that Φ|γ = Φ
for all γ ∈ Γ0(M), i.e.:

SymbΓ0(M)(V ) := HomΓ0(M)(∆
0, V ) = Hom(∆0, V )Γ0(M).

4The finite-to-1 map X (Rm)→ X (Λ) is unramified at arithmetic points. In particular, using the analytic sections
Sκ mentioned above one can identify the weight space, locally analytically around κ, with X (Λ). The coefficients

of fm ◦ Sκ can then be identified with power series in one variable. By the Weierstrass Preparation theorem, each

of them is uniquely determined by its values at infinitely many points.
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Let now G0(M) denote the semigroup of two-by-two matrices γ = ( a bc d ) ∈ M2(Z) such that
gcd(a,M) = 1 and c ≡ 0 (mod M). If the action of Γ0(M) on V extends to an action of G0(M),
then SymbΓ0(M)(V ) inherits a natural action of Hecke operators.

The element ι = diag(1,−1) ∈ G0(M) induces an involution on SymbΓ0(M)(V ). Notice that

ι acts by Φ 7→ Φ|ι, with (Φ|ι)(D) = Φ(ιD)|ι. Under the assumption that V is a Z[1/2]-module,
the action of ι decomposes the modular symbol Φ as Φ = Φ+ + Φ−, where Φ± := 1

2 (Φ ± ιΦ) ∈
SymbΓ0(M)(V )± are such that ιΦ± = ±Φ±, i.e.:

SymbΓ0(M)(V ) = SymbΓ0(M)(V )+ ⊕ SymbΓ0(M)(V )−.

Let us now focus our discussion on some special choices of V . Fix an integer r ≥ 0 and a
commutative ring R in which 2r! is invertible (e.g. of characteristic zero). Let Symr(R2) denote
the R-module of homogeneous ‘divided powers polynomials’ of degree r in X, Y over R generated
by the monomials

Xn

n!

Y r−n

(r − n)!
with 0 ≤ n ≤ r.

Similarly, let Symr(R2)∗ be the R-module of homogeneous polynomials of degree r in X, Y over
R, generated by the monomials XnY r−n with 0 ≤ n ≤ r. Both Symr(R2) and Symr(R2)∗ are
equipped with a natural action of M2(R), by the rule

(F |γ)(X,Y ) := F ((X,Y )tγ)

where γ 7→ tγ denotes the usual transpose.
Let us write 〈·, ·〉r for the unique perfect pairing

〈·, ·〉r : Symr(R2)× Symr(R2)∗ −→ R

satisfying 〈
XiY r−i

i!(r − i)!
, Xr−jY j

〉
r

= (−1)jδij ,

where δij is the usual Kronecker’s delta function. This pairing satisfies in addition the properties〈
(aY − bX)r

r!
, P (X,Y )

〉
r

= P (a, b) ∀ a, b ∈ R, 〈P1|γ, P2|γ〉r = det(γ)r〈P1, P2〉.

From now on, we will write Lr(R) (resp. L∗r(R)) for the R[Γ0(M)]-module Symr(R2) (resp.
Symr(R2)∗) equipped with the action of Γ0(M) induced by the above described action. If in
addition χ is an R-valued Dirichlet character modulo M , we denote by Lr,χ(R) (resp. L∗r,χ(R)) the
same underlying R[Γ0(M)]-module as Lr(R) (resp. L∗r(R)) but with the action of Γ0(M) twisted
by χ−1 (resp. χ). That is, for an element

γ =

(
a b
c d

)
∈ Γ0(M)

one has

(F |γ)(X,Y ) :=

{
χ(a) · F ((X,Y )tγ) if F ∈ Lr,χ(R),

χ(d) · F ((X,Y )tγ) if F ∈ L∗r,χ(R).

If f ∈ Sr+2(M,χ) is a cusp form of weight r+ 2, level Γ0(M), and Nebentype character χ, then
the Lr,χ(C)-valued differential form

ωf :=
1

r!
f(τ)(τY −X)rdτ

on H satisfies γ∗ωf |γ = ωf for all γ ∈ Γ0(M). The additive map ψf : ∆0 → Lr,χ(C) induced by

{c2} − {c1} 7−→
∫ c2

c1

ωf

yields an Lr,χ(C)-valued modular symbol over Γ0(M) (where the integral is along the oriented
geodesic in H from c1 to c2). We then have the following:

Theorem 4.4. For each choice of sign ±, the map f 7→ ψf yields a Hecke-equivariant inclusion

(24) Sr+2(M,χ) ↪→ SymbΓ0(M)(Lr,χ(C))±.
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Proof. This is a combination of the Eichler–Shimura isomorphism, the Manin–Drinfeld principle
and the Ash–Stevens isomorphism (see [AS86, Proposition 4.2]), which composed give us maps

Sr+2(M,χ)
∼−→
ES

H1
par(Γ0(M), Lr,χ(C))± ↪→

DM
H1
c (Γ0(M), Lr,χ(C))±

∼−→
AS

SymbΓ0(M)(Lr,χ(C))±.

We want to stress that the first isomorphism comes from integration and it does not respect alge-
braicity. If f is defined over a subring R of C its image is not necessarily in H1

par(Γ0(M), Lr,χ(R))±.
Also, the inclusion provided by the Manin–Drinfeld principle arises by taking a section of the nat-
ural projection map H1

c (Γ0(M), Lr,χ(C))→ H1
par(Γ0(M), Lr,χ(C)). Such a section is defined over

any characteristic zero field, but it does not need to descend to any subring R of C. �

A modular symbol ϕ ∈ SymbΓ0(M)(Lr,χ(C)) is said to be defined over a subring R of C if it

takes values in Lr,χ(R), i.e. if it lies in the image of the natural map

SymbΓ0(M)(Lr,χ(R)) ↪→ SymbΓ0(M)(Lr,χ(C)).

If f ∈ Sr+2(M,χ) is a Hecke eigenform and Of denotes the ring of integers of its Hecke field, it
is well-known that there exist two complex numbers Ω±f ∈ C× such that the normalized modular
symbols

(25) ϕ±f :=
1

Ω±f
· ψ±f ∈ SymbΓ0(M)(Lr,χ(C))±,

one for each choice of sign, are defined over Of (cf. [Man73]).

4.3. p-adic interpolation of modular symbols. The modular symbols associated with modular
forms as recalled above can be p-adically interpolated, giving rise to ‘Λ-adic modular symbols’. We
now recall this construction, mainly due to Greenberg and Stevens [GS93].

