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Abstract. The purpose of this note is to introduce a method for proving the exis-
tence of no rational points on a coarse moduli space X of abelian varieties over a given
number field K, in cases where the moduli problem is not fine and points in X(K)
may not be represented by an abelian variety (with additional structure) admitting a
model over the field K. This is typically the case when the abelian varieties that are
being classified have even dimension. The main idea, inspired on the work of Ellen-
berg and Skinner on the modularity of Q-curves, is that to a point P = [A] ∈ X(K)
represented by an abelian variety A/K̄ one may still attach a Galois representation of
Gal (K̄/K) with values in the quotient group GL(T`(A))/Aut(A), provided Aut(A)
lies in the centre of GL(T`(A)). We exemplify our method in the cases where X is a
Shimura curve over an imaginary quadratic field or an Atkin-Lehner quotient over Q.

1. Introduction

Let BD be an indefinite rational quaternion algebra of discriminant D > 1, and fix
a maximal order OD in BD, which is unique up to conjugation. Let XD/Q denote the
Shimura curve arising as the coarse moduli scheme classifying isomorphism classes of
abelian surfaces (A, ι : OD ↪→ End(A)) with multiplication by OD (see [Shi63], [Shi67]).

The main theme of this note is the study of the set of points on XD and on their
Atkin-Lehner quotients, rational over a given number field. It is a theorem of Shimura
that XD has no real points (cf. [Shi75]), so a fortiori XD(Q) = ∅ and the simplest
number fields to look at are the imaginary quadratic extensions of Q.

If k is a field of characteristic zero, a k-rational point P on XD corresponds to the
isomorphism class of a pair (A, ι)/k̄ which is isomorphic to all its Gal (k̄/k)-conjugates.
However, the pair (A, ι)/k̄ does not necessarily admit a model rational over k, because
the moduli problem associated to XD is not fine. Jordan [Jor86, Theorem 1.1] studied
this issue and proved that (A, ι) admits a model over k if and only if k splits BD.

Assuming this condition for an imaginary quadratic field K/Q, in loc. cit. Jordan gave
sufficient conditions for the emptiness of XD(K) or, in other words, for the non-existence
of abelian surfaces with multiplication by OD defined over K (cf. [Jor86, Theorem 6.3]).

There is no reason to expect the hypothesis that K split B to be correlated with
the failure of XD to admit points over K, and in fact standard conjectures predict that
XD(K) should be empty when both D and disc(K) are large enough.

The first main result of this note provides sufficient conditions for XD(K) to be
empty, without assuming that hypothesis. The method of proof pushes the original
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one of Jordan, as strengthened by Skorobogatov in [Sko05] in order to prove that the
non-existence of points in XD(K) is accounted for by the Brauer-Manin obstruction.
The novelty in our setting is that a pair (A, ι)/K̄ represented by a point P ∈ XD(K)
may not admit a model over K and we overcome this by attaching to P (and to any
choice of prime p) a Galois representation

(1.1) %P : Gal (K̄/K)−→ (BD ⊗Qp)
×/±1,

following an idea pioneered by Ellenberg and Skinner [ES01] in the context of elliptic
Q-curves.

In order to precisely state our result, let us fix some notations, already present in
[Jor86] and [Sko05]. For a given rational prime q, let us define P1(q) to be the set of
prime factors of the non-zero integers in the set⋃

s,a

{a2 − sq2, a4 − 4a2q2 + q4},

where the union is over s = 0, 1, 2, 3, 4 and the integers a such that |a| ≤ 2q. For q 6= 2,
define also B1(q) to be the set of indefinite rational quaternion algebras which are not
split by Q(

√
−q). Similarly, define B1(2) as the set of indefinite rational quaternion

algebras which are not split by neither Q(
√
−2) nor Q(

√
−1).

We say that a point P ∈ XD(Q̄) has CM (by an imaginary quadratic field K) if the
abelian surfaces in the isomorphism class corresponding to P have complex multiplica-
tion (by K).

Write XD(AK)Br for the subset of the set XD(AK) of adelic points on XD ×K cut
out by the Brauer-Manin conditions; XD(AK)Br always contains the set of global points
XD(K) and when XD(AK)Br = ∅ one says that the emptiness of XD(K) is explained
by the Brauer-Manin obstruction.

