
HEEGNER POINTS ON HIJIKATA–PIZER–SHEMANSKE CURVES AND THE

BIRCH AND SWINNERTON-DYER CONJECTURE

MATTEO LONGO, VICTOR ROTGER, AND CARLOS DE VERA-PIQUERO

Abstract. We study Heegner points on elliptic curves, or more generally modular abelian varieties,
coming from uniformization by Shimura curves attached to a rather general type of quaternionic orders.

We address several questions arising from the Birch and Swinnerton-Dyer (BSD) conjecture in this

general context. In particular, under mild technical conditions, we show the existence of non-torsion
Heegner points on elliptic curves in all situations in which the BSD conjecture predicts their existence.

Introduction

Let E/Q be an elliptic curve of conductor N over the field of rational numbers. Let K be an imaginary
quadratic field of discriminant −D and

χ : GK = Gal(K̄/K)−→C×

be a character of finite order of the absolute Galois group of K. We assume throughout that χ is
anticyclotomic, meaning that χ(τστ−1) = χ−1(σ) for any σ ∈ GK and τ ∈ GQ \GK .

The abelian extension cut out by χ is a ring class field associated to some order Rc in K of conductor
c = c(χ) ≥ 1. Let Hc denote the corresponding abelian extension, determined by the isomorphism
Gal(Hc/K) ' Pic(Rc) induced by the Artin map. Define the χ-isotypical component of the Mordell-Weil
group of E over Hc as

E(Hc)
χ := {x ∈ E(Hc)⊗ C : σ(x) = χ(σ)x, ∀σ ∈ Gal(Hc/K)},

and let L(E/K,χ, s) denote the Rankin L-series associated to the twist of E/K by χ. Since χ is anti-
cyclotomic, the motive associated to L(E/K,χ, s) is Kummer self-dual and this implies that the global
root number ε(E/K,χ) of L(E/K,χ, s) is either +1 or −1. Assume for the remainder of the article that

ε(E/K,χ) = −1,

hence in particular L(E/K,χ, s) vanishes at the central critical point s = 1.
In this situation, the Galois equivariant version of the Birch–Swinnerton-Dyer conjecture predicts that

the implication

(1) L′(E/K,χ, 1) 6= 0
?⇒ dimCE(Hc)

χ = 1

holds true for all triplets (E,K, χ) as above.
The well-known strategy for proving this implication was established by the pioneer works of Gross–

Zagier [GZ86] and Kolyvagin [Kol88], and consists in exploiting the Euler system of Heegner points on E
arising from classical modular parametrisations. Since the breakthrough of Gross, Zagier and Kolyvagin
in the late eighties, this method was generalized by Zhang and his school ([Zha01], [YZZ13]) by extending
the range of modular parametrisations of the elliptic curve using Shimura curves associated to orders in
quaternion algebras. As described in [Nek07], these ideas have been turned into a machinery which allows
one to prove (1) for a given triplet (E,K, χ), subject to the existence of non-torsion Heegner points in
E(Hc).

Unfortunately, however, the existing literature does not make explicit the Shimura uniformization in
all scenarios in which (1) holds. Indeed, this is established in the afore mentioned works under so-called
Heegner hypotheses which typically leave aside many cases in which there is a prime p dividing both N
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and Dc. As pointed out, the reason may be traced to the difficulty of proving the existence of non-torsion
Heegner points in the Mordell-Weil group of E over the abelian extesion Hc of K cut out by χ.

Recent and interesting progress has been recently made on such settings by Kohen–Pacetti [KP16a],
[KP16b] and Cai–Chen–Liu in [CCL16], where the modular parametrisation is afforded by a classical
modular curve attached to a Cartan level structure in the split matrix algebra. Nevertheless, there are
still many cases of (1) in which a Shimura curve uniformization is not made explicit by these works.
The simplest scenario not covered by previous works arises when E/Q is an elliptic curve of conductor
N = p2q, where p and q are two distinct odd primes such that p is ramified and q is inert in K. In this
setting it may perfectly be the case that the sign of the functional equation satisfied by L(E/K, s) be
−1 (indeed, this holds under certain arithmetic conditions on the local root numbers of the functional
equation of L(E/K, s) at p and q which are made precise below), and although [YZZ13] proves the
existence of a Heegner system in some Shimura curve, the desired uniformization is not made explicit. It
is the purpose of this paper to describe explicitly the optimal Shimura curve uniformization, hence this
particulary simple example can be thought as a motivation for this work.

The main goal we set ourselves for this project is covering this gap in the literature by providing a
result proving (1) for all triplets (E,K, χ), with no additional hypothesis, and proving the existence of
non-trivial Heegner points on the field cut out by χ. As the reader will realize, we fall short at achieving
this goal, but we prove a fairly general theorem encompassing all previously known results and covering
all possible scenarios allowed by (1) but for a few parasitic ones.

We do that by considering jacobians Jac(XU ) of Shimura curves XU associated to a rather general

collection of non-maximal compact open subgroups U ⊆ B̂× = (B⊗ Ẑ)× in indefinite quaternion algebras
B/Q; these correspond to orders defined by local conditions of Eichler or Cartan type when the quaternion
algebra is split, and to orders introduced by Pizer [Piz80] and Hijikata–Pizer–Shemanske [HPS89a] in the
non-split case.

Let us state our theorem more precisely and describe the structure of this paper. Section 1 is devoted
to introduce an explicit family of special orders R in B which shall play a central role in our work. These
orders are determined by local data at the primes of bad reduction of the elliptic curve E, following
classical work of Hijikata, Pizer and Shemanske that apparently did not receive the attention it justly
deserved. As a piece of notation, for any order R of B we let XR denote the Shimura curve associated
to U = R̂× = (R⊗ Ẑ)×. Also, to emphasize the role of B, we will sometimes write XB,R for XR.

In section 2 we study the Shimura curves XR associated to the above mentioned Hijikata–Pizer–
Shemanske orders and work out explicitly the Jacquet–Langlands correspondence for these curves, which
allows us to dispose of a rich source of modular parametrizations of the elliptic curve E. For any integer
c, there is a (possibly empty) collection of distinguished points on XR, called Heegner points of conductor
c. The set of Heegner points of conductor c on XR is in natural correspondence with the set of conjugacy
classes of optimal embeddings of the quadratic order Rc in the quaternion order R, and we denote it
Heeg(R,K, c). We say that a point in E(Hc) is a Heegner point of conductor c associated to the order R
if it is the image of a Heegner point of conductor c in XR for some uniformization map

πE : Jac(XR)→ E

defined over Q. The corresponding set of Heegner points is denoted HeegE(R,K, c).
In section 3 we perform a careful and detailed analysis of the rather delicate and involved theory of op-

timal embeddings of quadratic orders into Hijikata–Pizer–Shemanske orders. Combining all together this
allows to prove the main result of this article. A slightly simplified version of this result is the following.
The main virtue of the statement below with respect to previous results available in the literature is that
it is both general (removing nearly all unnecessary hypothesis on divisibility and congruence relations
among N , D and c) and precise (pointing out to a completely explicit Shimura curve).

Theorem A. Let E/Q be an elliptic curve of conductor N not divisible neither by 23 nor by 33, and
suppose that the newform f ∈ S2(Γ0(N)) attached to E by modularity is primitive. Let K be an imaginary
quadratic field of discriminant −D and χ be an arbitrary anticyclotomic character of conductor c ≥ 1.
Assume that ε(E/K,χ) = −1. Then

(1) there exists an explicit Hijikata–Pizer–Shemanske order R = R(E,K, χ) for which the set of
Heegner points HeegE(R,K, c) in E(Hc) is non-empty.

(2) If L′(E/K,χ, 1) 6= 0 and E does not acquire CM over any imaginary quadratic field contained in
Hc, then dimC (E(Hc)⊗ C)

χ
= 1.
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The condition that f is primitive means here that f is not a twist of a modular form of level M < N
(cf. Definition 4.18). Theorem A is proved in the last section of the article, where we also provide a more
general but more involved statement (see Theorem 4.16), in which we discuss the cases when 23 or 33

divide N , and show also that the primitivity assumption is only needed locally at some primes dividing
N . We also prove a similar but weaker result for modular abelian varieties in Theorem 4.5, and we close
the paper with a conjecture on the existence of Heegner points on modular abelian varieties.

Statement (2) in the above theorem follows from (1) and well-known Kolyvagin type arguments which
are spelled out in detail in [Nek07]. Namely, given

• a parametrization of the elliptic curve E by a Shimura curve XB,U ,
• a Heegner point x in XB,U (Kab), rational over a subfield K(x) ⊆ Kab, and
• a character χ factoring through Gal(K(x)/K),

Nekovář shows that if the special value of the derivative of the complex L-function at s = 1 is nonzero,
then the dimension of the C-vector space (E(K(x))⊗C)χ is equal to 1, provided that E does not acquire
CM over any imaginary quadratic field contained in K(x)ker(χ).

In some sense, our Theorem A reverses the logical order of the result in [Nek07], starting with a
character of a given conductor and asking for a Heegner point rational over the subextension of Kab cut
out by that character. Therefore, the whole focus of our work is on statement (1) of the above theorem.
More precisely, this work grows out from a systematic study of existence conditions for Heegner points in
all scenarios in which the BSD conjecture predicts the existence of a non-zero element in (E(Hc)⊗ C)χ.
To understand the flavour of this work, it is therefore important to stress that we do not require any
condition on the triplet (N,D, c), besides the above restrictions at 2 and 3 (cf. also Assumption 4.9).
Quite surprisingly, the interplay between local root numbers, non-vanishing of the first derivative of the
L-function and the theory of optimal embeddings shows that these conditions match perfectly and, in all
relevant cases, Heegner points do exist.

One of the main motivations that led us to work on this project is that these curves can be p-adically
uniformized by the p-adic rigid analytic space corresponding to the first (abelian) covering of the Drinfel’d
tower over the p-adic upper half planeHp. This rigid analytic space has an explicit description (see [Tei90])
which can be used to study p-adic aspects of Heegner points, including their connection to Iwasawa theory
and p-adic L-functions, as in the case where the elliptic curve has multiplicative reduction and can be
uniformized by Drinfel’d upper half plane (cf. [BD96], [BD98], [BD99]).

It would also be highly interesting to extend the theory of Stark–Heegner points in this context (starting
with the foundational paper [Dar01], and developed in several subsequent works). Such a generalization
is however not straight-forward, essentially because the jacobian varieties of the Shimura curves referred
to above have additive reduction at p (as opposed to having toric reduction, which is a crucial feature
in the above approaches). We regard this as an exciting obstacle to overcome rather than a forbidding
difficulty, and this note aims to settle the first step towards this program that we hope to pursue in the
near future.

Acknowledgements. We thank the anonymous referee for very valuable comments and suggestions
that have helped to improve the exposition of this paper.

1. Shimura curves

Let Ẑ denote the profinite completion of Z, and write R̂ := R ⊗Z Ẑ for every Z-algebra R. Fix an
integer ∆ > 1, which is assumed to be square-free and the product of an even number of primes, and let
B be the indefinite rational quaternion algebra of reduced discriminant ∆. Write B̂ = B ⊗Q Q̂ for the
finite adelization of B. We also fix a maximal order O in B; recall that such an order is unique up to
conjugation by an element in B×. Finally, we shall fix an isomorphism B∞ := B ⊗Q R→ M2(R), under
which B× might be seen as a subgroup of GL2(R).

1.1. Shimura curves. Let H± = C−R = P1(C)− P1(R) be the union of the upper and lower complex
half planes, which might be identified with the set of R-algebra homomorphisms Hom(C,M2(R)). The
action of B× by linear fractional transformations on H± corresponds under this identification to the
action of B× by conjugation on Hom(C,M2(R)).