Let N ≥ 1 and p be as before, and let fN be the universal p-stabilized ordinary newform of tame
conductor N as defined in section 4.1. Recall that we can see fN via its q-expansion

fN =
∑
n≥1

anq
n ∈ RN [[q]],

where RN is the universal ordinary p-adic Hecke algebra of tame conductor N . For each arithmetic
point κ ∈ X arith(RN ), we may fix complex periods Ω±fN (κ) ∈ C× so that the normalized cohomology

classes

(26) ϕ±fN (κ) :=
1

Ω±fN (κ)

ψfN (κ)

are defined over the ring of integers OfN (κ) of the Hecke field of fN (κ) (cf. (25)). Following [GS93],

we recall how the collection of cohomology classes ϕ±κ , as κ varies on the arithmetic points of
RN , can be put together into Λ-adic cohomology classes (or modular symbols) Φ±, recovering the
classes ϕ±κ under specialization maps.

Consider the subset (Z2
p)
′ of primitive vectors in Z2

p, meaning the subset of vectors which do not

lie in (pZp)
2, and let D = Meas((Z2

p)
′) denote the group of Zp-valued measures on (Z2

p)
′. Namely,

if Cont((Z2
p)
′) denotes the space of continuous Zp-valued functions on (Z2

p)
′, then D is the space

of continuous Zp-valued functionals on Cont((Z2
p)
′). One can also see D as a direct summand of

Meas(Z2
p), via restriction of continuous functions on Z2

p to (Z2
p)
′. Following standard conventions

of measure theory, if µ ∈ D we will write ∫
U

fdµ

to denote µ(f · 1U ) for any f ∈ Cont((Z2
p)
′) and any compact open subset U ⊆ (Z2

p)
′.

There are various natural actions on D. On the one hand, the scalar action of Z×p on (Z2
p)
′

induces a natural action of Zp[[Z
×
p ]] on D. On the other hand, viewing elements of (Z2

p)
′ as row

vectors, we let Γ0(N) act on (Z2
p)
′ by multiplication on the right. This action induces a natural

(right) action on D, which is characterized by the fact that, for all µ ∈ D, γ ∈ Γ0(N), and
f ∈ Cont((Z2

p)
′), one has∫

f(x, y)d(µ|γ)(x, y) =

∫
f((x, y)tγ−1)dµ(x, y).
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The two actions just described clearly commute one with each other, hence we can view D as a
Zp[[Z

×
p ]][Γ0(N)]-module.

If R is a ΛN -algebra, we define the R[Γ0(N)]-module

DR := D⊗Zp[[Z×p ]] R,

where Γ0(N) acts through the rule

(µ⊗ λ)|γ := µ|γ ⊗ [a]Nλ,

for µ ∈ D, λ ∈ R, and γ ∈ Γ0(N), where a is the upper-left entry of γ and [a]N ∈ ∆N =
(Z/NZ)× ⊆ ΛN → R is the image in R of the group-like element of a modulo N . To lighten the
notation, we will write DN = DΛN .

If κ ∈ X arith(RN ) is an arithmetic point of signature (r, ψ), factor ψ = ψNψp as a product of
two Dirichlet characters, with ψN defined modulo N and ψp defined modulo a power of p. Then
one has a map

spκ : DRN −→ Lr,ψω−r (Rκ),

where Rκ = κ(RN ), defined by

(27) spκ(µ⊗ α) := κ(α) ·
∫
Zp×Z×p

ψpω
−r(y) · (xY − yX)r

r!
dµ(x, y)

for µ ∈ D and α ∈ RN . This is a Γ0(Npm)-homomorphism if ψ is defined modulo Npm, and hence
it yields a map on modular symbols

spκ,∗ : SymbΓ0(N)(DRN ) −→ SymbΓ0(Npm)(Lr,ψω−r (Rκ)).

In addition, the specialization map spκ,∗ is Hecke equivariant. If Φ ∈ SymbΓ0(N)(DRN ) and

κ ∈ X arith(RN ), we abbreviate

Φκ := spκ,∗(Φ)

for the weight κ specialization of Φ.

Theorem 4.5. Fix an arithmetic point κ0 ∈ X arith(RN ). There is a modular symbol Φ ∈
SymbΓ0(N)(DRN ) and a choice of p-adic periods Ωκ ∈ Rκ, one for each κ ∈ X arith(RN ), sat-
isfying the following properties:

i) Ωκ0
6= 0;

ii) Φκ = Ωκ · ϕ−fN (κ) for every arithmetic point κ ∈ X arith(RN ).

Proof. The proof is essentially a consequence of [GS93, Theorem 5.13], as explained in [Ste94,
Theorem 5.5]. We recall it here for convenience of the reader. Let (r0, ψ0) be the signature of
κ0, and let m0 be the smallest positive integer such that ψ0 is defined modulo Npm0 . Then the
modular symbol

ϕ−fN (κ0) ∈ SymbΓ0(Npm0 )(Lr0,ψ0ω−r0 (Rκ0
))

is a Hecke eigenclass. If R(κ0) denotes the localization of RN at κ0, and h : H → R(κ0) is the
canonical map, then [GS93, Theorem 5.13] tells us that the R(κ0)-module of h-eigenclasses in the

space SymbΓ0(N)(DR(κ0)
)− is free of rank one, and it is generated by an element Ψ whose image

under spκ0,∗ equals ϕ−fN (κ0). One can choose an element α ∈ RN such that α(κ0) 6= 0 and αΨ is

everywhere regular. Then Φ = αΨ is the desired modular symbol. Indeed, by weak multiplicity
one, the weight κ specialization Φκ is a multiple of ϕ−fN (κ) for each arithmetic point κ, thus one

can choose periods Ωκ ∈ Rκ verifying conditions i) and ii). �

Let now (Rf ,Uf ,Ucl
f , f) be a Hida family of tame level N and tame character χ modulo N , as

in Definition 4.2. Recall that f is the image of the universal family fN under a unique morphism
RN → Rf . We shall consider the RN [Γ0]-module Df := DRf

, together with the natural map

(28) DRN = D⊗Zp[[Z×p ]] RN −→ Df = D⊗Zp[[Z×p ]] Rf .

If κ ∈ Ucl
f has weight r ≥ 0, so that f(κ) ∈ Sord

r+2(Np, χ), then observe that the specialization map
becomes

spκ(µ⊗ α) = κ(α) ·
∫
Zp×Z×p

(xY − yX)r

r!
dµ(x, y)
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for µ ∈ D, α ∈ RN (compare with (27)). Also, spκ factors through factors through (28), and hence
the specialization map on modular symbols

spκ,∗ : SymbΓ0(N)(DRN ) −→ SymbΓ0(Np)(Lr,χ(Rκ))

factors through a map, that we still denote spκ,∗,

spκ,∗ : SymbΓ0(N)(Df ) −→ SymbΓ0(Np)(Lr,χ(Rκ)).

For simplicity, we may write ψ±f(κ) for the ±-components of the modular symbol associated with

f(κ), Ω±f(κ) ∈ C× for the corresponding complex periods, and ϕ±f(κ) := ψ±f(κ)/Ω
±
f(κ) as in (26). Then,

the above theorem yields the following immediate consequence.