Theorem 1.1. Let K be an imaginary quadratic field in which a prime q is ramified.
If BD ∈ B1(q) is such that D is divisible by a prime p 6∈ P1(q), p ≥ 5, and p is not split
in K then XD(K) consists only of CM-points.

If in addition K 6= Q(
√
−1),Q(

√
−3), then XD(K) = XD(AK)Br = ∅.

Similar techniques to those used in the proof of Theorem 1.1 should still be useful
to tackle the questions addressed in this note over larger number fields, although the
authors made no attempt of generalization in this direction.

In [Jor86, p. 93-94], Jordan calls a pair (BD,K) exceptional if K fails to split BD and
XD(Kv) 6= ∅ for every place v of K; he adopted this terminology as these are precisely
the pairs for which the results of [Jor86] and [Sko05] do not apply. Let us list in Table
1 below some examples of exceptional pairs (BD,K) to which Theorem 1.1 applies to
show that XD(K) = XD(AK)Br = ∅.

Let us now introduce our second main result. The Shimura curve XD is sup-
plied with a natural group of rational involutions, namely the Atkin-Lehner group
WD ⊆ AutQ(XD) of OD, whose elements are the so-called Atkin-Lehner involutions
(see [Rot04, §3]). Although XD(Q) = ∅, one may ask whether the quotient of XD by

an Atkin-Lehner involution ωm, which we denote by X
(m)
D , has rational points or not.

In [RSY05], Skorobogatov, Yafaev and the first author established a criterion for the

existence of local points on X
(m)
D at every place of Q, using previous work of Ogg. This
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D = 2 · p K = Q(
√
d)

2 · 19 Q(
√
−39), Q(

√
−87), Q(

√
−111), Q(

√
−159)

2 · 29 Q(
√
−15), Q(

√
−55), Q(

√
−95), Q(

√
−119)

2 · 31 Q(
√
−39), Q(

√
−87), Q(

√
−111), Q(

√
−159), Q(

√
−183)

2 · 37 Q(
√
−15), Q(

√
−39), Q(

√
−87), Q(

√
−111), Q(

√
−183)

2 · 43 Q(
√
−15), Q(

√
−87), Q(

√
−95), Q(

√
−111), Q(

√
−183)

2 · 47 Q(
√
−55), Q(

√
−95)

2 · 53 Q(
√
−39), Q(

√
−55)

2 · 59 Q(
√
−7), Q(

√
−119)

2 · 61 Q(
√
−55), Q(

√
−87), Q(

√
−111), Q(

√
−159), Q(

√
−183)

Table 1. Exceptional pairs (BD,K) with XD(AK)Br = ∅.

allowed them to exhibit that X
(107)
23·107 is a counterexample to the Hasse principle over Q.

In [Cla03], Clark studied the quotient of the Shimura curve XD by the full Atkin-Lehner

involution ωD and showed that X
(D)
D has points rational over every completion of Q.

On the other hand, Parent and Yafaev [PY07] have given a method to study global
rational points on certain Atkin-Lehner quotients of Shimura curves. They study the
case where D = pm is the product of two odd primes with p ≡ 1 mod 4 and m ≡ 3
mod 4, which corresponds to the “non-ramifié” case in the terminology of Ogg (see
[Ogg85]). In [PY07], explicit conditions for rational points on these quotients to be
“trivial” (arising from CM points) are given, and they also find an infinite family of
such quotients satisfying them. This work has recently been taken a step further by
Gillibert in [Gil10], where Parent-Yafaev conditions are made explicit.

In this note we tackle this question by exploiting the moduli interpretation of X
(m)
D

as the classifying space of abelian surfaces with real multiplication by Q(
√
m) whose

endomorphism algebras contain the maximal order OD (cf. Proposition 2.20 below for
more details) and the Galois representations of Gal (Q̄/Q) with values in GL2(Q(

√
m)⊗

Qp)/{±1} that we can attach to these abelian surfaces, in the same fashion as in (1.1).
As a result, we are able to prove the following statement. For a given rational prime

q we define P2(q) to be the set of prime factors of the non-zero integers in the set⋃
s,a

{a2 − sq, a4 − 4a2q + q2},

where the union now is over s = 0, 1, 2, 3, 4 and the integers a such that |a| ≤ 2
√
q. If

Q denotes the set of indefinite rational quaternion algebras, define

B2(q) :=

{
B ∈ Q B ∈ B1(q) and q is not inert in any imaginary

quadratic field K such that disc(K)|disc(B)

}
⊂ Q,

where disc(K) is the (square-free) product of the primes ramifying in K.