For any compact open subgroup U of Ô×, one can consider the topological space of double cosets

(2) XU =
(
U\B̂× ×Hom(C,M2(R))

)
/B×,
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where notice that U acts naturally on B̂× by multiplication on the left and B× acts both on B̂× (diago-
nally) and on Hom(C,M2(R)). By the work of Shimura and Deligne (cf., e.g. [Shi67, Del71]), XU admits
the structure of an algebraic curve over Q and a canonical model, which we shall still denote by XU/Q.
This will be referred to as the Shimura curve associated with U .

Although XU is connected over Q, it might not be in general geometrically connected. Indeed, the set
of geometric connected components of XU (that is, the set of connected components of XU := XU ×Q Q̄)

is identified with the finite set of double cosets U\B̂×/B×. Such components are defined over an abelian

extension of Q, and via the reciprocity map from class field theory the action of Gal(Qab/Q) ' Ẑ× on
them is compatible under the isomorphism

U\B̂×/B× '−→ n(U)\Q̂×/Q× = n(U)\Ẑ×

induced by the reduced norm n on B̂× (by strong approximation) with the natural action of Ẑ× on

n(U)\Ẑ×.
From the very definition in (2), one can naturally define a group of automorphisms of XU , which are

often called modular. Namely, if N(U) denotes the normalizer of U in B̂×, then left multiplication by an
element b ∈ N(U) induces an automorphism λ(b) : XU → XU , given on points by the rule

λ(b) : [g, f ] 7−→ [bg, f ].

Here, [g, f ] denotes the point on XU corresponding to a pair (g, f) ∈ B̂× × Hom(C,M2(R)). It is
immediate to check that λ(b) defines the identity on XU if and only if b ∈ UQ×. The group Autmod(XU )
of modular automorphisms on XU is then defined to be the group of all the automorphisms obtained in
this way, so that

Autmod(XU ) := UQ×\N(U).

If U = Ŝ× is the group of units in the profinite completion of some order S ⊆ O, then we shall write
XS := XŜ×/Q for the Shimura curve associated with the order S. In this case, the set of geometric
connected components of XS is identified with the class group Pic(S) of S.

Remark 1.1. The most common setting in the literature is when S = SN+ is an Eichler order of level N+ in
O, where N+ ≥ 1 is an integer prime to N− := ∆(B). In this case, the Shimura curve XN+,N− := XS/Q
associated with S is not only connected but also geometrically connected, and its group Autmod(XN+,N−)
of modular automorphisms is the group of Atkin-Lehner involutions, which are indexed by the positive
divisors of N+N−. Further, XN+,N−/Q is the coarse moduli space classifying abelian surfaces with
quaternionic multiplication by O and N+-level structure.

When N− = 1 (so that B is the split quaternion algebra M2(Q)), a case which we exclude in this
paper, the Shimura curve XN+,1/Q is the affine modular curve Y0(N+) obtained as a quotient of the
upper half plane by the congruence subgroup Γ0(N+), whose compactification by adding finitely many
cusps is the usual modular curve X0(N+)/Q.

In this article, we will be working with Shimura curves associated with certain suborders of O which
are not Eichler orders, but rather with more general orders that for example might have non-trivial level
at primes dividing ∆(B). The special class of quaternion order we shall be dealing with is described in
the next section.

1.2. Choice of quaternion orders. Let p be a rational prime and let Bp be a quaternion algebra over
Qp. The object of this section is introducing several families of local quaternion orders in Bp which in
turn will give rise to a fauna of Shimura curves that will serve as the appropriate host of the Heegner
systems we aim to construct.

Assume first that Bp = Dp is the unique (up to isomorphism) quaternion division algebra over Qp and
let Op be the unique maximal order in Dp. If Lp is a quadratic extension of Qp and ν ≥ 1 is an integer,
one can define the (local) quaternion order

Rν(Lp) = OLp +$ν−1
p Op,

where OLp denotes the ring of integers of Lp and $p is a uniformizer element in Op. Such local orders are
studied in detail by Hijikata, Pizer and Shemanske in [HPS89a]. Notice that R1(Lp) coincides with the
maximal order Op, regardless of the choice of Lp. Further, if L′p is another quadratic extension of Qp with

Lp ' L′p, then Rν(Lp) and Rν(L′p) are conjugated by an element in D×p . For ν ≥ 2, the order Rν(Lp) is

characterized as the unique order in Dp containing OLp and $ν−1
p Op but not containing $ν−2

p Op.
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Remark 1.2. If p is odd and Lp is the unique unramified quadratic extension, then R2r+1(Lp) = R2r+2(Lp)
for every r ≥ 0, thus one can think of the orders Rν(Lp) as being indexed by odd positive integers. These
orders were studied in [Piz76], where they are called orders of level p2r+1. When p = 2 or Lp is ramified,
then Rν+1(Lp) ( Rν(Lp) for every ν ≥ 1, and the order Rν(Lp) depends in general on the choice of Lp.
However, R2(Lp) is independent of Lp, and therefore one can speak of the unique order of level p2 in Dp

(cf. [Piz80]).

Assume now that Bp = M2(Qp) is the split quaternion algebra over Qp. In this algebra the order
M2(Zp) is maximal and it is the only one up to conjugation by elements in GL2(Qp). Below we introduce,
for each positive integer, two different GL2(Zp)-conjugacy classes of suborders in M2(Zp), which therefore
define two different GL2(Qp)-conjugacy classes of orders in M2(Qp). Let ν ≥ 1 be an integer.

• The subring of M2(Zp) consisting of those matrices
(
a b
c d

)
in M2(Zp) such that pν | c is commonly

referred to as the standard Eichler order of level pν in M2(Zp). An Eichler order of level pν is
then any order in M2(Qp) which is conjugated to the standard one. We shall denote any of them
by REic

ν , whenever only its conjugacy class is relevant in the discussion.
• Let Qp2 denote the unique unramified quadratic extension of Qp, and O = Zp2 be its valuation

ring. Then O/pνO is a finite, free, commutative (Z/pνZ)-algebra of rank 2 with unit discriminant.
In particular, the choice of a basis for O/pνO gives an embedding of (O/pνO)× into GL2(Z/pνZ).
Its image Cns(p

ν) is then well-defined up to conjugation. The inverse image of Cns(p
ν)∪

{(
0 0
0 0

)}
under the reduction modulo pν map M2(Zp) → M2(Z/pνZ) is an order of M2(Zp), commonly
referred to as a non-split Cartan order of level pν . We shall denote any of the orders arising
in this way simply by RCar

ν , at any time that it is only the conjugacy class that matters in the
discussion.

Now let B/Q be an indefinite quaternion algebra of discriminant ∆ = ∆(B) as before.

Definition 1.3. Let NEic ≥ 1 and NCar ≥ 1 be such that (NEic, NCar) = 1 and (NEic ·NCar,∆) = 1. For
each prime p | NEic ·NCar, set νp to be the p-adic valuation of NEic ·NCar. For each prime p | ∆, choose
an integer νp ≥ 1 and a quadratic extension Lp of Qp.

An order R in B is said to be of type T = (NEic;NCar; {(Lp, νp)}p|∆) if the following conditions are
satisfied:

(1) If p - NEicNCar∆, then R⊗Z Zp is a maximal order in B ⊗Q Qp ' M2(Qp).
(2) If p | NEic, then R⊗Z Zp is conjugate to REic

νp in B ⊗Q Qp ' M2(Qp).
(3) If p | NCar, then R⊗Z Zp is conjugate to RCar

νp in B ⊗Q Qp ' M2(Qp).
(4) For every p | ∆, R⊗Z Zp ' Rνp(Lp) in B ⊗Q Qp ' Dp.

Remark 1.4. The way in which we have defined the above orders associated to the data NEic, NCar, ∆
and {(Lp, νp)}p|∆ is standard (cf. [Gro88]), and the reason to consider such orders will become clearer
later in the article. For a nice relation between the theory of local quaternion orders and the theory of
ternary quadratic forms, the interested reader might consult [Lem11].

Fix for the rest of this section an order R in B of type T = (NEic;NCar; {(Lp, νp)}p|∆) as in Definition

1.3. Define the level of R to be the integer NR := NEic · N2
Car · N∆, where we put N∆ :=

∏
p|∆ pνp . If

νp = 1 for every p | ∆, we will sometimes refer to R as a Cartan–Eichler order of type (NEic;NCar) (and
level NEic ·N2

Car).
Associated with R, we have the Shimura curve XR/Q defined as in the previous paragraph. The

Shimura curve XR is projective and smooth over Q, but in general it is not geometrically connected. The
reduced norm on R× is locally surjective onto Z×` at every prime ` - ∆ (both Eichler and Cartan orders
in indefinite rational quaternion algebras have class number one), but however the reduced norm on the
local orders Rνp(Lp) is not necessarily surjective onto Z×p when restricted to the invertible elements.

Despite of this, it is easy to see that [Z×p : n(Rνp(Lp)
×)] is either 1 or 2. Thus if we set

(3) C := {p | ∆ prime: n(Rνp(Lp)
×) 6= Z×p },

then the number of connected components of XR ×Q Q̄ is 2|C|. If ∆ is odd, or if ν2 ≤ 1 in case that ∆ is
even, it follows from [HPS89a, Theorem 3.11] that

C = {p | ∆ prime: νp > 1, Lp ramified}.
The behaviour at p = 2 is a bit more involved, but one still has a characterization of whether n(Rν2(L2)×)
has index 1 or 2 in Z×2 (see [HPS89a, Theorem 3.11, 3) and 4)] for details). Furthermore, if ∆ is odd, the
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connected components of XR×Q Q̄ are defined over a polyquadratic extension: the number field obtained
as the compositum of the quadratic extensions Q(

√
p∗) for p ∈ C, where p∗ = (−1

p )p.

Example 1.5. Suppose ∆ = pq with p and q distinct odd primes, and let Lp be a quadratic ramified
extension of Qp. Consider an order R of type (M ; 1; {(Lp, 2), (Lq, 1)}) and level N = Mp2q. As noticed
in the above remark, this order does not depend on the choice of Lp. The Shimura curve XR/Q has
two geometric connected components defined over the quadratic field Q(

√
p∗), and they are conjugated

by the Galois action (in particular, they are isomorphic over Q(
√
p∗)). There is a unique Eichler order

S containing R, and the morphism of Shimura curves XR → XS induced by the inclusion R̂× ⊆ Ŝ× is
cyclic of degree p + 1. Modular cusp forms in S2(Γ0(N)) which are N/M -new and not principal series
at p lift via the Jacquet–Langlands correspondence to quaternionic modular forms on the Shimura curve
XR (see below).

2. Modular forms and the Jacquet–Langlands correspondence

We fix throughout this section an indefinite quaternion algebra B of discriminant ∆ and an order R
of B of type T = (NEic;NCar; {(Lp, νp)}p|∆) and level NR = NEicN

2
CarN∆.

2.1. Cusp forms with respect to R. We identify the Lie algebra of left invariant differential operators
on B×∞ := (B ⊗Q R)× ' GL2(R) with M2(C), and define the differential operators

X∞ =

(
1

√
−1√

−1 −1

)
, X∞ =

(
1 −

√
−1

−
√
−1 −1

)
, W∞ =

1

2

(
0 −

√
−1√

−1 0

)
.

For each prime p | ∆, write R1
p = 1 + $

νp−1
p Op for the subgroup of units in R×p congruent to 1

modulo $
νp−1
p , where recall that Op denotes the maximal order in the quaternion algebra Bp and $p is

a uniformizer element. Then write R̂1 for the subgroup of R̂× which is locally equal to R̂× everywhere
away from ∆, and equals R1

p at each prime p | ∆.

Definition 2.1. Let k be an integer. A cusp form of weight k with respect to R̂1 is a function

f : (B ⊗Q AQ)× = B̂× ×GL2(R) −→ C

satisfying the following properties:

(1) if g ∈ (B⊗QAQ)×, then the function GL2(R)→ C given by x 7→ f(xg) is of C∞-class and satisfies

W∞f = (k/2)f , X∞f = 0;

(2) for every γ ∈ B× and every u ∈ R̂1 × R>0, f(ugγ) = f(g).