Corollary 4.6. Let κ0 ∈ Ucl
f ⊆ X cl(Rf ) be a classical point. There exists a modular symbol

Φf ∈ SymbΓ0(N)(Df ), and a choice of p-adic periods Ωκ ∈ Rκ, one for each κ ∈ Ucl
f , such that:

i) Ωκ0
6= 0;

ii) Φf ,κ = Ωκ · ϕ−f(κ) for all κ ∈ Uf .

5. The Λ-adic d-th Shintani lifting

This section is devoted to the construction of the so-called ‘Λ-adic d-th Shintani lifting’, which
interpolates the d-th Shintani liftings of modular forms in p-adic families. To provide this con-
struction, first we explain in 5.1 a cohomological interpretation of the classical d-th Shintani lifting
described in Section 2, which is better suited for the p-adic interpolation and yields also an al-
gebraicity statement. After that, in Section 5.2 we refine Stevens’ approach in [Ste94] to define
the Λ-adic d-th Shintani lifting Θd(f) of a Hida family f (cf. Equation (30)). The interpolation
property is precisely stated in Theorem 5.9. The main result of Section 5.3 is the Λ-adic version
of Kohnen’s formula given in Theorem 5.13. As an application of this, Corollary 5.15 gives a mild
generalization of Kohnen’s classical formula. Finally, in Section 5.4 we study the evaluation of the
Λ-adic Kohnen formula at classical points outside the interpolation region.

5.1. Cohomological d-th Shintani lifting and integrality. Let M ≥ 1 be an odd integer,
and χ be a Dirichlet character modulo M (later we will be interested in M = N or Np). Let
χ0 be the primitive character associated with M , M0 be its conductor, and set M1 = M/M0,
ε = χ(−1). Let k ≥ 1 be an integer, and fix a fundamental discriminant d with gcd(M0, d) = 1
and ε(−1)kd > 0. We explain the cohomological interpretation of the d-th Shintani lifting from
S2k(M,χ2) to S+

k+1/2(M,χ).

If f ∈ S2k(M,χ2), recall that the definition of its d-th Shintani lifting θk,M,d(f) involves certain
integrals Ik,χ(f,Q) associated with integral binary quadratic forms Q of discriminant divisible by
|d| (see (10) and (9)). Namely, if m ≥ 1 is an integer such that ε(−1)km ≡ 0, 1 (mod 4), then the
m-th Fourier coefficient of θk,M,χ,d(f) involves the computation of integrals

Ik,χ(f,Q) = χ0(Q)

∫
CQ

f(z)Q(z, 1)k−1dz

for integral binary quadratic forms Q in LMt(|d|mt2) (modulo Γ0(Mt)-equivalence), where t is a
positive divisor of M . If Q is such a quadratic form, we let

DQ := ∂CQ = {ω′Q} − {ωQ} ∈ ∆0

be the degree zero divisor given by the boundary of the geodesic path CQ.

Definition 5.1. Let R be a Z[1/6]-algebra containing the values of χ, ϕ ∈ SymbΓ0(M)(L2k−2,χ2(R))
be a modular symbol, and t > 0 be a divisor of M . For each integral binary quadratic form Q ∈ LMt

with positive discriminant, we put

Jk,χ(ϕ,Q) := χ0(Q)〈ϕ(DQ), Qk−1〉 ∈ R,

where here 〈 〉 = 〈 〉2k−2 is the pairing on modular symbols as defined in the previous section. For
each integer m ≥ 1 with ε(−1)km ≡ 0, 1 (mod 4) we also define

sk,Mt,χ(ϕ, d; ε(−1)km) :=
∑

Q∈LMt(|d|m)/Γ0(Mt)

ωd(Q) · Jk,χ(ϕ,Q).
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In the above definition, ϕ(DQ) stands for the value at DQ of any cocycle representing ϕ. One
can check that Jk,χ(ϕ,Q) does not depend on the choice of such representative for ϕ, and that it
depends on Q ∈ LMt only up to Γ0(Mt)-equivalence. When χ is trivial, we will write Jk instead of
Jk,χ, and similarly sk,Mt instead of sk,Mt,χ. With the help of the quantities sk,Mt,χ(ϕ, d; ε(−1)km),
we can now define the cohomological d-th Shintani lifting as follows (compare with the classical
definition in (10)).

Definition 5.2. Let R be a Z[1/6]-algebra containing the values of χ. Define an R-linear map

Θk,M,χ,d : SymbΓ0(M)(L2k−2(R))→ R[[q]]

by setting

Θk,M,χ,d(ϕ) := C(k, χ, d)
∑
m≥1,

ε(−1)km≡0,1(4)

 ∑
0<t|M1

µ(t)χdχ̄0(t)t−k−1sk,Mt,χ(ϕ, d; ε(−1)kmt2)

 qm.

Proposition 5.3. Let the notation be as before, and R be a Z[1/6]-algebra.

i) For every ϕ ∈ SymbΓ0(M)(L2k−2,χ2(R)), one has Θk,M,χ,d(ϕ|ι) = −Θk,M,χ,d(ϕ).

ii) Let f ∈ S2k(M,χ2), and let ψf ∈ SymbΓ0(M)(L2k−2,χ2(C)) be its associated modular

symbol as above. Then Θk,M,χ,d(ψf ) = Θk,M,χ,d(ψ−f ) = θk,M,χ,d(f).

iii) If R = K is a field of characteristic zero, and ϕ ∈ SymbΓ0(M)(L2k−2,χ2(K)) belongs to the

image of the inclusion (24), then Θk,M,χ,d(ϕ) ∈ S+
k+1/2(M,χ;K).

Proof. First of all, one easily checks from the definitions that ιDQ = −DQ◦ι. This implies that,
for an arbitrary integral binary quadratic form Q,

Jk,χ(ϕ|ι, Q) = χ0(Q)〈ϕ(ιDQ)|ι, Qk−1〉 = χ0(Q)〈ϕ(ιDQ), (Q|ι)k−1〉 =

= −χ0(Q ◦ ι)〈ϕ(DQ◦ι), (Q ◦ ι)k−1〉 = −Jk,χ(ϕ,Q ◦ ι),

where in the third equality we use that Q ◦ ι = Q|ι and that χ0(Q) = χ0(Q ◦ ι). Statement
i) follows from this by the definition of Θk,M,χ,d (noticing that also ωd(Q) = ωd(Q ◦ ι), since Q
and Q ◦ ι represent the same integers, and that Q 7→ Q ◦ ι gives bijections on each of the sets
LMt(|d|m)/Γ0(Mt)).

Next, we observe that

〈(τY −X)2k−2, Qk−1〉 = (2k − 2)! ·Q(τ, 1)k−1.

This implies that

Ik,χ(f,Q) =
χ0(Q)

(2k − 2)!