Theorem 1.2. Let BD be an indefinite quaternion algebra of odd discriminant D = pm,
with p ≥ 7 a prime such that p ≡ 3 mod 4. If there is a prime q such that BD ∈ B2(q)

and p 6∈ P2(q), then X
(m)
D (Q) = ∅.
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Using the criterion given in [RSY05, Theorem 3.1] we can check whether a pair (p,m)

satisfying the hypotheses of Theorem 1.2 gives rise to a curve X
(m)
D which has points

everywhere locally and thus violates the Hasse principle over Q; Table 2 below lists
some of such pairs (p,m).

Pairs (p,m) such that X
(m)
pm violates the Hasse principle over Q.

(23, 17), (31, 17), (31, 29), (31, 37), (31, 53), (31, 61), (47, 13),
(47, 41), (59, 13), (71, 13), (71, 17), (79, 17), (83, 5), (83, 13),

(103, 5), (107, 5), (107, 17), (127, 5), (151, 13), (167, 5), (223, 5),
(227, 5), (263, 5), (283, 5), (307, 5), (347, 5), (367, 5), (383, 5)

Table 2.

As opposite to the approach taken in [PY07] and [Gil10], observe that if we consider
discriminants of the form D = pm with p,m different odd primes, the conditions on the
above theorem place us in Ogg’s “ramifié” case (see [Ogg85]). Therefore, our results are
complementary to those in [PY07] and [Gil10].

In addition to the ideas mentioned above, our proof of Theorem 1.2 also borrows the
descent techniques from [Sko05] together with some ideas from [Rot08].

This note is organized as follows. Section 2 is devoted to construct the Galois repre-
sentations that were alluded to above. We present the main ideas in a somewhat general
framework, with special attention to the case of Shimura curves and their Atkin-Lehner
quotients. In section 3 we use these representations in combination with the machinery
of descent applied to the étale Shimura covering ZD,p of XD that is associated with
a prime factor p of D to prove Theorem 1.1. Section 4 follows similar lines to prove
Theorem 1.2.

Finally, the last section is a short appendix in which we show how the techniques of
[Rot08] alone can also be used to find counterexamples to the Hasse principle among
Atkin-Lehner quotients of Shimura curves. Notice that Theorem 5.1 applies to Ogg’s
“ramifié” case. The proof is comparatively simpler because there all rational points can
be represented by an abelian surface which admits a model over Q and therefore one
can work directly with the usual Galois representations, but we find it worths stating it,
as it strengthens the results of [RSY05] and is directly related to Coleman’s conjecture
described in [BFGR06].

1.1. Notation. Given a field k of characteristic zero, let k̄ denote a fixed algebraic
closure of k and Gk = Gal (k̄/k) be the absolute Galois group of k. By a field extension
of k we will always mean a subfield of k̄ containing k. Given an abelian variety A
defined over k, write End(A) for the Z-algebra of endomorphisms of A and End0(A) =
Q⊗Z End(A). If L/k is a field extension, we will often write EndL(A) for End(A× L).

Acknowledgment. We are grateful to the anonymous referee for his/her helpful re-
marks and suggestions. During the preparation of this work, the authors received fi-
nancial support from MTM2009-13060-C02-01. The second author was also financially
supported by the Comissionat per a Universitats i Recerca del DIUE de la Generalitat
de Catalunya and the European Social Fund.
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2. Galois representations over the field of moduli

The aim of this section is adapting to our setting an idea of Ellenberg and Skinner,
which arose while proving the modularity of Q-curves (see [ES01]).