The C-vector space of all cusp forms of weight k with respect to R̂1 will be denoted Sk(R1).

The product
∏
p|∆B×p acts on the space Sk(R1) by left translation, and through this action one can

decompose Sk(R1) into the direct sum of subspaces on which
∏
p|∆B×p acts through some admissible

representation, and for the purposes of this paper we are interested in those with trivial character. More
precisely, suppose that for each p | ∆ we are given an irreducible admissible representation ρp of B×p
whose restriction to R×p is trivial, i.e. R×p ⊆ ker(ρp). Define ρ := ⊗p|∆ρp, regarded as a representation of∏
p|∆B×p . Since the representations ρp are finite-dimensional, the integer dρ := dim(ρ) =

∏
p|∆ dim(ρp)

is well-defined.

Definition 2.2. Let k be an integer, and ρ be a representation as above. A cusp form of weight k with
respect to (R, ρ) is a function

f : (B ⊗Q AQ)× = B̂× ×GL2(R) −→ Cdρ

satisfying the following conditions, for every g ∈ (B ⊗Q AQ)×:

(1) for every γ ∈ B×, f(gγ) = f(g);
(2) for every b ∈

∏
p|∆B×p , f(bg) = ρ(b)f(g);

(3) for every prime ` - ∆ and u ∈ R×` , f(ug) = f(g);

(4) the function GL2(R) → Cdρ given by x 7→ f(xg) is of C∞-class and satisfies W∞f = (k/2)f ,
X∞f = 0;

(5) for every z ∈ Q̂× × R×, f(gz) = f(g).

We write Sk(R, ρ) for the C-vector space of cusp forms of weight k with respect to (R, ρ).
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The C-vector spaces Sk(R, ρ) enjoy the following multiplicity one property:

Proposition 2.3 (cf. Prop. 2.14 in [Hid81]). If two forms in Sk(R, ρ) are common eigenforms of the
Hecke operators T` for all primes ` - N with same eigenvalues, then they differ only by a constant factor.

The subspace of Sk(R1) on which
∏
p|∆B×p acts through an admissible representation ρ as above is

isomorphic to Sk(R, ρ)dρ , and we define Sk(R) to be the subspace of Sk(R1) given by

(4) Sk(R) =
⊕
ρ

Sk(R, ρ)dρ ,

where ρ ranges over the representations ρ = ⊗p|∆ρp as above, satisfying R×p ⊆ ker(ρp).

Remark 2.4. The automorphic approach sketched before is related to the more classical point of view as
follows. Let h = h(R) denote the class number of R and choose elements ai ∈ B̂×, i = 1, . . . , h, such
that

B̂× =

h∐
i=1

R̂×aiB×.

Consider the discrete subgroups of SL2(R) defined by

Γi := B×+ ∩ a−1
i R̂

×ai (i = 1, . . . , h),

where B×+ is the subgroup of units of positive reduced norm (we may write B×+ = B× ∩ GL+
2 (R) using

our identification of B ⊗Q R with M2(R)). If we denote by Sk(Γi) the C-vector space of cusp forms of
weight k with respect to the group Γi, then there is an isomorphism of complex vector spaces:

h∐
i=1

Sk(Γi)
'−→ Sk(R).

2.2. Jacquet–Langlands. The space Sk(R1) can be equipped with a standard action of Hecke operators
and Atkin–Lehner involutions, described for example in [Hid81]. We have the following version of the
Jacquet–Langlands correspondence:

Theorem 2.5 (cf. Prop. 2.12 in [Hid81]). There is a Hecke equivariant injection of C-vector spaces

Sk(R, ρ)↪−→Sk(Γ0(NEicN
2
CarNρ)),

where Nρ is the conductor of ρ.

Combining Theorem 2.5 with (4) we can embed the space Sk(R) into a space of classical modular cusp
forms

(5) JL : Sk(R)↪−→
⊕
ρ

Sk(NEicN
2
CarNρ)

dρ .

The multiplicities dρ can be described explicitly: cf. [Car84, §5].

Example 2.6. Suppose p | ∆ is an odd prime. The quaternion algebra Bp = B ⊗Q Qp is equipped with a
natural decreasing filtration O×p (i) defined by setting

O×p (0) = O×p and O×p (i) = 1 +$i
pOp,

where Op is the unique maximal order in Bp and $p is a local uniformizer. If ρp is an admissible
irreducible representation of B×p , then its conductor is by definition pn+1, where n ≥ 0 is the smallest

integer such that O×p (n) lies in the kernel of ρp. In particular, observe that the conductor is at least p.

Thus, if p2 - NR then R×p = O×p is precisely the group of units in the local maximal order at p, thus

the admissible irreducible representations ρp we are concerned with all have conductor p. If p2 | NR
and p3 - NR, we have O×p (1) ⊆ R×p ⊆ O×p , and therefore the conductor of the admissible irreducible

representations ρp might be either p or p2. For each prime p | ∆, the dimension of ρp is determined by
its minimal conductor, which by definition is the smallest conductor of the representations ρp ⊗ χ, as χ
ranges over the characters of Q×p . By [Car84, §5], if the minimal conductor of ρp is pa, with a ∈ {1, 2},
then dρp = a.
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The above arguments give us a Hecke equivariant inclusion of Sk(R) into a direct sum of spaces of
classical modular cusp forms. In order to circumvent the problem of explicitly determining the multiplic-
ities dρ, we use Proposition 2.8 below, which benefits from an explicit version of Eichler trace formula
due to Hijikata, Pizer and Shemanske.

For the reader’s convenience, we recall the classification of Jacquet–Langlands lifts given in [HPS89b],
and from now on we focus on the weight 2 case. So let f ∈ S2(Γ0(Nf )) be a weight 2 modular cusp
form, and assume that Nf = psM for some prime p and integers s,M ≥ 1, with p - M . If p = 2 and
s > 3, we assume that s is odd. Suppose that φ is a Jacquet–Langlands lift of f which is realized on the
definite quaternion algebra B(p) of discriminant p. We want to determine the level of φ, by which we
mean the local p-type of the order R of B(p) used to define its level structure. Such local order is of the
form Rn(L), for some positive integer n and quadratic extension L/Qp, and it is determined as follows:

(1) if p is odd:
(a) s odd: L is unramified and n = s ([HPS89b, Theorem 8.5]).
(b) s even: L is ramified (any of the two ramified extensions) and n = s ([HPS89b, Proposition

8.8 Case D]).
(2) if p = 2:

(a) s = 1: L is the unramified quadratic extension of Q2 and n = 1 ([HPS89b, Proposition 8.8
Case C]).

(b) s odd, s ≥ 3: L is unramified and n = s ([HPS89b, Theorem 8.5]).

(c) s = 2: L = Q2(
√

3) or L = Q2(
√

7) and n = 2 [HPS89b, Proposition 8.8 Case F Eq. (8.17)].

Remark 2.7. If p = 2 and s ≥ 4 is even, [HPS89b, Theorem 3.9] asserts that f is a twist by a non-trivial
character of conductor 2s/2 of one of the cases considered above. However, as pointed out to us by the
referee, there are known counterexamples which show that such statement is not true in general.

Proposition 2.8. Let f ∈ S2(Γ0(Nf )) be a newform and fix a set Σ of even cardinality consisting of
primes p | Nf such that the local admissible representation πf,p of GL2(Q`) attached to f is square-
integrable. If 2 ∈ Σ and 23 | Nf , assume that val2(N) is odd. Let B/Q be the indefinite quaternion

algebra of discriminant ∆ =
∏
p∈Σ p, write N∆ =

∏
p∈Σ p

valp(Nf ), and let NEic, NCar be positive integers

such (NEic, NCar) = 1 and NEicN
2
CarN∆ = Nf .

Then for any order Rmin ⊂ B of type Tmin = (NEic;NCar; {(Lp, valp(Nf ))}p|∆), f lifts to a quaternionic
modular form on S2(Rmin) having the same Hecke eigenvalues for the Hecke operators T` at primes ` - Nf .

The subscript ‘min’ in Rmin refers to the minimal level for primes dividing ∆, determined by the
classification explained above. For such primes, we note that if valp(Nf ) is odd then Lp is unramified,
and if valp(Nf ) is even then Lp is ramified.

Proof. Since π is square integrable at all primes in Σ, [Gel75, Theorem 10.2] implies the existence of an
automorphic form π′ on the algebraic group of invertible elements of the indefinite quaternion algebra
B as in the statement such that π′` ' π` for all primes `. To specify the order R we need to describe

π′` at every prime `. For primes ` - NCar∆ the assertion is obvious. Fix a prime p | ∆ and let B(p) be
the definite quaternion algebra of discriminant p. Then Eichler’s trace formula in [HPS89b] shows the
existence of an automorphic form π(p) for B(p) attached to a specific order R(p) of type (Lp, valp(Nf ))

with π′p ' π
(p)
p (we have sketched above the recipe for choosing Lp). Finally, for primes dividing NCar a

similar argument works using this time the trace formula by Chen and Edixhoven (see [Edi96, Theorem
1], [dSE00, Theorem 2] and [Che98, Sec. 6], or also [KP16a, Theorem 1.11]; the proof in [Che98] only
works for p 6= 2, but one can check that it can be extended to the case p = 2). �

Example 2.9. Fix a primitive (in the sense of [Piz80, Definition 8.6]) new cuspidal eigenform f of level
Γ0(p2M) as in the proposition with p - M an odd prime. Let B be the definite quaternion algebra of
discriminant p and R be an order of type Mp2 in B, accordingly with [Piz80, Definition 3.1] (which
accordingly with the notation we adopted in the case of indefinite quaternion algebras, would correspond
to orders of type (M ; 1; (L, 2)), for any choice of quadratic field L ⊆ Bp). It follows from [Piz80,
Proposition 8.5 and Corollary 8.8] that f appears twice in the space of quaternionic modular forms
on B of level R (which is the space spanned by Theta series, denoted fi and gi in loc. cit.). Since the
multiplicity in Example 2.6 only depends on the behaviour of the local representation at p, we see that
the subspace of new forms in S2(R) having the same system of Hecke eigenvalues as f (at primes outside
Nf = p2M) is two-dimensional. So we have a “multiplicity 2 phenomenon” as expected from Example
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2.6 and the Hecke-equivariant monomorphism JL in (5). Although this example involves modular forms
on definite quaternion algebras, hence the global setting is of a different nature, we think it might be
illustrative of an explicit example where the multiplicity is bigger than 1.

2.3. Modular parametrizations. Let JR/Q denote the Jacobian variety of XR. It is a (principally
polarized) abelian variety defined over Q, of dimension equal to the genus of XR. Since XR is not in
general geometrically connected, it follows that JR might be not absolutely simple. Recall the following:

Definition 2.10. An abelian variety A/Q is said to be modular if there exists a normalized newform
f =

∑
n≥1 anq

n of weight 2 and level Γ0(Nf ) for some Nf ≥ 1 such that

L(A, s) =
∏

σ:F↪→Q̄

L(fσ, s),

where F stands for the number field generated by the Fourier coefficients of f , σ ranges over the embed-
dings of F into an algebraic closure of Q and fσ =

∑
n≥1 σ(an)qn.

Proposition 2.11. Suppose that A/Q is a modular abelian variety associated with a modular form
f = JL(φ) for some φ ∈ S2(R). Let Iφ ⊆ T be the kernel of the ring homomorphism T → Z determined
by the system of Hecke eigenvalues of φ. Then the quotient abelian variety Aφ := JR/IφJR is isogenous
to Ar for some r ≥ 1.