∫
CQ

f(τ)〈(τY −X)2k−2, Qk−1〉dτ = χ0(Q)〈ψf (DQ), Qk−1〉 = Jk,χ(ψf , Q),

and hence one easily sees that Θk,M,χ,d(ψf ) = θk,M,χ,d(f). Furthermore, decomposing ψf = ψ+
f +

ψ−f into its + and − components, part i) tells us that Θk,M,χ,d(ψ+
f ) = 0, and hence Θk,M,χ,d(ψf ) =

Θk,M,χ,d(ψ−f ), thereby completing the proof of ii). Finally, statement iii) follows already from the

proof of ii). �

A cohomology class (or modular symbol) Φ ∈ H1
c (Γ0(M), L2k−2(C)) is said to be defined over

a subring R of C if Φ lies in the image of the natural map

H1
c (Γ0(M), L2k−2(R)) −→ H1

c (Γ0(M), L2k−2(C)).

Equivalently, Φ is defined over R if the corresponding modular symbol (under Ash–Stevens iso-
morphism) takes values in L2k−2(R).

If f ∈ S2k(M,χ2), recall from (25) that there exist complex numbers Ω±f ∈ C× such that the
normalized modular symbols

ϕ±f :=
1

Ω±f
· ψ±f ,
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are defined over the ring of integers Of of the Hecke field of f . We fix once and for all periods
Ω±f ∈ C× with this algebraicity property, and then define

(29) θalg
k,M,χ,d(f) :=

1

Ω−f
· θk,M,χ,d(f).

Theorem 5.4. Let f ∈ S2k(M,χ2) be a Hecke eigenform, and let ψf and ϕf be as above. Then

θalg
k,M,χ,d(f) = Θk,M,χ,d(ϕ−f ) ∈ S+

k+1/2(M,χ;Of ).

Proof. The equality θalg
k,M,χ,d(f) = Θk,M,χ,d(ϕ−f ) follows from the previous proposition and the def-

inition of ϕ−f and θalg
k,M,χ,d(f). Now, since ϕ−f is defined over Of , the values χ0(Q)〈ϕ−f (DQ), Qk−1〉

belong to Of for all Q, hence also the values sk,Mt,χ(ϕ−f , d; (−1)kmt2) belong to Of for all m, t.

As a consequence, all the coefficients of Θk,M,χ,d(ϕ−f ) lie in Of and the theorem is proved. �

As a direct consequence of Proposition 3.13, and of the cohomological d-th Shintani lifting
introduced in this section, we have the following statement.

Corollary 5.5. Let k ≥ 1 be an integer, N ≥ 1 be an odd integer, χ be a Dirichlet character modulo
N , and p > 2 be a prime with p - N . Let f ∈ S2k(N,χ2) be a normalized newform ordinary at p,
and let fα ∈ S2k(Np, χ2) be its ordinary p-stabilization. Let d be a fundamental discriminant with
ε(−1)kd > 0, gcd(d, N) = 1 and d ≡ 0 (mod p), and let d′ be another fundamental discriminant
with dd′ > 0 and gcd(d′, N) = 1. Then

a|d′|(Θk,Np,χ,d(ψfα)) = (1− βχd′ χ̄0(p)p−k)a|d′|(θk,N,χ,d(f)),

and hence
1

Ω−f
· a|d′|(Θk,Np,χ,d(ψfα)) = (1− βχd′ χ̄0(p)p−k)a|d′|(θ

alg
k,N,χ,d(f))

Proof. Indeed, we have

a|d′|(Θk,Np,χ,d(ψfα)) = a|d′|(θk,Np,χ,d(fα)) = (1− βχd′ χ̄0(p)p−k)a|d′|(θk,N,χ,d(f)),

where the first equality follows from part ii) of Proposition 5.3, and the second one from Proposition
3.13. This proves the first identity. The second one follows immediately from the first by the

definition of θalg
k,N,χ,d. �

5.2. The d-th Shintani lifting of a Hida family. Recall the universal ordinary p-adic Hecke
algebra RN of tame conductor N , over ΛN = O[[Z×p,N ]]. We introduce now the universal ordinary
metaplectic p-adic Hecke algebra of tame conductor N , defined as the ΛN -algebra

R̃N := RN ⊗ΛN ,σ ΛN ,

where the tensor product is taken with respect to the O-algebra homomorphism σ : ΛN → ΛN
associated to the group homomorphism t 7→ t2 on Z×p,N . We note that R̃N is seen as a ΛN -algebra
with the structure morphism λ 7→ 1⊗ λ, λ ∈ ΛN . Also, we observe that the ring homomorphism

RN 7−→ R̃N , α 7−→ α⊗ 1

is not a homomorphism of ΛN -algebras, but only of O-algebras. Indeed, the map induced by
pullback on weight spaces

X (R̃N ) −→ X (RN )

sends arithmetic points of signature (r, ψ) to arithmetic points of signature (2r, ψ2). In particular,
for any quadratic character ε, the arithmetic points of signature (r, εψ) are still sent to arithmetic
points of signature (2r, ψ2).

Fix now a Hida family (Rf ,Uf ,Ucl
f , f) of tame level N and tame character χ2 modulo N . As

usual, we write χ0 be the primitive character associated with χ, N0 for its conductor and N1 =
N/N0. We assume that gcd(N0, N1) = 1 and write ε = χ(−1). By definition of Hida family, there
exists an integer k0 (only determined modulo (p−1)/2) such that every classical point κ ∈ Ucl

f has
weight 2k − 2 with 2k ≡ 2k0 (mod p− 1). We define

R̃f := Rf ⊗Λ,σ Λ,



28 DANIELE CASAZZA AND CARLOS DE VERA-PIQUERO

where σ : Λ→ Λ is the O-algebra isomorphism induced by t 7→ t2 on 1 +pZp. In particular, notice

that R̃f is isomorphic to Rf as O-algebras. We equip R̃f with the structure of Λ-algebra via the
map λ 7→ 1⊗ λ. The natural homomorphism

Rf −→ R̃f , α 7−→ α⊗ 1

is an isomorphism of O-algebras, but it is not even a homomorphism of Λ-algebras. Indeed,
similarly as above this is reflected in the fact that the induced map

π : X (R̃f ) 7−→ X (Rf )

on weight spaces doubles the weights.

For any choice of square root χ̃ of χ2ω2k0−2 in ∆̂Np we have a ΛN -algebra structure for R̃f .

This also uniquely determines the R̃N -algebra structure because of the following diagram:

RN
locf // Rf

ΛN

==

σ
!!

loc
χ2ω2k0−2

// Λ

>>

σ

  
ΛN

locχ̃

// Λ

Since p - N , we have a natural decomposition ∆̂Np ' ∆̂N × ∆̂p, hence χ̃ is uniquely determined

by the choice of a square root of χ2 in ∆̂N and of ω2k0−2 in ∆̂p. We choose r0 to be one of the two

solutions of the congruence 2x ≡ 2k0 (mod p−1) and consider the ΛN -structure of R̃f induced by
the choice χ̃ := χωr0−1.