Given a number field K, a Q-curve over K is an elliptic curve E/K such that there
exists a K-isogeny µσ : σE → E for every σ ∈ GQ. Using these isogenies, Ellenberg and
Skinner showed that for any prime p the usual Galois representation

φE,p : GK → Aut(Tp(E)) ' GL2(Zp)

can be extended to a representation ρE,p : GQ → Q̄×p GL2(Qp) such that PρE,p|GK
=

PφE,p. To do this, they considered the cohomology class [cE ] ∈ H2(GQ, Q̄×) of the
2-cocycle on GQ with values on the trivial GQ-module Q̄× given by

cE(σ, τ) = µσ · σµτ · µ−1
στ ∈ (Hom(E,E)⊗Q)× = Q×.

According to a theorem of Tate, [cE ] is trivial and hence there exists a continuous
map α : GQ → Q̄× such that cE(σ, τ) = α(σ)α(τ)α(στ)−1. The rule ρE,p(σ)(1 ⊗ x) =
α(σ)−1⊗µσ(σx) then gives rise to an action of GQ on Q̄×p ⊗Tp(E) which extends the one
of GK given by φE,p. Note that if E is already defined over Q, we can choose µσ = id
for all σ ∈ GQ and α = 1, so that this action is nothing but the usual one.

The role of this representation regarding modularity relies on the fact that a Q-curve
E/K is modular if and only if there exists a normalized eigenform f and a prime p such
that ρE,p ' ρf,p.

2.1. Galois representations attached to abelian varieties. We turn now to a
scenario which is more germane to the goals of this note. Let k be a field of characteristic
zero and A be a polarized abelian variety of dimension g defined over a field L/k. Unless
needed, we will not make explicit the choice of polarization on A. For any prime p, there
is a Galois representation

%A = %A,p : GL −→ Aut(Vp(A)) ' GSp2g(Qp)

arising from the action of GL on the p-adic Tate module Vp(A) = Tp(A) ⊗Zp Qp of
A, equipped with the alternate pairing induced by the Weil pairing and the choice of
polarization. We will drop p from the notation whenever it is clear from the context.

Let R be a finite Z-algebra and assume that A is equipped with a monomorphism of
Z-algebras i : R ↪→ End(A).

Definition 2.1. Let

CR(A) := {ϕ ∈ End0(A) : ϕ ◦ i(r) = i(r) ◦ ϕ for all r ∈ R}
denote the Q-subalgebra of endomorphisms of A which commute with the action of R.

Similarly, define the Zp-algebra CR(Tp(A)) to be the commutator of R ⊗Z Zp in
End(Tp(A)), that is,

CR(Tp(A)) := {ϕ ∈ End(Tp(A)) : ϕ ◦ i(r) = i(r) ◦ ϕ for all r ∈ R}.

Observe that CR(A)⊗Q Qp is a Qp-subalgebra of CR(Tp(A))⊗Zp Qp.

Definition 2.2. Let

Gp := CR(Tp(A))× and Ḡp := (CR(Tp(A))/pCR(Tp(A)))×
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denote the group of units of CR(Tp(A)) and CR(Tp(A))/pCR(Tp(A)), respectively.

Since the action of GL on the Tate module Tp(A) commutes with the action of R
induced by the embedding i, attached to the pair (A, i) there is a Galois representation

%(A,i) = %(A,i),p : GL −→ Gp.

The reduction of %(A,i) modulo p corresponds to the Galois representation given by
the action of GL on the p-torsion subgroup A[p] = Tp(A)/pTp(A) of A, which we denote
by

%̄(A,i) = %̄(A,i),p : GL −→ Ḡp.

2.2. Galois representations attached to points on Shimura varieties. Let k be
a field of characteristic 0 and R a finite Z-algebra such that Q ⊗ R is a semisimple
algebra. Let X be the moduli space parametrizing isomorphism classes of pairs (A, i),
where A is a polarized abelian variety and i : R ↪→ End(A) is a monomorphism of
Z-algebras. We omit here the technicalities concerning the compatibility between the
polarization and i; we shall treat this with care only in the cases under study in this
note.

The theory of Shimura varieties of PEL type (cf. e.g. [Mil04, §8 and 14]) affords a
canonical model of X over Q -that we still denote X by a slight abuse of notation- so
that a point P ∈ X(k̄) corresponds to the k̄-isomorphism class

P = [(A, i)] = {(A′, i′)/k̄ : there exists an isomorphism of pairs (A′, i′) ' (A, i)}
of a polarized abelian variety (A, i)/k̄ with multiplication by R.