Proof. Let ` - Nf be a prime and % : GQ → Aut(Ta`(A) ⊗ Q`) be the 2-dimensional `-adic Galois
representation arising from the natural action of GQ on the `-adic Tate module Ta`(A) of A. Similarly,
let θ : GQ → Aut(Ta`(Aφ)⊗Q`) be the `-adic Galois representation attached to Aφ. The Eichler–Shimura
relations (proved in the required generality in [Nek]) imply that θ(σ) is annihilated by the characteristic
polynomial of %(σ) for every σ ∈ GQ. Then the Boston–Lenstra–Ribet Theorem [BLR91] implies that
Ta`(Aφ) ⊗ Q` is isogenous to a direct sum of r copies of Ta`(A) ⊗ Q` for some r ≥ 1. Finally, Faltings’
Isogeny Theorem implies that Aφ is isogenous to r copies of A. �

Example 2.12. Suppose that R is of type (M ; 1; {(Lp, 2), (Lq, 1)} and level N := NR = Mp2q, with p
and q distinct odd primes as in Example 1.5. Set F = Q(

√
p∗). Then

JR ×Q F ∼ JR,1 × JR,2,
where JR,i/F is the Jacobian variety of XR,i. Let S2(Γ0(N)) be the subspace of S2(Γ0(N)) consisting
of primitive newforms. By the same multiplicity 2 phenomenon observed in Example 2.9 (in a definite
setting, but it is a local phenomenon, cf. also Example 2.6) there is a 2-to-1 Hecke-equivariant morphism
of C-vector spaces

S2(R) −→ S2(Γ0(N)),

where S2(R) is the subspace of modular forms φ ∈ S2(R) such that JL(φ) ∈ S2(Γ0(N)). By a slight
abuse of notation we continue to denote by JL this morphism.

Fix f ∈ S2(Γ0(N)) and assume that the Fourier coefficients of f belongs to Z. Then the abelian variety
associated with f is an elliptic curve E of conductor Mp2q. Let φ ∈ S2(R) be such that JL(φ) = f
(we have two linearly independent possible choices). The space S2(R) of weight 2 modular forms for R
is identified with H0(XR,Ω

1), which in turn is identified with the tangent space at the identity T0(JR)
of JR. The subspace S2(R) corresponds then to a subspace of H0(XR,Ω

1), and hence to the tangent
space T0(JR) of an abelian subvariety JR of JR. The space of modular forms S2(R) has rank 2 over
the Hecke ring T, and from this it follows that T0(JR)/T0(IφJR) has dimension 2 over Q. Hence Aφ is
2-dimensional, and therefore Aφ ∼ E × E.

3. Heegner points

3.1. Optimal embeddings. As in previous sections, B denotes an indefinite rational quaternion algebra
of discriminant ∆ = ∆(B). We fix an order R and a quadratic field K. For each positive integer c write
Rc for the (unique) order of conductor c in K, R1 being the full ring of integers of K.

Definition 3.1. Let c be a positive integer. An embedding from K to B, i.e. a Q-algebra homomorphism
f : K → B, is said to be optimal with respect to R/Rc if the equality

f(K) ∩R = Rc

holds. Since f is determined by its restriction to Rc, we also speak of optimal embeddings of Rc into R.



10 MATTEO LONGO, VICTOR ROTGER, AND CARLOS DE VERA-PIQUERO

Two optimal embeddings f, f ′ of Rc into R will be considered to be equivalent if they are conjugate
one to each other by an element in R×. The set of R×-conjugacy classes of optimal embeddings of Rc
into R will be denoted Embop(Rc,R). We are interested in computing the integer

v(Rc,R) = |Embop(Rc,R)|,

and in particular in knowing whether the set Embop(Rc,R) is empty or not.
Suppose now that R is of type T = (NEic;NCar; {(Lp, νp)}p|∆) and level NR = NEicN

2
CarN∆. Recall

that the class number h(R) of the order R is 2|C|, where C is the set introduced in (3). Although the
class number of R is therefore not trivial in general, the lemma below asserts that the type number of R
is always trivial, which amounts to saying that all orders in B of the same type T are conjugate one to
each other.

Lemma 3.2. The type number of orders of a fixed type T is 1.

Proof. Fix a type T = (NEic;NCar; {(Lp, νp)}p|∆) as in Definition 1.3, and let R and R′ be two orders
of type T in B. First of all, notice that R (resp. R′) is a suborder of a unique Cartan–Eichler order S
(resp. S ′) of level NEicN

2
Car. Namely, the order which is locally equal to R (resp. R′) at every prime

p - ∆ and locally maximal at primes p | ∆, hence of type (NEic;NCar; {(Lp, 1)}p|∆). Conversely, it is
clear by construction that R (resp. R′) is the unique suborder of type T of the Cartan–Eichler order S
(resp. S ′). The lemma now follows from the fact that the type number of Cartan–Eichler orders in B
is 1, so that S and S ′ are conjugate. By the above observation, this immediately implies that R and R′
are conjugate as well. �

By virtue of the above lemma, the number v(Rc,R) can be expressed essentially as a product of local
contributions that can be explicitly computed. Indeed, proceeding as in the proof of the ‘trace formula’
in [Vig80, Ch. III, 5.C] (cf. especially Theorems 5.11 and 5.11 bis, or [Brz89]) for Eichler orders, we have
that

(6) v(Rc,R) =
h(Rc)

h(R)

∏
`

v`(Rc,R),

where h(Rc) (resp. h(R)) is the class number of the quadratic order Rc (resp. of R), the product ranges
over all rational primes and, for each `, v`(Rc,R) denotes the number of local optimal embeddings of
Rc ⊗Z Z` into R ⊗Z Z` modulo conjugation by (R ⊗Z Z`)×. These local contributions are 1 for every
prime ` - N . The number of local optimal embeddings is determined in §3.2 below. Here we give the
following:

Example 3.3. Assume that NCar = 1, ∆ is odd and νp ≤ 2 for all p | ∆. Then

v(Rc,R) =
h(Rc)

h(R)

∏
`|NEic

(
1 +

{
Rc
`

}) ∏
q|∆

ν(q)=1

(
1−

{
Rc
`

}) ∏
p|∆
νp=2

vp(Rc,R),

where for primes p | ∆ with νp = 2,

vp(Rc,R) =


2 if p || c and p is inert in K,

p+ 1 if p - c and p ramifies in K,

0 otherwise.

Here
{
R
`

}
denotes the usual Eichler symbol attached to a quadratic order R and a prime number `.

3.2. Local optimal embeddings. For the reader’s convenience, we reproduce in this subsection the
criteria for the existence of local optimal embeddings of orders in quadratic fields into quaternion orders
in the Eichler, Cartan and division cases.

3.2.1. Eichler case. Let p be a prime, K/Qp be a quadratic separable algebra, and Om ⊆ K be the order
in K of conductor pm. Let also M2(Qp) be the split quaternion algebra over Qp and REic

n be the standard
Eichler order of level pn in M2(Qp). Write h(m,n) for the number of (equivalence classes of) optimal
embeddings of Om into REic

n .
Suppose first that K = Qp ⊕ Qp is the split quadratic Qp-algebra. Then m is the smallest positive

integer such that Om/pmOm ' Z/pmZ. In this case, the embedding (a, b) 7→
( a 0
pn−m(a−b) b

)
from K into
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M2(Qp) defines an optimal embedding from Om into REic
n . For later reference, we state the following

lemma.

Lemma 3.4. If K is the split quadratic Qp-algebra, then Om can be optimally embedded in REic
n for

every m ≥ 0. That is, h(m,n) 6= 0 for every m ≥ 0.

Next we assume that K/Qp is a quadratic field extension with valuation ring O, and again for each
m ≥ 1 let Om be the order of conductor pm in K. Recall that the Eichler symbol is defined as follows:{

Om
p

}
=


−1 if m = 0 and K/Qp is unramified;

0 if m = 0 and K/Qp is ramified;

1 if m ≥ 1.

It is well known ([Hij74], [Vig80]) that if n = 0 then h(m,n) = 1, and for n = 1 one has h(m,n) =

1 +
{
Om
p

}
. Thus, in particular, every quadratic order Om can be optimally embedded in the maximal

Eichler order unless m = 0 and K/Qp is unramified, the only case when h(m, 1) = 0. More generally (see
[Brz91, Corollary 1.6]):

Lemma 3.5. (1) If K/Qp is unramified, then h(m,n) 6= 0 if and only if m ≥ n/2.
(2) If K/Qp is ramified, then h(m,n) 6= 0 if and only if m ≥ (n− 1)/2.

3.2.2. Cartan Case. Let p be a prime, K = Qp2 be the unramified quadratic extension of Qp and O = Zp2
be its valuation ring. As above, for m ≥ 1 write Om for the order of conductor pm in K. From the very
definition of non-split Cartan orders, we have the following lemma, which we state for later reference:

Lemma 3.6. Let RCar
n be a non-split Cartan order of level pn in M2(Qp). Then O can be optimally

embedded in RCar
n . For m > 1, the order Om does embed in RCar

n , but not optimally.

3.2.3. Division case. References: [HPS89a]. Let p be a prime, and Dp be the unique division quaternion
algebra over Qp. As above, write Rn(L) for the local order in Dp associated to the choice of an integer
n ≥ 1 and a quadratic extension L/Qp. Let K/Qp be a quadratic field extension, and Om denote the
order of conductor pm in K as before. Recall that h(m,n,L) denotes the number of equivalence classes
of optimal embeddings of Om into Rn(L).

It might be useful first to recall the notation used in [HPS89a] for the symbols t(L) and µ(L,L′). For
any quadratic field extension L/Qp:

• t(L) = −1 means L unramified;
• t(L) = 0 means L ramified and p 6= 2;

• t(L) = 1 means p = 2 and L = Qp(
√

3) or L = Qp(
√

7);

• t(L) = 2 means p = 2 and L = Qp(
√

2), L = Qp(
√

6), L = Qp(
√

10) or L = Qp(
√

14).

And for any pair of quadratic field extensions (L,L′) of Qp having discriminants ∆(L) and ∆(L′) we
have:

• µ(L,L′) = µ(L′, L) (Theorem 3.10 A (iii) of [HPS89a]);
• If ∆(L) = ∆(L′) (which is the case if L ' L′) then µ(L,L′) =∞;
• If t(L) = −1 and ∆(L) 6= ∆(L′) then µ(L,L′) = 1;
• If t(L) = 0, t(L′) = 0 and ∆(L) 6= ∆(L′) then µ(L,L′) = 2;
• If t(L) = 1, t(L′) = 1 and ∆(L) 6= ∆(L′) then µ(L,L′) = 3;
• If t(L) = 1, t(L′) = 2 then µ(L,L′) = 3;
• If t(L) = 2, t(L′) = 2 and ∆(L) 6= ∆(L′) then µ(L,L′) = 5.

The criteria for the existence of optimal embeddings then reads as follows:

(1) p odd:
(a) n = 2% + 1 odd, K unramified, L unramified: h(m,n,L) 6= 0 if and only if m ≤ %. In

particular, if Rn(L) is maximal and Om is not maximal (i.e. m > 0 and n = 0) then
h(m,n,L) = 0.

(b) n = 2%+1 odd, K ramified, L unramified: h(m,n,L) 6= 0 if and only if m = %. In particular,
if Rn(L) is maximal and Om is not maximal (i.e. m > 0 and % = 0) then h(m,n,L) = 0.

(c) n = 2% even, K unramified, L ramified: h(m,n,L) 6= 0 if and only if m = %.
(d) n = 2% even, K ramified, L ramified and K 6' L: h(m,n,L) 6= 0 if and only if m = %− 1.
(e) n = 2% even, K ramified, L ramified and K ' L: h(m,n,L) 6= 0 if and only if m ≤ %− 1.
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(2) p = 2:
(a) n = 1, K ramified or unramified, L unramified: h(m,n,L) 6= 0 if and only if m = 0.