Let Ũf := π−1(Uf ) and Ũcl
f := π−1(Ucl

f ). Notice that not all the weights of classical points

in Ũcl
f are contained in a single residue class modulo p − 1. Indeed, a point κ̃ ∈ Ũcl

f has weight
k − 1 for some integer k such that 2k ≡ 2k0 (mod p − 1). Therefore either k ≡ r0 (mod p − 1)

or k ≡ r0 + p−1
2 (mod p − 1), yielding a partition of Ũcl

f as a union of two sets. In the following

discussion we write Ũcl
f (r0) for the subset of classical points in Ũcl

f whose weights are of the form
k − 1 with k ≡ r0 (mod p− 1).

Lemma 5.6. Let (Rf ,Uf ,Ucl
f , f) be a Hida family and keep the notation as in the above discussion.

For each Q ∈ L(p)
Np with positive discriminant divisible by p, there is a unique Rf -homomorphism

Jr0Q,f : Df −→ R̃f

such that for all κ̃ ∈ Ũcl
f (r0) of weight k − 1 one has

κ̃(Jr0Q,f (µ)) = χ0(Q)〈spπ(κ̃)(µ), Qk−1〉 for all µ ∈ Df .

Proof. Fix a quadratic form Q as in the statement. The uniqueness of JQ is clear because Ũcl
f (r0)

is dense in Ũf . To prove the existence, we adapt the arguments in the proof of [Ste94, Lemma 6.1].
Recall that there is a canonical isomorphism Zp[[Z

×
p ]] ' Meas(Z×p ), j 7→ dj. Using this, we first

define a map
jQ : D −→ Zp[[Z

×
p ]], ν 7→ jQ(ν),

where jQ(ν) is determined by requiring that∫
Z×p

f djQ(ν) =

∫
Zp×Z×p

f(Q(x, y)) dν(x, y)

for all continuous functions f : Z×p → Zp. Observe that since Q ∈ L(p)
Np has discriminant divisible

by p, we have Q(x, y) ∈ Z×p for all (x, y) ∈ Zp ×Z×p , so this is well-defined. We notice that jQ is a

Zp-linear map, and that jQ([t]ν) = [t2] · jQ(ν) for t ∈ Z×p . We compose the map jQ with the map
locr0 := locχ̃ |Λ1

, i.e.

locr0 : Λ1 → Λ

[x] 7→ ωr0−1(x)[〈x〉] for x ∈ Z×p .
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In this way we get a map

jQ,f : D −→ Λ, ν 7−→ jQ,f (ν) = locr0(jQ(ν)).

which, in terms of measures, is characterized by requiring that∫
Γ

ϕdjQ,f (ν) =

∫
Z×p

ϕ† djQ(ν)

for all continuous functions ϕ : Γ→ Zp, where ϕ†(x) = ωr0−1(x)ϕ(〈x〉) for x ∈ Z×p . Observe that

jQ,f ([t]ν) = locr0([t]2jQ(ν)) for all t ∈ Z×p , ν ∈ D. The map jQ,f extends by Rf -linearity to a
unique Rf -linear map

JQ,f : Df = D⊗Zp[[Z×p ]] Rf −→ R̃f = Rf ⊗Λ,σ Λ

such that
JQ,f (ν ⊗ α) = χ0(Q) · α⊗σ jQ,f (ν) for ν ∈ D, α ∈ Rf .

Now, let µ = ν ⊗ α ∈ Df = D ⊗Rf , and κ̃ ∈ Ũcl
f (r0) be a classical point of weight k − 1, and

let κ = π(κ̃) ∈ Ucl
f . Then we have

κ̃(Jr0Q,f (µ)) = χ0(Q) · κ̃(α⊗ 1)κ̃(1⊗ jQ,f (ν)) = χ0(Q)κ(α) ·
∫

Γ

κ̃ djQ,f (ν) =

= χ0(Q)κ(α) ·
∫
Z×p

κ̃† djQ(ν) = χ0(Q)κ(α) ·
∫
Zp×Z×p

ωr0−1(Q(x, y))κ̃(〈Q(x, y)〉)dν(x, y) =

= χ0(Q)κ(α) ·
∫
Zp×Z×p

ω(Q(x, y))r0−kQ(x, y)k−1dν(x, y) =

= χ0(Q)κ(α) ·
∫
Zp×Z×p

〈
(xY − yX)2k−2

(2k − 2)!
, Qk−1

〉
dν(x, y) =

= χ0(Q)

〈
κ(α) ·

∫
Zp×Z×p

(xY − yX)2k−2

(2k − 2)!
dν(x, y), Qk−1

〉
= χ0(Q)〈spκ(µ), Qk−1〉,

as we wanted to prove. �

Definition 5.7. Let Φf ∈ SymbΓ0(N)(Df ) be the Λ-adic modular symbol attached to f as in

Corollary 4.6. For each Q ∈ L(p)
Np with positive discriminant divisible by p, we define

Jr0(f ;Q) := Jr0Q,f (Φf (DQ)) ∈ R̃f .

An easy computation shows that Jr0(f ;Q) depends only on the Γ0(Np)-equivalence class of
Q. The notation suggests that Jr0(f ;−) depends only on the Hida family f (and on the choice
of r0), but the definition clearly shows that it depends on the modular symbol Φf , which is only
determined up to the choice of p-adic periods as explained in Corollary 4.6. Despite of this, we
prefer to write Jr0(f ;−) instead of Jr0(Φf ;−).

Now let d be a fundamental discriminant divisible by p such that gcd(N0, d) = 1.

Definition 5.8. If m ≥ 1 is an integer, we define

sr0N (f ; d, χd(−1)m) :=
∑

Q∈L(p)
Np(|d|m)/Γ(Np)

ωd(Q) · Jr0(f ;Q) ∈ R̃f .

Observe that the function sr0N (f ; d, χd(−1)m) is identically zero if χd(−1)m 6≡ 0, 1 (mod 4),
since in this case |d|m = dχd(−1)m is not a discriminant. And when χd(−1)m ≡ 0, 1 (mod 4),

the function sr0N (f ; d, χd(−1)m) on X (R̃f ) is key to interpolate the m-th Fourier coefficients of the
d-th Shintani liftings of the specializations of f . Indeed, we define the Λ-adic d-th Shintani lifting

of f as the power series with coefficients in R̃f given by

(30) Θr0
d (f) :=

∑
m≥1

 ∑
0<t|N1

µ(t)χdχ̄0(t)t−2ω(t)r0−1[〈t〉]−1sr0N (f ; d, χd(−1)mt2)

 qm ∈ R̃f [[q]],

where [〈t〉] ∈ Λ is the group-like element associated with 〈t〉 ∈ Γ (notice that p - N1). Observe that
Θr0

d (f) vanishes identically if ε(−1)r0d < 0 because the quantities sr0N (f ; d, χd(−1)mt2) are all zero
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(compare with Remark 2.2). Note also that the definition of Θr0
d (f) depends on our choice of r0,

as indicated by the notation (in fact, note that Lemma 5.6 and Definitions 5.7 and 5.8 do depend
on the choice of r0). Hence, for each solution of the congruence 2x ≡ 2k0 (mod p − 1) we have
a Λ-adic d-th Shintani lifting of f , and they are different liftings. The interpolation property for
Θr0

d (f) then reads as follows:

Theorem 5.9. Keep the notation notation as above. For every classical point κ̃ ∈ Ũcl
f (r0) of

weight k − 1, we have

Θr0
d (f)(κ̃) = C(k, χ, d)−1Θk,Np,d(Φf ,κ) = Ωκ · C(k, χ, d)−1θalg

k,Np,χ,d(f(κ)),

where κ = π(κ̃) ∈ Ucl
f , and C(k, χ, d) is the constant defined in (11).