We say that the pair (A, i)/k̄ admits a model rational over a field L/k if there exists
a pair (A′, i′) defined over L for which there is an isomorphism (A′ × k̄, i′ × k̄) ' (A, i).
When this is the case, we say that L is a field of definition for (A, i). Besides, the field
of moduli kP = k(A,i) of (A, i) is the minimal field extension kP /k such that for each
s ∈ GkP there is an isomorphism of pairs fs : s(A, i) → (A, i). Clearly, the field of
moduli of (A, i) is unique, and is contained in every field of definition of (A, i). Then,
for any field extension L/k the set X(L) of L-rational points of X is

X(L) = {P ∈ X(k̄) : kP ⊆ L}.
In particular, note that if (A, i) admits a model rational over L, then P = [(A, i)]

belongs to X(L). However, the converse is not true in general.
Fix a point P = [(A, i)] on X and assume without loss of generality that kP = k

(if kP ) k, replace k by kP ). For the rest of this section, we shall make the following
hypothesis:

Hypothesis 2.3. CR(A) is a field whose only roots of unity are ±1.

Lemma 2.4. Let Aut(A, i) denote the group of automorphisms of the polarized abelian
variety (A, i) with multiplication by R. If Hypothesis 2.3 holds, then Aut(A, i) = {±1}.

Proof. From the definitions, CR(A) = End0(A, i), so that Aut(A, i) is contained in
the multiplicative group CR(A)× of the invertible elements in CR(A). Since the auto-
morphism group of a polarized abelian variety is finite (see [Mil86, Proposition 17.5]),
it follows that Aut(A, i) consists on roots of unity in CR(A). By our assumption,
Aut(A, i) = {±1}. �
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From the definition of field of moduli, attached to the point P , we can construct
a two-cocycle cP : Gk × Gk → {±1} as follows: choose a collection of isomorphisms
f = {fs : s(A, i)→ (A, i)}s∈Gk

and set

cP (s, t) = fs · sft · f−1
st ∈ Aut(A, i) = {±1}, for any s, t ∈ Gk.

Lemma 2.5. The class [cP ] ∈ H2(Gk, {±1}) does not depend on the choice of f .

Proof. Suppose f = {fs : s(A, i) → (A, i)}s∈Gk
and f ′ = {f ′s : s(A, i) → (A, i)}s∈Gk

are two distinct collections of isomorphisms, and let cP and c′P be the corresponding
cocycles defined as above. Then, for each s ∈ Gk, λs := f ′s · f−1

s is an automorphism of
(A, i), hence λs = ±1, and we can write f ′s = λs · fs. Therefore:

c′P (s, t) = (λs · fs) · s(λt · ft) · (λst · fst)−1 = λs · λt · λ−1
st cP (s, t),

so that cP and c′P define the same cohomology class in H2(Gk, {±1}). �

The following lemma is consequence of a well-known result due to Weil (see [Wei56,
Theorem 3]):

Lemma 2.6. A field L/k is a field of definition for (A, i) if and only if the restriction
cP,L of cP to GL becomes trivial in H2(GL, {±1}).

Let Qk denote the set of isomorphism classes of quaternion algebras over the field k.

Definition 2.7. Let BP ∈ Qk be the quaternion algebra over k (up to isomorphism)
corresponding to [cP ] ∈ H2(Gk, {±1}) via the isomorphism H2(Gk, {±1}) ' Qk provided
by class field theory.

Examples 2.8. If g = 1 and R = Z, X ' A1/Q is the j-line classifying elliptic curves.
This moduli space is not fine, but it is nevertheless true that for any point j ∈ X(k)
there exists an elliptic curve Ej defined over k representing the isomorphism class given
by j. If j 6= 0, 1728, then Aut(Ej) = {±1} and Bj = M2(k).