(b) n = 2%, K unramified, L = Q2(
√

3) or L = Q2(
√

7); this is the case of t(L) = 1, t(K) = −1
and therefore µ(L,K) = 1: h(m,n,L) 6= 0 if and only if m = ρ.

(c) n = 2%, K = Q2(
√

3) or K = Q2(
√

7), L = Q2(
√

3) or L = Q2(
√

7) and K 6' L; this is the
case of t(L) = 1, t(K) = 1 and ∆(L) 6= ∆(K) and therefore µ(L,K) = 3: h(m,n,L) 6= 0 if
and only if m = ρ− 1.

(d) n = 2%, K = Q2(
√

3) or K = Q2(
√

7) and K ' L; this is the case of t(L) = 1, t(K) = 1 and
∆(L) = ∆(K) and therefore µ(L,K) =∞: h(m,n,L) 6= 0 if and only if m ≤ ρ− 1.

(e) n = 2%, K = Qp(
√

2), K = Qp(
√

6), K = Qp(
√

10) or K = Qp(
√

14), L = Q2(
√

3) or

L = Q2(
√

7); this is the case of t(L) = 1, t(K) = 2 and therefore µ(L,K) = 3: h(m,n,L) 6= 0
if and only if m = ρ− 1.

(f) n = 2%+ 1 odd, n ≥ 3, K unramified and L unramified: h(m,n,L) 6= 0 if and only if m ≤ %.
(g) n = 2%+ 1 odd, n ≥ 3, K ramified and L unramified: h(m,n,L) 6= 0 if and only if m = %.
(h) n = 2%, K unramified and L ramified. Then t(L) = 1 or 2 and µ(L,K) = 1: h(m,n,L) 6= 0

if and only if m = %.
(i) n = 2%, K = Q2(

√
3) or K = Qp(

√
7), L = Q2(

√
2), L = Q2(

√
6), L = Q2(

√
10) or

L = Q2(
√

14). Then t(L) = 2, t(K) = 1, µ(L,K) = 3: h(m,n,L) 6= 0 if and only if
m = %− 1.

(j) n = 2%, K = Q2(
√

2), K = Q2(
√

6), K = Q2(
√

10) or K = Q2(
√

14), L = Q2(
√

2),

L = Q2(
√

6), L = Q2(
√

10) or L = Q2(
√

14) and K 6' L. Then t(L) = 2, t(K) = 2,
µ(L,K) = 5: h(m,n,L) 6= 0 if and only if m = %− 1 or m = %− 2.

(k) n = 2%, K = Q2(
√

2), K = Q2(
√

6), K = Q2(
√

10) or K = Q2(
√

14), and K ' L. Then
t(L) = 2, t(K) = 2, µ(L,K) =∞: h(m,n,L) 6= 0 if and only if m ≤ %− 1.

3.3. Heegner points. Let U be any open compact subgroup of B̂×, and assume that K is an imaginary
quadratic field. There is a natural map

B̂× ×Hom(K,B) −→
(
U\B̂× ×Hom(C,M2(R))

)
/B× = XU (C)

obtained by extending scalars (i.e., tensoring with R). Notice that the left-hand side can certainly be the
empty set, as Hom(K,B) is empty if K does not embed into B. We shall assume that this is not the

case in the discussion below. If (g, f) ∈ B̂× ×Hom(K,B), write [g, f ] for its image in XR(C). Points in
the image of this map are called Heegner points; the set of such Heegner points is denoted Heeg(U,K).

For each positive integer c, continue to denote by Rc the order of conductor c in K and let R be an
order of B.

Definition 3.7. A point x ∈ XR is called a Heegner point of conductor c associated to K if x = [g, f ]

for some pair (g, f) ∈ B̂× ×Hom(K,B) such that

f(K) ∩ g−1R̂g = f(Rc).

This last condition means that f is an optimal embedding of Rc into the order g−1R̂g ∩ B. We shall
denote by Heeg(R,K, c) the set of Heegner points of conductor c associated to K in XR.

Recall that the set of geometrically connected components of the Shimura curve XR is in bijection
with R̂×\B̂×/B×, and hence with the class group Pic(R) of R. In particular, the number of geometric
connected components coincides with the class number h(R). Fix representatives Ij for the distinct h(R)

ideal classes in Pic(R), and let aj ∈ B̂× be the corresponding representatives in R̂×\B̂×/B×. It is then
clear that every Heegner point in Heeg(R,K, c) can be represented by a pair of the form (aj , f), for a

unique j ∈ {1, . . . , h(R)} and some optimal embedding f from Rc into the order a−1
j R̂aj ∩ B. Further,

two pairs (aj , f) and (aj , g) represent the same Heegner point if and only if the embeddings f and g are
R×-conjugate. Therefore, we have the following identity relating Heegner points on XR attached to Rc
and optimal embeddings of Rc into R:

|Heeg(R,K, c)| = h(R)|Embop(Rc,R)| = h(R)v(Rc,R),

thus applying (6) we find:

Proposition 3.8. The number of Heegner points on XR attached to Rc is h(Rc)
∏
` v`(Rc,R).
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3.4. Galois action and fields of rationality. Keep the same notations as above, and assume that Rc
embeds optimally in R, so that Heegner points with respect to Rc do exist on XR. The reciprocity law,
cf. [Del71, 3.9], [Mil90, II.5.1] (with a sign corrected [Mil92, 1.10]), asserts that CM(R,K, c) ⊆ XR(Kab),
where as usual Kab denotes the maximal abelian extension of K, and further that the Galois action of
Gal(Kab/K) on CM(R,K, c) is described by

(7) recK(a)[g, f ] = [f̂(a)g, f ], (a ∈ K̂×).

Here, recK : K̂× → Gal(Kab/K) is the reciprocity map from class field theory. Then, for an arbitrary

a ∈ K̂× and every Heegner point [g, f ] we have

recK(a)[g, f ] = [g, f ] ⇐⇒ there exist b ∈ B×, u ∈ R̂× such that (f̂(a)g, f) = (ugb, b−1fb).

It is easy to show that if f : K → B is an embedding and b ∈ B×, then the equality f = b−1fb holds if
and only if b = f(λ) for some λ ∈ K×. Thus we deduce that

recK(a)[g, f ] = [g, f ] ⇐⇒ there exist λ ∈ K×, u ∈ R̂× such that f̂(a) = g−1ugf(λ)

⇐⇒ a ∈ f̂−1(g−1R̂×g)K× = R̂×c K
×.

By class field theory, recK induces an isomorphism

K̂×/R̂×c K
× = Pic(Rc)

'−→ Gal(Hc/K),

where Hc is the ring class field of conductor c. Hence we have proved:

Proposition 3.9. With notations as above, Heeg(R,K, c) ⊆ XR(Hc), and the action of Gal(Hc/K) on
the set of Heegner points Heeg(R,K, c) is described by the rule in (7).

4. Applications

4.1. Gross–Zagier formula. We briefly review the general form of Gross–Zagier formula in [YZZ13] for
modular abelian varieties. Let B/Q be an indefinite quaternion algebra of discriminant ∆. If U1 ⊆ U2

are open compact subgroups of B̂×, then we have a canonical projection map πU1,U2
: XU1

� XU2
, and

one may consider the projective limit

X = lim←−
U

XU ,

and let J := Jac(X) denote the Jacobian variety of X.

Definition 4.1. A simple abelian variety A/Q is said to be uniformized by X if there exists a surjective
morphism J � A defined over Q.

Let A/Q be a simple abelian variety uniformized by X and fix U such that there is a surjective
morphism JU := Jac(XU ) � A defined over Q. Let ξU be the normalized Hodge class in XU and define

πA := lim−→
U

Hom0
ξU (XU , A),

where Hom0
ξU (XU , A) denotes morphisms of Hom(XU , A)⊗Z Q defined by using the Hodge class ξU as a

base point. Since, by the universal property of Jacobians, every morphism XU → A factors through JU ,
we also have

πA := lim−→
U

Hom0
ξU (JU , A),

where Hom0
ξU (JU , A) := Hom(JU , A)⊗Z Q. For any ϕ ∈ πA and any point P ∈ XU (H), where H/Q is a

field extension, we then see that P (ϕ) := ϕ(P ) ∈ A(H).
Let K/Q be an imaginary quadratic field and assume there exists an embedding ψ : K ↪→ B; this

is equivalent to say that all primes dividing ∆ are inert or ramified in K. Define XK× to be the
subscheme of X, defined over Q, consisting of fixed points under the canonical action by left translation

of ψ̂ : K̂× ↪→ B̂×. The subscheme XK× is independent up to translation of the choice of ψ. We will
often omit the reference to ψ, viewing K simply as a subfield of B. Recall that the theory of complex

multiplication shows that every point in XK×(Q̄) is defined over Kab, the maximal abelian extension
of K, and that the Galois action is given by left translation under the reciprocity map. Fix a point

P ∈ XK×(Kab). This amounts to choose a point PU for all open compact subgroups U , satisfying the
condition that πU1,U2

(PU1
) = PU2

.
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Let dτ denote the Haar measure of Gal(Kab/K) of total mass equal to 1 and fix a finite order character
χ : Gal(Kab/K)→ F×χ , where Fχ = Q(χ) is the finite field extension of Q generated by the values of χ.
Define

Pχ(ϕ) :=

∫
Gal(Kab/K)

ϕ(P τ )⊗ χ(τ)dτ.

This is an element in A(Kab) ⊗M Fχ, where M = End0
Q(A) := EndQ(A) ⊗Z Q. This element can be

essentially written as a finite sum: suppose that P = (PU )U , and each PU is defined over the abelian
extension HU of K. Suppose that χ factors through Gal(HU/K) for some U . Then the Fχ-subspace of
A(HU )⊗ Fχ spanned by Pχ(ϕ) and ∑

σ∈Gal(HU/K)

ϕ(P )σ ⊗ χ(σ)

are the same. We also note that Pχ(ϕ) belongs to (A(HU )⊗Z C)χ.
Let ηK be the quadratic character of the extension K/Q. Suppose that χ satisfies the self-duality

condition ωA · χ|A×Q = 1, where (·)|A×Q means restriction of the character (·) to the idele group A×Q and

ωA is the central character of the automorphic representation πA. We assume for simplicity that ωA is
trivial, and therefore χ|A×Q

= 1. For any place v of Q, let ε(1/2, πA,v, χv) ∈ {±1} be the sign of the

functional equation with respect to its center of symmetry s = 1/2 of the local representation πA,v ⊗ χv.
Define the set

Σ(A,χ) = {v place of Q : ε(1/2, πA,v, χv) 6= ηK,v(−1)} .
Proposition 4.2. The real place∞ belongs to the set Σ(A,χ), and every finite prime p ∈ Σ(A,χ) divides
the conductor of A.

Proof. According to [CV07, Section 1], the real place ∞ belongs to the set Σ(A,χ) if χ∞ = 1 and πA,∞
is the holomorphic discrete series (of weight at least 2). The first condition is true by our assumptions,
while the second one holds because πA is the automorphic representation attached to an abelian variety.
On the other hand, also from loc. cit. we know that if p is a finite prime in the set Σ(A,χ), then πA,p is
either special or supercuspidal, and therefore p must divide the conductor of A. �

Remark 4.3. If p is a finite prime belonging to Σ(A,χ), one also knows that Kp := K⊗QQp is a field. In
particular, if B is an indefinite quaternion algebra whose ramification set is supported in Σ(A,χ), then
K splits B (i.e. K embeds as a maximal subfield of B).

Let ε(1/2, πA, χ) be the sign of the functional equation with respect to its center of symmetry s = 1/2
of the global representation πA ⊗ χ. Then

ε(1/2, πA, χ) = (−1)|Σ(A,χ)|.

Recall our assumption that the central character ωA of πA is trivial, and let now χ be a character of
Gal(Kab/K). Suppose that χ factors through Gal(Hc/K) where Hc is the ring class field of conductor c;
if there is no c′ | c such that χ factors through Gal(Hc′/K), we say that χ has conductor c; if χ factors
through Gal(Hc/K), then the conductor of χ divides c.