Proof. The proof follows from the above construction of the Λ-adic d-th Shintani lifting. First
suppose that ε(−1)r0d < 0. In this case, ε(−1)kd < 0 as well for all points κ̃ as in the statement,
and hence both sides of the stated equality are zero. We assume for the rest of the proof that
ε(−1)r0d > 0. Then, if κ̃ is as in the statement we have χd(−1) = ε(−1)k. If m ≥ 1 is an integer
with ε(−1)km 6≡ 0, 1 (mod 4), then sr0N (f ; d, ε(−1)km) = 0, since |d|m is not a discriminant. For
the remaining positive integers, we can apply Lemma 5.6 to find

κ̃(sr0N (f , d;χd(−1)m)) =
∑

Q∈L(p)
Np(|d|m)/Γ(Np)

ωd(Q) · κ̃(Jr0(f ;Q)) =

=
∑

Q∈L(p)
Np(|d|m)/Γ(Np)

ωd(Q) · 〈spκ(Φf (DQ), Qk−1)〉 =

=
∑

Q∈LNp(|d|m)/Γ(Np)

ωd(Q) · Jk(Φf ,κ, Q) =

= sk,Np,χ(Φf ,κ, d; ε(−1)km).

In the last line, the presence of ωd makes trivial the contribution of non-p-primitive forms (because
p | d). It then easily follows by the definition of Θr0

d that

Θr0
d (f)(κ̃) = C(k, χ, d)−1Θk,Np,χ,d(Φf ,κ),

observing that
κ̃(t−2ω(t)r0−1[〈t〉]−1) = t−2ω(t)r0−kt−k+1 = t−k−1.

The second equality in the statement is now deduced using that Φf ,κ = Ωκ · ϕ−f(κ), by Theorem

4.5, and that Θk,Np,χ,d(ϕ−f(κ)) = θalg
k,Np,χ,d(f(κ)), by Theorem 5.4. �

Remark 5.10. As we have pointed out above, it may happen that Θr0
d (f) vanishes identically.

However, suppose that there is at least one classical point κ̃ ∈ Ũcl
f (r0), say of weight k − 1, such

that the classical d-th Shintani lifting θk,Np,d(f(κ)) is non-zero, where κ = π(κ̃). This implies
that ε(−1)kd > 0, and hence also ε(−1)r0d > 0. Then, by virtue of Corollary 4.6 we can choose
the p-adic periods so that Ωκ 6= 0, and the interpolation property of the previous theorem ensures
that Θr0

d (f) does not vanish. Hence, as soon as the classical d-th Shintani lifting is not vanishing

on f(κ) for some κ ∈ π(Ũcl
f (r0)), one can construct a non-zero Λ-adic d-th Shintani lifting of f ,

Θr0
d (f). When doing this choice, we can say that Θr0

d (f) is ‘centered at κ’.

5.3. A Λ-adic Kohnen formula. We keep the notation and assumptions as in the previous para-
graph. Associated with a Hida family (Rf ,Uf ,Ucl

f , f) and a fundamental discriminant d satisfying
the assumptions of Theorem 5.9, let us rewrite (30) as

Θr0
d (f) =

∑
m≥1

am(Θr0
d (f))qm ∈ R̃f [[q]].

According to Theorem 5.9, the elements am(Θr0
d (f)) ∈ R̃f interpolate Fourier coefficients of the

d-th Shintani liftings of the classical forms f(κ) on the set of classical points π(Ũcl
f (r0)) ⊂ Ucl

f . In
particular, we may consider the function

a|d|(Θ
r0
d (f)) : X (R̃f ) −→ Cp, κ̃ 7−→ a|d|(Θ

r0
d (f))(κ̃)

given by the |d|-th Fourier coefficient of Θr0
d (f).
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Proposition 5.11. With notation and assumptions as above, suppose that gcd(N, d) = 1 and

ε(−1)r0d > 0. If κ̃ ∈ Ũcl
f (r0) has weight k − 1, κ = π(κ̃), and f(κ) 6= fκ, then

(31) a|d|(Θ
r0
d (f))(κ̃) = Ωκ · χd(−1)Rd(fκ)(−1)k|d|kNk

0 (k − 1)! · L(fκ, χdχ̄0, k)

(2πi)kg(χdχ̄0)Ω−f(κ)

,

where Rd(fκ) as defined in Proposition 2.4.

Proof. For any κ̃ ∈ Ũcl
f (r0) of weight k − 1, Theorem 5.9 and Proposition 3.13 (see also Remark

3.14) imply that

a|d|(Θ
r0
d (f))(κ̃) = Ωκ ·

a|d|(θk,Np,χ,d(f(κ)))

C(k, χ, d) · Ω−f(κ)

= Ωκ(1− βχdχ̄0(p)p−k) ·
a|d|(θk,Np,χ,d(fκ))

C(k, χ, d) · Ω−f(κ)

=(32)

= Ωκ ·
a|d|(θk,Np,χ,d(fκ))

C(k, χ, d) · Ω−f(κ)

,

where κ = π(κ̃), and the last equality uses that p divides d. If f(κ) 6= fκ, the result follows by
combining (32) with Lemma 3.10 and Corollary 2.5. �

Remark 5.12. Notice that the condition f(κ) = fκ can only happen when k = 1. See the forth-
coming Corollary 5.14 for the value at those κ (in the case that χ is trivial).