If g = 2, R = Z and the polarizations are assumed to be principal, X is commonly
referred to as the Igusa threefold. The generic point P ∈ X(k) corresponds to the
isomorphism class of a principally polarized abelian surface A/k̄ such that End(A) = Z.
In this case Hypothesis 2.3 is fulfilled and an algorithm for computing the quaternion
algebra BP is due to Mestre [Me90].

In general it is a difficult problem to compute the class of the cocycle cP and the
quaternion algebra BP . See Theorem 2.13 and Theorem 2.21 below for yet other in-
stances.

In terms of BP , Lemma 2.6 asserts that a field L is a field of definition for (A, i)
if and only if BP ⊗k L ' M2(L). When this holds, we say that L splits BP . As an
immediate consequence of that we obtain the following.

Corollary 2.9. There exist infinitely many quadratic extensions L/k which are a field
of definition of (A, i). Namely, those which split BP .

We are finally in position to construct representations of Gk attached to the point
P ∈ X(k). First, we choose a collection f = {fs : s(A, i)) → (A, i)}s∈Gk

as before and
define

%P = %P,p : Gk −→ Gp/{±1}
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by the rule

(2.1) x ∈ Tp(A) 7−→ %P (s)(x) := fs(
sx), s ∈ Gk.

By passing to the quotient we similarly define

%̄P = %̄P,p : Gk −→ Ḡp/{±1}.
We do not keep track of the choice of f in the above representations because of the

following result:

Lemma 2.10. %P and %̄P are group homomorphisms which do not depend on the choice
of f .

Proof. First observe that for s, t ∈ Gk and x ∈ Tp(A) we have

%P (st)(x) = fst(
stx) = cP (s, t)−1(fs(

sft(
s(tx)))) = cP (s, t)−1(%P (s)(%P (t)(x))),

so that %P (st) = %P (s) · %P (t), since cP (s, t) = ±1. Hence, %P : Gk → Gp/{±1} is a
group homomorphism.

Now let f = {fs : s(A, i) → (A, i)}s∈Gk
and f ′ = {f ′s : s(A, i) → (A, i)}s∈Gk

be two
distinct collections of isomorphisms. As before, define the map λ : Gk → Aut(A, i) =
{±1} by s 7→ λs := f ′s · f−1

s . Then,

%P,f ′(s) : x 7−→ f ′s(
sx),

λs · %P,f (s) : x 7−→ f ′s · f−1
s · fs(sx) = f ′s(

sx).

This shows that %P,f ′ = %P,f , since λ takes values in {±1}. In fact, for any collection f
as above and any map λ : Gk → {±1}, f ′s := λs · fs defines a second collection f ′ of
isomorphisms satisfying the above relation. The statement for %̄P follows similarly. �

Remark 2.11. In view of Lemma 2.10, if (A, i) is defined over L/k, we can choose
fs = id for all s ∈ GL ⊆ Gk. Then, the restrictions of %P and %̄P to GL clearly coincide
with the reduction modulo ±1 of %(A,i) and %̄(A,i), respectively.

Remark 2.12. While Hypothesis 2.3 is fulfilled in the two scenarios we treat in detail,
it could probably be relaxed by asking that Aut(A, i) be contained in the centre of
CR(Tp(A)), and working with Galois representations with values in Gp/Aut(A, i) and
Ḡp/Aut(A, i).

We devote the next two sections to perform a detailed analysis of the Galois rep-
resentations that arise by the above construction when we deal with a Shimura curve
over an imaginary quadratic field and, respectively, an Atkin-Lehner quotient of these
curves over Q.

2.3. The case of Shimura curves. Let BD be an indefinite rational quaternion alge-
bra of discriminant D > 1, fix a maximal order OD ⊆ BD and a positive anti-involution
ρ : BD → BD, b 7→ bρ. By the Noether-Skolem Theorem, there exists µ ∈ B×D such that
bρ = µ−1b̄µ for all b ∈ BD. Further, one can check (see [Rot03]) that the positiveness
of ρ implies that tr(µ) = 0 and n(µ) > 0. Since the element µ is determined up to mul-
tiplication by elements of Q×, we can assume that µ2 is a negative square-free integer,
and we will sometimes write ρ = ρµ.