Suppose we have a character χ of conductor dividing the positive integer c and a Heegner point Pc of
conductor c in X(Hc). For any ϕ ∈ πA define

Pχc,ϕ :=
∑

σ∈Gal(Hc/K)

ϕ(Pσc )⊗ χ(σ).

If |Σ(A,χ)| is odd, by [YZZ13, Theorem 1.3.1] one can choose ϕ such that

(8) Pχc,ϕ 6= 0 in (A(Hc)⊗Z C)χ ⇐⇒ L′(πA, χ, 1/2) 6= 0.

From now on, we fix such a ϕ and write simply Pχc for Pχc,ϕ.

4.2. Euler systems and BSD conjecture. Before discussing our applications to the BSD conjecture,
we recall the following result, which in this general form is due to Nekovář [Nek07].

Theorem 4.4 (Nekovář). Suppose that A/Q is a modular abelian variety of dimension d. Fix an imag-
inary quadratic field K and an anticyclotomic character χ factoring through Hc for some integer c ≥ 1
such that the cardinality of Σ(A,χ) is odd. Let B be the indefinite quaternion algebra of discriminant
equal to the product of finite primes in Σ(A,χ). Assume that A does not acquire CM over any imaginary
quadratic field contained in Hc, and that there exists
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(1) an order R of B with an uniformization JR = Jac(XR) � A defined over Q, and
(2) a Heegner point Pc in XR(Hc).

Then the following implication holds:

L′(πA, χ, 1/2) 6= 0 =⇒ dimC (A(Hc)⊗Z C)χ) = d.

We first observe that if the ramification set of the quaternion algebra B coincides with Σ(A,χ)−{∞},
then there always exists a uniformization JU = Jac(XU ) � A for some open compact subgroup U of B̂×;
so in (1) we are asking that this U is associated with an order.

Theorem 4.5. Fix the following objects:

(1) a modular abelian variety A/Q of dimension d and conductor Nd,
(2) an imaginary quadratic field K and
(3) an anticyclotomic character χ factoring through the ring class field Hc of K of conductor c ≥ 1

such that the cardinality of Σ(A,χ) is odd.

If 2 ∈ Σ(A,χ) and 23 | N , assume that val2(N) is odd. Let B denote the indefinite quaternion algebra of
discriminant ∆ equal to the product of all the finite primes in Σ(A,χ). Then there exists an order R of
type T = (NEic;NCar; {(Lp, νp)}p|∆) in B and a Heegner point Pc′ ∈ XR(Hc′) with c | c′ such that:

(1) A is uniformized by XR, hence there is a surjective morphism JR � A defined over Q;
(2) N divides the level NEic ·N2

Car ·
∏
p|∆ pνp of R;

(3) c divides c′.

Proof. The problem is local, being equivalent to the existence of optimal local embeddings for all primes
`. Fix the order Rmin of type Tmin = (NEic;NCar; {(Lp, ν′p)}p|∆) and level Nmin = NEicN

2
CarN∆ as in the

proof of Proposition 2.8, choosing the integers NEic and NCar such that NCar is divisible only by primes
p which are inert in K and do not divide c.

For primes p | NEicNCar which are split in K, one knows that the set of local optimal embeddings of
the required form is non-empty (cf. Lemma 3.4).

Fix until the end of the proof a prime p | Nmin which is inert or ramified in K. Let m be the p-adic
valuation of c and set n := valp(Nmin). If p divides NCar, then we can apply Lemma 3.6 and show that
the maximal order Rc ⊗Z Zp embeds optimally into Rmin ⊗Z Zp. So suppose from now on that p does
not divide NCar.

Suppose first that p 6∈ Σ(A,χ). If m ≥ n/2 (unramified case) or m ≥ (n − 1)/2 (ramified case) then
Lemma 3.5 shows that the set of local optimal embeddings of Rc⊗Z Zp into Rmin⊗Z Zp is non-empty. If
these conditions do not hold, replacing m by m′ such that m′ ≥ n/2 (unramified case) or m′ ≥ (n− 1)/2

(ramified case) then the local order Rc′ ⊗Z Zp with c′ = c · pm′−m embeds optimally into Rmin ⊗Z Zp.
Suppose now that p ∈ Σ(A,χ). Take any pair (m′, n′) satisfying the following condition:

• If n is odd, then n′ = 2m′ + 1;
• if n is even, then n′ = 2m′ if p is inert in K whereas n′ = 2(m′ + 1) if p ramifies in K.

Choose also the pair (m′, n′) so that m′ ≥ m and n′ ≥ n. Comparing with the results recalled in §3.2.3,

we see that the set of optimal embeddings of the local quadratic order of conductor pm
′

into the local
quaternion order Rn′(Lp) ⊆ Rmin ⊗Z Zp of type (Lp, n

′) is non-zero. �

Corollary 4.6. Let A/Q, K and χ be as in the previous theorem. If A does not acquire CM over any
imaginary quadratic field contained in Hc and L′(πA, χ, 1/2) 6= 0, then dimC (A(Hc)⊗Z C)χ) = d.

Proof. Let R and c′ be as in the statement of Theorem 4.5 and apply Theorem 4.4, viewing χ as a
character of Gal(Hc′/K) via the canonical projection Gal(Hc′/K)→ Gal(Hc/K). �

4.3. Proof of Theorem A. Theorems 4.4 and 4.5, although giving an Euler System which is sufficient
for the proof of our main result in the Introduction, are not completely satisfying in the sense that they
are not effective in the computation of the order R. Suppose we are in the situation of the theorem, so
that we are given a modular abelian variety A/Q, an imaginary quadratic field K and an anticyclotomic
character χ of conductor c such that Σ(A,χ) has odd cardinality. Then we would like to have Heegner
points in Rmin for a choice of minimal parametrization JRmin � A described in Proposition 2.8, or at
least of level R with R ⊆ Rmin. We begin by discussing a couple of examples.

Example 4.7. Let A = E be an elliptic curve of conductor N = p2q, with q and p odd distinct primes
both inert in K. Assume that the automorphic representation πE attached to E is supercuspidal at



16 MATTEO LONGO, VICTOR ROTGER, AND CARLOS DE VERA-PIQUERO

p. Let B be the quaternion algebra of discriminant pq, R = Rmin be the Hijikata–Pizer–Shemanske
order R = Rmin of level N = p2q (and type (1; 1; {(Lp, 2), (Lq, 1)}), for any choice of quadratic ramified
extension Lp/Qp), and let XR be its associated Shimura curve. Note that K embeds into B because
both p and q are inert in K. Let χ be an anticyclotomic character of p-power conductor.

Consider first the case of the trivial character 1. Then εp(E/K,1) = +1 ([Del73, (5.5.1)]). Therefore
Σ(E,1) = {q,∞} and in fact there are no Heegner points of conductor 1 in XR (cf. §3.2.3, case
(1c)). The case of non-trivial conductor pm with m ≥ 2 is similar: by [Tun83, p. 1299] we know that
εp(E/K,χ) = +1, so Σ(E,1) = {q,∞} and in fact there are no Heegner points of conductor pm in XR.
So the only case in which Σ(E,χ) = {p, q,∞} may occur for a non-trivial character χ of conductor p,
and by case (1c) in §3.2.3, Heegner points of conductor c = p do exist in XR. In this case, we realize a
perfect matching between existence of Heegner points on Shimura curves, and local ε-signs of functional
equations.

Example 4.8. As in the above example, let A = E be an elliptic curve of conductor N = p2q, with q and
p odd distinct primes and suppose that q is inert and p is ramified in K. Identify the Weil–Deligne group
WQp of Qp with Q×p via the reciprocity map rQp , normalized in such a way that rQp(a) acts on F̄p by the

character x 7→ x|a|, where | · | = | · |p is the p-adic absolute value satisfying |p| = p−1. Assume that the

automorphic representation πE attached to E is supercuspidal at p, and write it as πE,p = Ind
WQp
WF

(ψ)

where F/Qp is a quadratic extension with associated character η and ψ : W ab
F → C× is a quasi-character

not factoring through the norm map; then we have ηψ = | · |−1 as quasi-characters of Q×p . The above
conditions force ψ to have conductor equal to 1, p ≡ 3 mod 4 and ψ|Z×p = η ([Pac13, Cor. 3.1]). Consider

the quaternion algebra B of discriminant pq, the Hijikata–Pizer–Shemanske order R of level p2q as in
the previous example and its associated Shimura curve XR. Again πE admits a Jacquet–Langlands lift
to XR. In this situation, there are no Heegner points of conductor pm with m ≥ 1 in XR. So, if for
a character χ of conductor pm we have Σ(E,χ) = {p, q,∞}, then we expect to find Heegner points in
appropriate coverings of XR, but not in XR itself.

The above examples motivate our discussion below, leading to the proof of (a slightly refined version
of) Theorem A in the Introduction.

Fix for the rest of the article an elliptic curve E/Q of conductor N , an imaginary quadratic field K
of discriminant −D and a ring class character χ of conductor c of K. Let ∆ be the product of the finite
primes in Σ(E,χ), which is assumed to have odd cardinality, and let B be the quaternion algebra of
discriminant ∆. Fix also R := Rmin to be the minimal order of type Tmin = (NEic;NCar; {(Lp, νp)}p|∆)
as in Proposition 2.8, on which the Jacquet–Langlands lift to B of the newform f ∈ S2(Γ0(N)) associated
with E is realized, and let NR = NEicN

2
CarN∆ be its level. We can further assume the (coprime) integers

NEic and NCar satisfy that, for every prime p dividing NEicNCar,

p | NCar if and only if p is inert in K, valp(N) is even and p - c.

From now on, we shall make the following assumption. Observe that under the hypotheses in Theorem
A the assumption below is obviously satisfied (cf. Definitions 4.17, 4.18).

Assumption 4.9. Let f ∈ S2(Γ0(N)) be the newform attached to the elliptic curve E by modularity.
With the above notations, the following conditions are assumed.

i) Let πf,p be the p-component of the automorphic representation attached to f . Then πf,p has
minimal Artin conductor among its twists by quasi-characters of Q×p in the following cases: (1)
p = 2; (2) p | NEic, with valp(N) even and p ramified in K; (3) p = 3, with 3 | ∆ and val3(N) = 4.

ii) If 23 | NEic, then either 2 splits in K or val2(NEic) is odd and 2 is inert in K.
iii) If 2 | ∆ and 23 | N , then val2(N) is odd; if in addition πf,2 is supercuspidal, then 2 is inert in K.
iv) If val3(NEic) = 4 and 3 is inert in K, then val3(c) 6= 1.
v) If 3 | ∆, val3(N) = 3 or 5 and 3 is ramified in K, then val3(c) ≥ (val3(N)− 1)/2.

Remark 4.10. As commented in Remark 2.7, if 2 | ∆ and val2(N) is even and greater than or equal to 4,
then [HPS89b, Theorem 3.9] claims that f is a twist of a modular form of lower level, but such statement
is not true in general. One expects that those cases for which that assertion holds can be dealt with via
different methods. If f = g ⊗ ξ, then one expects to construct points on the modular abelian varieties
attached to g, and then, using twisting techniques, to construct points on the elliptic curve. It seems
possible that condition i) can be treated by similar considerations.
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Write also Rc for the order of conductor c in K of conductor c as usual. Our goal now is to investigate
under which conditions Rc embeds optimally into R. And in those cases where this does not happen, we
must find a suitable suborder R′ of R such that Rc does optimally embed into it. This task is carried
out in a series of lemmas below.