Note that the values

Lalg(fκ, χdχ̄0, k) :=
L(fκ, χdχ̄0, k)

(2πi)kg(χdχ̄0)Ω−f(κ)

in (31) are algebraic, hence the Fourier coefficient a|d|(Θ
r0
d (f)) interpolates the ‘algebraic parts’

of the special values L(fκ, χdχ̄0, k) at classical points κ̃ ∈ Ũf (r0). A p-adic L-function interpo-
lating such special values was studied in Greenberg–Stevens [GS93], generalizing Mazur–Tate–
Teitelbaum [MTT86]. Associated with f and a Dirichlet character ψ, they define a two-variable
p-adic L-function LGS

p (f , ψ) on some local domain Uf ×U ⊂ X (Rf )×X (Λ) satisfying the following

interpolation property: for every pair of classical points (κ, j) ∈ Ucl
f × Ucl in the cone defined by

0 < j < wt(κ) + 2,

LGS
p (f , ψ)(κ, j) = Ωκ · Ep(f(κ), ψ, j) · cj−1(j − 1)!g(ψω1−j)

(2πi)jΩ
sgn(ψ)
f(κ)

L(f(κ), ψ̄ωj−1, j).

Here c = cond(ψω1−j), m is the exponent of p in c, ap(κ) is the p-th Fourier coefficient of f(κ),
and the Euler-like factor:

(33) Ep(f(κ), ψ, j) = ap(κ)−m
(

1− ψω1−j(p)pj−1

ap(κ)

)
.

When restricted to the line (κ, k), where k = (wt(κ) + 2)/2, this identity becomes

LGS
p (f , ψ)(κ, k) = Ωκ · Ep(f(κ), ψ, k) · ck−1(k − 1)!g(ψω1−k)

(2πi)kΩ
sgn(ψ)
f(κ)

L(f(κ), ψ̄ωk−1, k).

This suggests defining a one-variable p-adic L-function as the restriction of LGS
p (f , ψ) to the ‘line’

(κ, k). More precisely, this one-variable p-adic L-function is the pullback of LGS
p (f , ψ) along the

map

Uf
∆−→ Uf × U

given by κ 7→ (κ,wt(κ)/2 + 1) on Ucl
f . For our purposes, we will rather consider the pullback of

LGS
p (f , ψ) along

ι : Ũf
π−→ Uf

∆−→ Uf × U ,
which yields a one-variable p-adic L-function L̃GS

p (f , ψ) on Ũf . Indeed, by construction we see that

if κ̃ ∈ Ũcl
f (r0) has weight k − 1 and κ = π(κ̃), then

L̃GS
p (f , ψ)(κ̃) = Ωκ · Ep(f(κ), ψ, k) · ck−1(k − 1)!g(ψω1−k)

(2πi)kΩ
sgn(ψ)
f(κ)

· L(f(κ), ψ̄ωk−1, k).
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Similarly, by pulling back via the map π : Ũf → Uf we can define Λ-adic functions Rd and ap on

Ũf such that
Rd(κ̃) = Rd(fκ) and ap(κ̃) = ap(κ)

for all κ̃ ∈ Ũcl
f of weight k − 1 > 1, with κ = π(κ̃).

The following theorem might be seen as a ‘Λ-adic Kohnen formula’ in the spirit of the classical
formula stated in Corollary 2.5.

Theorem 5.13. With the above notation, suppose that gcd(N, d) = 1 and ε(−1)r0d > 0. Then the
equality

a|d|(Θ
r0
d (f)) = χd(−1) · ap ·Rd · L̃GS

p (f , χdχ0ω
r0−1)

holds, as an equality of functions on Ũf .

Proof. It suffices to prove the claimed equality at classical points in Ũcl
f (r0) of weight k−1 > 1, since

they are dense in Ũf . Let κ̃ ∈ Ũcl
f (r0) be a classical point of weight k− 1, with k ≡ r0 (mod p− 1),

and let κ = π(κ̃). We consider ψ = χdχ0ω
r0−1. Since k ≡ r0 (mod p− 1), we have ψω1−k = χdχ0,

which has conductor |d|N0. Therefore, since χd(p) = 0 the Euler-like factor Ep(f(κ), ψ, k) is just 1.
The fact that χd(p) = 0 also implies that L(f(κ), ψ̄ωk−1, k) = L(f(κ), χdχ̄0, k) = L(fκ, χdχ̄0, k).
Besides, note that since ω is odd and we are assuming ε(−1)r0d > 0 we have sgn(χdχ0ω

r0−1) = −1.
We thus obtain that

L̃GS
p (f , χdχ0ω

r0−1)(κ̃) = Ωκap(κ)−1N
k−1
0 |d|k−1(k − 1)!g(χdχ0)

(2πi)kΩ−f(κ)

· L(fκ, χdχ̄0, k).

Using that
g(χdχ0) = χdχ0(−1)|d|N0/g(χdχ̄0) = (−1)k|d|N0/g(χdχ̄0),

we can rewrite the above identity as

(34) L̃GS
p (f , χdχ0ω

r0−1)(κ̃) = Ωκap(κ)−1(−1)kNk
0 |d|k(k − 1)! · L(fκ, χdχ̄0, k)

(2πi)kg(χdχ̄0)Ω−f(κ)

.

Since k − 1 > 1, we have f(κ) 6= fκ and we can compare the above with equation (31) to deduce
that

a|d|(Θ
r0
d (f))(κ̃) = ap(κ) · (−1)kε ·Rd(fκ) · L̃GS

p (f , χdχ0ω
r0−1)(κ̃).

To conclude, we may just use that (−1)kε = χd(−1) to get

a|d|(Θ
r0
d (f))(κ̃) = χd(−1) · ap(κ) ·Rd(fκ) · L̃GS

p (f , χdχ0ω
r0−1)(κ̃).

�

Corollary 5.14. Let N ≥ 1 be a squarefree integer, p be an odd prime with p - N , f ∈ S2(Np) be a
normalized newform, and d < 0 be a fundamental discriminant divisible by p such that gcd(N, d) =
1. Assume that χd(`) = w` for every prime ` dividing N . Let f be the Hida family passing through

f , κ ∈ Ucl
f be such that f(κ) = fκ = f , and κ̃ ∈ Ũcl

f (1) such that π(κ̃) = κ. Then

a|d|(Θ
1
d(f))(κ̃) = Ωκ · 2ν(N)|d| · L(f, χd, 1)

(2πi)g(χd)Ω−f
.

Proof. This is an immedate consequence of the above theorem, taking k = r0 = 1 and noticing
that Rd(f) = 2ν(N) under the hypotheses in the statement. �

By using the interpolation property of the Λ-adic d-th Shintani lifting, the above corollary can
be rewritten in classical terms. This yields a mild generalization of Kohnen’s formula in (15), in
which the level of the newform and the fundamental discriminant are not relatively prime:

Corollary 5.15. Let N ≥ 1 be a squarefree integer, p be an odd prime with p - N , f ∈ S2(Np) be a
normalized newform, and d < 0 be a fundamental discriminant divisible by p such that gcd(N, d) =
1. Assume that χd(`) = w` for every prime ` dividing N . Then

a|d|(θ1,Np,d(f)) = 21+ν(N)|d|L(f, χd, 1)

(2πi)g(χd)
.