An abelian surface with multiplication by (BD,OD, ρ) is a triplet (A, ι,L) where A
is an abelian surface, ι : OD ↪→ End(A) is a monomorphism of rings, and L is a weak
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polarization on A such that the Rosati involution ∗ induced by L satisfies ι(b)∗ = ι(bρ)
for all b ∈ BD. By a result of Milne, the weak polarization is completely determined
by the data (BD,OD, ρ). More precisely, if A is an abelian surface endowed with a
monomorphism of rings ι : OD ↪→ End(A), then there is a unique weak polarization L
on A such that (A, ι,L) is an abelian surface with multiplication by (BD,OD, ρ) (see
[Mil79]), which is uniquely determined by the choice of µ. For this reason, we shall
often drop the polarization from the triplet and work with pairs (A, ι).

If (BD,OD, ρ) is clear or not relevant in the context, we may just refer to (A, ι) as
an abelian surface with QM by BD, or simply a QM-abelian surface.

Let O1
D denote the group of units of OD of norm 1. By fixing an isomorphism BD ⊗

R ' M2(R), the group O1
D embeds in the group SL2(R) of conformal transformations

of the upper-half plane H.
The quotient VD := O1

D \H is a compact Riemann surface, and the work of Shimura
[Shi67] shows that there exists a smooth projective algebraic curve XD over Q such
that XD(C)an ' VD. This curve is constructed as the coarse moduli space of abelian
surfaces with QM by BD, and is commonly known as the Shimura curve associated to
BD. The isomorphism class of this curve does not depend on the choices made above.

Let k be a field of characteristic zero and P ∈ XD(k) be a k-rational point on XD. By
the moduli interpretation of XD, P corresponds to a pair (A, ι)/k̄ whose field of moduli
is k. This amounts to say that there exists a collection f = {fs : s(A, ι) → (A, ι)}s∈Gk

of isomorphisms of pairs, indexed by the elements of the absolute Galois group of k.
Hypothesis 2.3 holds for (A, ι), unless A has complex multiplication by either Q(

√
−1)

or Q(
√
−3). Indeed, if A has no complex multiplication, so that ι : OD

'→ End(A) is
an isomorphism, then the commutator of OD⊗ZQ ' BD in End0(A) ' BD is Q, hence
Hypothesis 2.3 is clearly satisfied. Otherwise, suppose that A has complex multiplication
by an order in an imaginary quadratic field M/Q. Then, BD ↪→ End0(A) ' M2(M), and
the commutator of OD⊗ZQ ' BD in End0(A) is M . Whenever M 6= Q(

√
−1),Q(

√
−3),

Hypothesis 2.3 is still satisfied, so the claim follows.
The obstruction for the abelian surfaces parametrized by XD to admit a model ra-

tional over their field of moduli was studied by Jordan in [Jor86], where he proved the
following theorem (see [Jor86, Theorem 1.1]):

Theorem 2.13 (Jordan). Let P ∈ XD(k) be a k-point on XD and assume it neither
has complex multiplication by Q(

√
−1) nor by Q(

√
−3). Then BP = BD ⊗ k.

In other words, for a given field extension L/k, there exists a QM-abelian surface
(A, ι) over L such that P = [(A, ι)× k̄] if and only if L splits BD.

Observe that BP does not depend on the choice of the point P nor of the field k.
Towards the proof of Theorem 1.1, we now focus on local points on the Shimura

curve XD over imaginary quadratic fields. Fix at the outset a quadratic extension K ′/Q
splitting BD, and let K/Q be an imaginary quadratic field. Let v and v′ be places of
K and K ′, respectively, above the same rational prime `, and let us denote by w the
unique extension of the `-adic valuation on Q` to the composite field Lw := Kv ·K ′v′ .
Since K ′v′ splits BD, also Lw does. Let Pv ∈ XD(Kv) be a Kv-rational point. By [Jor86,
Theorem 1.1], we can choose a pair (Av, ιv) defined over Lw such that Pv = [(Av, ιv)].
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As before, for each prime p dividing D there is a Galois representation

%(Av ,ιv) = %(Av ,ιv),p : GLw −→ AutOD
(Tp(Av)) ' (OD ⊗Z Zp)× ⊆ (BD ⊗Q Qp)

×,

arising from the action of GLw on the p-adic Tate module Vp(Av) = Tp(Av) ⊗Zp Qp of

Av, where the isomorphism AutOD
(Tp(Av)) ' (OD ⊗Z Zp)× follows from [Oht64]. In

the notation introduced above, we have AutOD
(Tp(Av)) = COD

(Tp(Av))
×.