The problem is clearly local, and it suffices to study it at those primes dividing N . So fix from now on
a prime p | N , and set the following notations. We write m := valp(c) for the p-adic valuation of c, and
n := valp(NR) for that of NR. By the discussion prior to Proposition 2.8, observe that n coincides with
valp(N). Then we denote by Ep(m,n) the set of (local) optimal embeddings of Rc ⊗Z Zp into R⊗Z Zp.
Recall that the conditions that characterize the non-emptiness of Ep(m,n), in each of the possible cases,
have been collected in Section 3.2. If p is not split in K, then we write χp for the component of χ at the
unique prime of K above p. In that case, notice that m = c(χp), the (exponent of the) conductor of χp.

If the prime p does not belong to Σ(E,χ) (i.e., if p - ∆), then we will prove in Lemma 4.11 that
Ep(m,n) 6= ∅, hence we do not need to increase the level of R at p. If in contrast p | ∆, and n′ ≥ n is
an integer (with the same parity as n), then we define R′ to be the suborder of R obtained by replacing
the local data (Lp, n) at p in the type of R by the data (Lp, n

′). In the series of Lemmas 4.12 to 4.15 we
prove that one can always choose such a suborder R′ of R for which Ep(m,n′) 6= ∅. For convenience of
the reader, we summarize in Table 1 the minimal choice for n′ in each of the possible cases, depending
on the local data at p, when p 6= 2, 3. The third column indicates the condition on m (if any) imposed
by the fact that p ∈ Σ(E,χ).

πE,p p, n restrictions on m n′

supercuspidal
p inert m ≥ 1 2m

p ramified 2(m+ 1)

Steinberg

p inert, n = 1 m = 0 n
p inert, n = 2 m = 1 n

p ramified, n = 1 2m+ 1
p ramified, n = 2 2(m+ 1)

Table 1. Choice of n′ for primes p ∈ Σ(E,χ), p 6= 2, 3.

As announced above, first we consider the case where p does not belong to the set Σ(E,χ), so that B
is split at p.

Lemma 4.11. If p 6∈ Σ(E,χ), then Ep(m,n) 6= ∅.
Proof. First observe that if p 6∈ Σ(E,χ) then p divides NEicNCar. Having said this, notice that if p | NCar

then Ep(m,n) is non-empty by Lemma 3.6 (because if p | NCar then m = 0). So we assume for the rest
of the proof that p divides NEic. By our choice of NEic and N2

Car, we shall distinguish three cases:

(1) p is split in K;
(2) p is inert or ramified in K and n is odd;
(3) p is inert or ramified in K and n is even.

If p is in case (1), then Lemma 3.4 implies that Ep(m,n) is non-empty. Suppose that p is in case
(2), and assume first that n = 1, which is the only possible value if p ≥ 5. If p ramifies in K, then
Ep(m,n) 6= ∅ by part (ii) in Lemma 3.5. If p is inert in K, then we split the discussion according to
whether p - c or p | c. In the former case, εp(E/K,χ) = εp(E/K, 1) = −1 but ηK,p(−1) = 1, thus p
should be in Σ(E,χ), contradicting our hypotheses. And in the latter case, we have m ≥ 1 and therefore
2m ≥ n = 1, hence Lemma 3.5 shows that Ep(m,n) 6= ∅. Thus we are left with the cases where p = 2 or
3 and n = valp(N) > 1 is odd.

• If p = 3, then n can be either 3 or 5. Then πE,3 is supercuspidal induced from a quasicharacter
ψ of conductor n − 1 of a ramified quadratic extension F3 of Q3. If 3 is inert in K, we know
on the one hand by Lemma 3.5 that E3(m,n) 6= ∅ if and only if m ≥ n/2, hence if and only if
m > (n− 1)/2. On the other hand, being 3 inert in K the assumption that 3 6∈ Σ(E,χ) tells us
that ε3(E/K,χ) = 1 and by [Tun83, Prop. 2.8] this holds if and only if m > (n− 1)/2 = 1. Thus
it follows that E3(m,n) 6= ∅. Now suppose that 3 ramifies in K. Then ηK,3(−1) = −1, hence
ε3(E/K,χ) = −1 because 3 6∈ Σ(E,χ). By Lemma 3.5 we have that E3(m,n) 6= ∅ if and only if
m ≥ (n− 1)/2. By [Tun83, Proposition 2.8], if m < (n− 1)/2 then ε3(E/K,χ) = +1, therefore
we must have m ≥ (n− 1)/2, and we conclude that E3(m,n) 6= ∅.
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• If p = 2, then n can be either 3, 5 or 7. By Assumption 4.9 ii), we may suppose that 2 is inert
in K, so that 2 6∈ Σ(E,χ) implies that ε2(E/K,χ) = 1. Further, by Assumption 4.9 i), we may
assume that πE,2 has minimal conductor among its twists as well.

Suppose first that n = 3. Then [Tun83, Prop. 3.7] implies that m ≥ 2, and then by part (i)
of Lemma 3.5 we deduce that E2(m,n) 6= ∅. If n = 5, then πE,2 is supercuspidal induced from a
quasicharacter of conductor 3 on a ramified extension of Q2 with discriminant valuation 2. If the
conductor of χ were m < 3, then [Tun83, Lemma 3.2] would imply that ε2(E/K,χ) = −1, thus
we deduce that m ≥ 3. And then by part (i) of Lemma 3.5 we conclude that E2(m,n) 6= ∅.

Lastly, if n = 7 then πE,2 is supercuspidal of exceptional type, and its conductor is minimal
with respect to twist. Then ε2(E/K,χ) = 1 implies, by [Tun83, Lemma 3.2], that m ≥ 4. But
then we deduce that E2(m,n) 6= ∅ thanks to Lemma 3.5, part (i).

Finally, suppose that p is in case (3). Again let us start with the case n = 2, which is the only possible
case if p ≥ 5. If p is inert in K, then our choice of NEic and NCar implies that m = valp(c) ≥ 1, hence we
see that 2m ≥ n and Lemma 3.5 implies that Ep(m,n) 6= ∅. If p is ramified, Assumption 4.9 i) implies
that πE is supercuspidal at p. If it were m = 0, then [Tun83, Lemma 3.2] would imply that p ∈ Σ(E,χ),
hence we have m ≥ 1 and Lemma 3.5 implies again that Ep(m,n) 6= ∅. We are then left with the cases
where p = 2 or 3, and n = valp(N) > 2 is even.

By Assumption 4.9 ii), the case p = 2 does not arise, so we assume that p = 3. Then the only possible
value for n is 4. If 3 is inert in K, then Assumption 4.9 iv) implies that m ≥ 2, and by part (i) of Lemma
3.5 we conclude that E3(m,n) 6= ∅. If 3 ramifies in K, then it follows from condition i) in Assumption
4.9 that πE,3 is supercuspidal induced from a quasicharacter of conductor 2 of the unramified quadratic
extension of Q3. Then [Tun83, Lemma 3.2] implies that if m ≤ 3 then 3 would belong to Σ(E,χ). Thus
we have m ≥ 4 and by Lemma 3.5 ii) it follows that E3(m,n) 6= ∅. �

Next we will deal with the case that p ∈ Σ(E,χ), or equivalently p | ∆. This means that εp(E/K,χ) =
−ηK,p(−1). So if p is odd, then

εp(E/K,χ) =


−1 if p is inert in K,

−1 if p is ramified in K and p ≡ 1 mod 4,

1 if p is ramified in K and p ≡ 3 mod 4.

Let πE be the automorphic representation attached to E, and πE,p be its p-th component. The
(exponent of the) conductor of πE,p is valp(N).

We will split our discussion into distinct lemmas, to distinguish between the cases where πE,p is
supercuspidal or Steinberg. If πE,p is supercuspidal, then it is well-known that valp(N) ≥ 2. For p ≥ 5
this means that valp(N) = 2, whereas for p = 3 (resp. p = 2) we have 2 ≤ val3(N) ≤ 5 (resp.
2 ≤ val2(N) ≤ 8). Besides, if πE,p is Steinberg, then valp(N) can only be 1 or 2 if p is odd, whereas
if p = 2 then val2(N) ∈ {1, 4, 6}. However, the reader should keep in mind that under Assumption 4.9,
some of the previous cases with p = 2 do not appear in our discussion.

Lemma 4.12. If p ∈ Σ(E,χ), πE is supercuspidal at p and p is inert in K then there exists n′ ≥ n such
that Ep(m,n′) 6= ∅.

Proof. The assumptions p ∈ Σ(E,χ) and p inert in K imply that εp(E/K,χ) = −1. Suppose first that
p is odd. We have the following cases:

(1) n = 2. If m = 0, then εp(E/K,χ) = 1 by [Del73, (5.5.1)], so we may assume that m ≥ 1. But
then defining n′ := 2m ≥ n we conclude by case (1c) in §3.2.3 that Ep(m,n′) 6= ∅.

(2) p = 3 and n > 2. In this case n = val3(N) can be either 3, 4 or 5. If n 6= 4, then πE,p is induced
from a quasicharacter ψ of conductor n− 1 of a ramified quadratic extension of Q3. On the one
hand, from §3.2.3 case (1a) we see that E3(m,n) 6= ∅ if and only if m ≤ (n − 1)/2. And on the
other hand, by [Tun83, Prop. 2.8] one has that ε3(E/K,χ) = −1 if and only if m ≤ (n − 1)/2.
Thus we conclude that E3(m,n) 6= ∅.

Suppose now that n = 4. In this case, πE,3 is induced from a quasicharacter ψ of conductor 2
of the unramified quadratic extension of Q3. If χp is unramified, that is m = 0, then by [Del73,
(5.5.1)] we would have εp(E/K,χ) = 1, hence it must be m ≥ 1. However, if m = 1 then by
Assumption 4.9 i) we can use [Tun83, Prop. 3.5] to show that ε3(E/K,χ) = 1, thus it follows
that m ≥ 2. But then for n′ := 2m ≥ n we have that E3(m,n′) 6= ∅ by case (1c) in §3.2.3.

Now we assume that p = 2. Again we can split the discussion into cases.
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i) First suppose n = valp(N) = 2. As above, if m = 0 then εp(E/K,χ) = 1, hence it must be
m ≥ 1. Letting n′ := 2m ≥ n, case (2b) now ensures that Ep(m,n′) 6= ∅.

ii) If valp(N) > 2, then Assumption 4.9 iii) implies that n is odd. If n = 3, on the one hand by
[Tun83, Prop. 3.7] we have that ε2(E/K,χ) = −1 if and only if m ≤ 1. And on the other
hand, case (2f) in §3.2.3 tells us that E2(m,n) 6= ∅ if and only if m ≤ 1, thus we conclude that
E2(m,n) 6= ∅. If n is either 5 or 7, again according to §3.2.3 case (2f) we see that if m ≤ (n−1)/2
then E2(m,n) 6= ∅. If not, defining n′ := 2m+ 1 we will have E2(m,n′) 6= ∅.

This concludes the proof. �

Lemma 4.13. If p ∈ Σ(E,χ), πE is supercuspidal at p and p is ramified in K then there exists n′ ≥ n
such that Ep(m,n′) 6= ∅.

Proof. As in the previous lemma, we assume first that p is odd. We have the following cases:

(1) Suppose n = valp(N) = 2. If m = 0, we deduce from §3.2.3 (cases (1d) or (1e)) that Ep(m,n) 6= ∅.
In contrast, if m > 0 the set Ep(m,n) is empty. But by virtue of §3.2.3, case (1d) or (1e), for
n′ := 2(m+ 1) > n we have Ep(m,n′) 6= ∅.

(2) Suppose that p = 3 and n = val3(N) ≥ 3. In this case, 3 ≤ n ≤ 5. Assume first that n = 4. In
this case, the quadratic extension L3/Q3 is ramified. Up to replacing L3 by the other quadratic
ramified extension, we might assume that K3 6' L3. Then from case (1e) in §3.2.3 we see that
Ep(m,n) 6= ∅ if and only if m ≤ 1. If m > 1, then we take n′ := 2(m + 1), and again case (1e)
in §3.2.3 tells us that Ep(m,n′) 6= ∅. If n = 3 or 5 instead, then Assumption 4.9 v) implies that
m ≥ (n− 1)/2. By setting n′ := 2m+ 1 ≥ n, we obtain Ep(m,n′) 6= ∅ by case (1b) in §3.2.3.