Proof. It follows from Corollary 5.14, equation (32) (where C(k, d) = 2) and the fact that the
family of p-adic periods can be chosen so that the relevant one is non-zero by Corollary 4.6. �
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Remark 5.16. This formula could have been obtained by adapting the classical computation of
Proposition 2.4, choosing a suitable set of representatives for LNp(N2

0 d
2)/Γ0(Np) for the compu-

tation of rk,Np,χ(f ; d, d) (for this, one needs to use arguments similar to those used in Section 3 to
classify integral binary quadratic forms). Instead, the previous corollary shows that such computa-
tion can be avoided if one disposes of a d-th Shintani lifting in p-adic families.

5.4. Classical points outside the interpolation region. Continue to assume that (Rf ,Uf ,Ucl
f , f)

is a Hida family as usual, and let d be a fundamental discriminant as in Theorem 5.13 (depending
on a choice of r0). We have seen in the previous paragraph how the |d|-th Fourier coefficient of
Θr0

d (f) interpolates special values of twisted L-series associated with classical specializations of the

Hida family f on ‘half’ of the classical points. Namely, for classical points κ̃ ∈ Ũcl
f (r0) of weight

k−1 the specializations a|d|(Θ
r0
d (f))(κ̃) interpolate the special values L(fπ(κ̃), χdχ̄0, k) (see Propo-

sition 5.11). This was just an immediate consequence of the fact that Θr0
d (f)(κ̃) interpolates the

d-th Shintani liftings of the forms f(π(κ̃)) when varying κ̃ ∈ Ũcl
f (r0), together with the classical

relation between Fourier coefficients of Shintani liftings and special L-values.

A natural question is: what about the values of a|d|(Θ
r0
d (f)) at classical points κ̃ ∈ Ũcl

f −Ũcl
f (r0)?

At those points, we cannot use Theorem 5.9 to relate Θr0
d (f)(κ̃) to a classical d-th Shintani lifting.

However, we can still use Theorem 5.13 to evaluate a|d|(Θ
r0
d (f)) by evaluating L̃GS

p (f , χdχ0ω
r0−1).

Indeed, first notice that if κ̃ ∈ Ũcl
f does not belong to Ũcl

f (r0), then κ̃ has weight k − 1 for some
integer k such that k ≡ r0 + (p− 1)/2 modulo p− 1. Then the character

χdχ0ω
r0−1ω1−k = χdω

(p−1)/2χ0 = χd/p∗χ0

has conductor c = |d|N0/p, where p∗ = (−1)(p−1)/2p. In particular, m = 0 in the notation of the
previous paragraph. If κ = π(κ̃), then

Ep(f(κ), χdχ0ω
r0−1, k) =

(
1−

χd/p∗χ0(p)pk−1

ap(κ)

)
,

and therefore we find

a|d|(Θ
r0
d (f))(κ̃) = ap(κ)χd(−1)Rd(κ̃)Ωκ

(
1−

χd/p∗χ0(p)pk−1

ap(κ)

)
×

×
ck−1(k − 1)!g(χd/p∗χ0)

(2πi)kΩ−f(κ)

· L(f(κ), χd/p∗ χ̄0, k).

Now, we have

g(χd/p∗χ0) =
χd/p∗χ0(−1)|d|N0

pg(χd/p∗ χ̄0)
=

(−1)k|d|N0

pg(χd/p∗ χ̄0)
,

where in the last equality we use that χd/p∗χ0(−1) = (−1)(p−1)/2χd(−1)ε = (−1)r0+(p−1)/2 =

(−1)k. Hence we can rewrite the above identity as

a|d|(Θ
r0
d (f))(κ̃) =

ap(κ)

pk

(
1−

χd/p∗χ0(p)pk−1

ap(κ)

)
·Rd(κ̃)Ωκ · χd(−1)(−1)k|d|kNk

0 (k − 1)! ×(35)

×
L(f(κ), χd/p∗ χ̄0, k)

(2πi)kg(χd/p∗ χ̄0)Ω−f(κ)

.

Remark 5.17. This identity complements the interpolation formula for Θr0
d (f) in (31) at clas-

sical weights in Ũcl
f − Ũcl

f (r0). In turn, this identity also suggests that the specializations of

Θr0
d (f) at classical points in Ũcl

f − Ũcl
f (r0) would be ‘p-adic shadows’ of the d-th Shintani lift-

ings θk,Np,χω(p−1)/2,d(f(κ)). Note that in these d-th Shintani liftings the conductor of the character

χω(p−1)/2 is not relatively prime with d, and hence the discussion in Section 2 should be reformu-
lated in order to define such liftings.

The identity in (35) shows also that on the subset of classical points Ũcl
f − Ũcl

f (r0) one can

find exceptional zeroes (precisely at those points where L̃GS
p (f , χdχ0ω

r0−1) has exceptional zeroes).
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Indeed, it is apparent from (35) that for a classical point κ̃ ∈ Ũcl
f − Ũcl

f (r0) of weight k − 1,
a|d|(Θ

r0
d (f)(κ̃) vanishes whenever

χd/p∗χ0(p)pk−1 = ap(κ).

When this holds, the order of vanishing of the |d|-th Fourier coefficient a|d|(Θ
r0
d (f)) at κ̃ is at least

one more than the order of vanishing of the relevant classical special L-value. This extra vanishing
is due to the p-adic interpolation.

To illustrate one of the settings in which exceptional zeroes arise, suppose that E/Q is an elliptic
curve of conductor Np with multiplicative reduction at the prime p (thus ap(E) = ±1 according
to whether E has split or non-split multiplicative reduction at p, respectively). Let f ∈ S2(Np)
be the normalized weight 2 newform (with rational coefficients) associated with E by modularity.
Let also f be the Hida family passing through f at a classical point κ ∈ Ucl

f (thus f(κ) = fκ = f),

and let κ̃ ∈ Ũcl
f (1) be such that π(κ̃) = κ.

Let r0 be an integer congruent to 1+(p−1)/2 = (p+1)/2 modulo p−1, and d be a fundamental
discriminant divisible by p such that (−1)r0d > 0. Associated with this choice, consider the Λ-adic
d-th Shintani lifting Θr0

d (f). Then, equation (35) reads

a|d|(Θ
r0
d (f))(κ̃) = χd(−1)Rd(κ̃)Ωκ(ap(κ)− χd/p∗(p))

(−1)|d|N0

p
·
L(fκ, χd/p∗ , 1)

(2πi)g(χd/p∗)Ω
−
fκ

=

= (ap(E)− χd/p∗(p)) ·Rd(κ̃)Ωκ · (−d)N0p
−1 ·

L(E,χd/p∗ , 1)

(2πi)g(χd/p∗)Ω
−
f

,

and we see that a|d|(Θ
r0
d (f)) has an exceptional zero at κ̃ when χd/p∗(p) = ap(E). We notice that

under the assumption that χd(q) = wqe(f) for all primes q such that qe || N , the quantity Rd(κ̃)

equals 2ν(N), where ν(N) is the number of primes dividing N .
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