Now we deal with the case p = 2. By Assumption 4.9 iii), if it were val2(N) > 2 then 2 should be
inert in K, thus we only need to consider the case n = val2(N) = 2. By cases (2c), (2d) or (2e) in §3.2.3
we have that Ep(m,n) 6= ∅ if and only if m = 0. Notice first that πE,p is of minimal conductor among its
twists, since supercuspidal representations have conductor ≥ 2. Then, by virtue of [Tun83, Proposition
3.5], we see that εp(E/K,χ)ηK,2(−1) is +1 (resp. −1) if and only if m ≥ 2 (resp. m < 2). But the
hypothesis that 2 ∈ Σ(E,χ) tells us that εp(E/K,χ)ηK,2(−1) = −1, hence m < 2. But notice that m
cannot be 1 in the case at hand, thus we deduce that m = 0, and hence Ep(m,n) 6= ∅ as desired. �

Next we consider the Steinberg case. Write πE,p = Sp2 ⊗ ψ where ψ : W ab
Qp → C× is a quadratic

character. By [Tun83, Prop. 1.7], we know p ∈ Σ(E,χ) if and only if χ−1
p = ψ ◦ Nr, where x 7→ Nr(x) is

the norm map from Kp = K ⊗Q Qp to Qp.

Lemma 4.14. If p ∈ Σ(E,χ), πE is Steinberg at p and p is inert in K then there exists n′ ≥ n such that
Ep(m,n′) 6= ∅.

Proof. By the above discussion, p ∈ Σ(E,χ) if and only if χ−1
p = ψ ◦ Nr. We assume first that p is odd,

so that n = valp(N) can be either 1 or 2. We split the discussion into subcases:

(1) n = 1. Comparing with §3.2.3 (1a), we see that Ep(m,n) 6= ∅ if and only if m = 0. On the other
hand, ψ is unramified and therefore if p ∈ Σ(E,χ) then m = 0.

(2) n = 2. Looking now at §3.2.3 (1c), Ep(m,n) 6= ∅ if and only if m = 1. On the other hand, ψ is
ramified with conductor equal to 1, and therefore if p ∈ Σ(E,χ) then m = 1.

Assume now that p = 2. A priori one could have val2(N) ∈ {1, 4, 6}, but by condition iii) in Assumption
4.9 we only need to deal with the case val2(N) = 1. In this case, the character ψ is unramified, and
then since 2 ∈ Σ(E,χ) we deduce that m = 0. On the other hand, by case (2a) in §3.2.3 we also have
Ep(m,n) 6= ∅ if and only if m = 0. Thus Ep(m,n) 6= ∅ as we want. �

Lemma 4.15. If p ∈ Σ(E,χ), πE is Steinberg at p and p is ramified in K then there exists n′ ≥ n such
that Ep(m,n′) 6= ∅.

Proof. Suppose first that p is odd, so that n = valp(N) is either 1 or 2. Again by the above discussion,
p ∈ Σ(E,χ) if and only if χ−1

p = ψ ◦Nr. We have the following cases:

(1) n = 1. If m = 0, by case (1b) in §3.2.3 we see that Ep(m,n) 6= ∅. Otherwise, we can take
n′ := 2m+ 1, and again case (1b) in §3.2.3 implies Ep(m,n′) 6= ∅.

(2) n = 2. Again, for m = 0 we have Ep(m,n) 6= ∅ by case (1d) or (1e) in §3.2.3. If instead
m > 0, then we consider n′ := 2(m + 1) and by applying §3.2.3, case (1d) or (1e), we see that
Ep(m,n′) 6= ∅.
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Now assume that p = 2. As in the previous lemma, by Assumption 4.9 we only need to deal with
the case n = val2(N) = 1. Then notice that ψ is unramified. On the other hand, now the hypothesis
that 2 belongs to Σ(E,χ) implies that either ηK,2(−1) = 1 and χ−1

p = ψ ◦ Nr or ηK,2(−1) = −1 and

χ−1
p 6= ψ ◦ Nr. Having this into account, if ηK,2(−1) = 1 then the equality χ−1

p = ψ ◦ Nr implies that
m = 0. By case (2a) in §3.2.3 it thus follows that Ep(m,n) 6= ∅. And if ηK,2(−1) = −1, it could be
the case that m > 0. But in any case, defining n′ := 2m + 1 ≥ n = 1 case (2g) in §3.2.3 implies that
Ep(m,n′) 6= ∅. �

Combining the above lemmas, we obtain the following:

Theorem 4.16. Let E/Q be an elliptic curve of conductor N , K be an imaginary quadratic field and χ
be an anticyclotomic character of conductor c. Suppose that the set Σ(E,χ) has odd cardinality, so that
ε(E/K,χ) = −1 and hence L(E/K,χ, 1) = 0. If Assumption 4.9 holds, then the set of Heegner points in
E(Hc) is non-empty. And if further E does not acquire CM over any imaginary quadratic field contained
in Hc and L′(E/K,χ, 1) 6= 0, then dimC (E(Hc)⊗ CZ)

χ
= 1.

Proof. Let B be the indefinite quaternion algebra ramified exactly at the finite primes in Σ(E,χ), and let
Rmin be the order in B from Proposition 2.8. The above lemmas together imply that there is a suborder
R of Rmin such that the set of Heegner points of conductor c in XR(Hc) is non-empty. The Jacobian
of XR uniformizes E as well, hence the set of Heegner points of conductor c in E(Hc) is non-empty.
By Theorem 4.4, if E does not acquire CM over any imaginary quadratic field contained in Hc, then
dimC (E(Hc)⊗ CZ)

χ
= 1. �

We state now the above result in a more restrictive but maybe more attractive form, which already
generalizes Theorem A in the Introduction, by introducing a couple of definitions.

Definition 4.17. Let p be a prime. We say that f ∈ S2(Γ0(N)) has p-minimal Artin conductor if the
p-component πf,p of the automorphic representation πf attached to f has minimal conductor among
its twists by quasi-characters of Q×p ; in other words, if we write a(πf ) for the Artin conductor of the

automorphic representation πf , we require that a(πf ) ≤ a(πf ⊗ η) for all quasi-characters η of Q×p .

Requiring that f ∈ S2(Γ0(N)) has p-minimal Artin conductor is actually equivalent to asking that the
modular form f is p-primitive, in the following sense (cf. [AL78, p. 236] and [Piz80, Def. 8.6]):

Definition 4.18. We say that a form f ∈ S2(Γ0(N)) is p-primitive if valp(N) is minimal among all
the twists of f by Dirichlet characters of p-power conductor. More generally, f is said to be primitive if
f 6= g ⊗ ξ for any Dirichlet character ξ and any g ∈ S2(Γ0(M)) with M 6= N .

Corollary 4.19. Let E/Q be an elliptic curve of conductor N , and f ∈ S2(Γ0(N)) be the newform
attached to E by modularity. Let K be an imaginary quadratic field, χ be an anticyclotomic character of
conductor c, and suppose that the set Σ(E,χ) has odd cardinality. If the following conditions hold:

(1) f is p-primitive at p = 2 and at every prime p | N with valp(N) even;
(2) if 23 | N , then either 2 splits in K or val2(N) is odd and 2 is inert in K;
(3) if val3(N) ≥ 3, then val3(c) ≥ (val3(N)− 1)/2;

then the set of Heegner points in E(Hc) is non-empty. If further E does not acquire CM over any
imaginary quadratic field contained in Hc and L′(E/K,χ, 1) 6= 0, then dimC (E(Hc)⊗ CZ)

χ
= 1.

Proof. We only need to remark that condition (1) implies condition i) in Assumption 4.9, whereas con-
dition (2) (resp. (3)) implies that both conditions ii), iii) (resp. iv), v)) in Assumption 4.9 hold. �

4.4. Final remarks. It might be interesting to discuss how to extend the above theorem to the general
case of abelian varieties. One can easily show that if A/Q is a modular variety of dimension d and
conductor Nd, and no prime divides N to a power greater than 3, then the argument for elliptic curves
developed in the previous section also works for abelian varieties. However, it is easy to construct
examples in which we do not have Heegner points in any cover of XRmin

if we allow the conductor of A
to be divisible by arbitrary powers of p if we just consider orders of type (NEic;NCar; {(Lp, νp)}), as the
following examples show:

Example 4.20. Let A/Q be a modular abelian variety of conductor Nd, and suppose N = pnq with p and
q distinct odd primes and n = 2%+ 1 an odd integer. Let χ be a character of conductor pm with m ≥ 1.
Suppose that p is ramified in K and q is inert in K. Then q ∈ Σ(A,χ). Now assume that n is minimal
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among the conductor of all twists of πA,p. In this case [Tun83, Prop. 3.5] shows that if m ≤ n− 1 then
p ∈ Σ(A,χ). If now m < (n− 1)/2, then comparing with §3.2.3 we see that there are no Heegner points
of conductor pm in any cover of XRmin associated with an order as in Definition 1.3.

Example 4.21. As in the above example, let A/Q be a modular abelian variety of conductor Nd, and
suppose now that N = pnq with p and q two odd primes and n = 2% ≥ 4 an even integer. Let χ be
a character of conductor pm with m ≥ 1. Suppose first that p ∈ Σ(A,χ), so εp(A,χ) = −1, and q is
inert in K, so q ∈ Σ(A,χ). Consider the quaternion algebra B of discriminant pq and the order Rmin of
B and form the corresponding Shimura curve XRmin

. From §3.2.3, we see that if m < n/2, then there
are no Heegner points of conductor pm in any covering of XRmin

associated with special orders as in
Definition 1.3. Secondly, suppose p 6∈ Σ(A,χ), so εp(A,χ) = +1 and q is split in K, so q 6∈ Σ(A,χ). In
this case, if m < n/2 then again there are no Heegner points of conductor pm in any cover of the Shimura
curve XRmin associated with Eichler orders (which, in this case, correspond to modular curves and usual
congruence subgroups).

As we may see from the above examples, it seems to us that that one should introduce more general
type of orders to find other sources of Heegner points defined over the predicted ring class field.

Conjecture 4.22. Let A/Q be a modular abelian variety, K be an imaginary quadratic field, χ be an
anticyclotomic character factoring through the ring class field Hc of K of conductor c ≥ 1, and suppose
that the cardinality of Σ(A,χ) is odd. Let B denote the indefinite quaternion algebra of discriminant ∆
equal to the product of the finite primes in Σ(A,χ), and f be the newform associated with A. Suppose
that f is primitive and has p-minimal Artin conductor, for all primes p. Then, there exists an open
compact subgroup U in B̂× equipped with a surjective morphism JU � A and such that the set of
Heegner points in XU (Hc) is non-empty.

As a variant of the above conjecture, one can ask if we can take U = R̂× for some global order R in B.
This conjecture is inspired by Corollary 4.19; we only point out that the relevant part in this conjecture
is to show the existence of suitable open compact subgroups (not necessarily arising from global orders)
so that we have a good understanding of rationality questions of points arising from embeddings K ↪→ B.
This would allow us to solve cases excluded by Assumption 4.9 and discuss Examples 4.20 and 4.21 above.
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E-mail address: victor.rotger@upc.edu

URL: https://www-ma2.upc.edu/vrotger

C. de V.-P.: Fakultät für Mathematik, Universität Duisburg-Essen, Essen, Germany.
E-mail address: carlos.de-vera-piquero@uni-due.de

URL: https://www.uni-due.de/~adf538d


	Introduction
	1. Shimura curves
	2. Modular forms and the Jacquet–Langlands correspondence
	3. Heegner points
	4. Applications
	References