The reduction modulo p of this representation takes the form

%̄(Av ,ιv) = %̄(Av ,ιv),p : GLw −→ AutOD
(Av[p]) ' (OD/pOD)× ⊆ GL2(Fp2).

Along with these two representations, Jordan attached to the pair (Av, ιv) a finite
order character as follows. Let I(p) denote the unique two-sided OD-ideal of reduced
norm p ([Vig80, p. 86]) and define

Cp = Av[I(p)] ' OD/I(p) ⊆ Av[p],

which we shall regard as anOD-module. Jordan called Cp the canonical torsion subgroup
of (Av, ιv) at the prime p.

By uniqueness, Cp is rational over Lw, and as abstract module is isomorphic to Fp2 .

It follows that AutOD
(Cp) ' F×

p2
and the action of GLw on Cp gives rise to the canonical

isogeny character at p:

α(Av ,ιv) = α(Av ,ιv),p : GLw −→ AutOD
(Cp) ' F×

p2
,

We shall sometimes regard α(Av ,ιv) as a character on GabLw
= Gal (Labw /Lw), where Labw

is the abelian closure of Lw in L̄w.

Proposition 2.14. With notations as before, we have the following.

(i) There is a Fp2-basis of Av[p] with respect to which

%̄(Av ,ιv) =

(
(α(Av ,ιv))

p 0
∗ α(Av ,ιv)

)
.

For any σ ∈ GLw , the characteristic polynomial of %(Av ,ιv)(σ) ∈ AutFp(Av[p]) is

[(T − α(Av ,ιv)(σ))(T − α(Av ,ιv)(σ)p)]2.

(ii) If p 6= `, %12
(Av ,ιv) and α12

(Av ,ιv) are unramified.

Proof. Statement (i) is [Jor81, Proposition 4.3.10], and (ii) follows from [Jor86, §3]. �

Also, as in [Jor86, Proposition 4.6], we have the following:

Lemma 2.15. Let χ̄p : GKv → Aut(µp) ' F×p be the reduction of the p-cyclotomic
character. Then, NFp2/Fp

◦ α(Av ,ιv) = χ̄p|GLw
.

Let us assume Av has complex multiplication by neither Q(
√
−1) nor Q(

√
−3) and

let Pv ∈ XD(Kv) denote the point on XD parametrizing the pair (Av, ιv). As explained
in §2.2, attached to Pv, there are Galois representations

%Pv = %Pv ,p : GKv −→AutOD
(Tp(Av))/{±1} ⊆ GL4(Zp)/{±1},

%̄Pv = %̄Pv ,p : GKv −→AutOD
(Av[p])/{±1} ⊆ GL2(Fp2)/{±1}
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and a character

αPv = αPv ,p : GKv −→ AutOD
(Cp)/{±1} ' F×

p2
/{±1}.

By Remark 2.11, the restrictions of these representations to GLw ⊆ GKv coincide
with the reduction modulo ±1 of %(Av ,ιv), %̄(Av ,ιv) and α(Av ,ιv), respectively.

We conclude this section by collecting a few basic properties of the characters αPv

which shall be crucial in the proof of Theorem 1.1 in §3. To begin with, note that from
Proposition 2.14 we deduce the following

Corollary 2.16. For p 6= `, α12
Pv ,p

is unramified.

Let us write

%̃Pv : GKv → AutOD
(Tp(Av)) and α̃Pv : GKv → F×

p2

for the lifts of %Pv and αPv , respectively, associated to a choice of f as defined in (2.1).
These lifts are not homomorphisms in general, but it is easy to check that for any
σ ∈ GKv we have %̃Pv(σ2) = ±%̃Pv(σ)2 and α̃Pv(σ2) = ±α̃Pv(σ)2.

While αPv factors through the maximal abelian quotient GabKv
of GKv , the same is

not true for the lift α̃Pv : it does not necessarily descend to a map on GabKv
. However, it

will suffice for our purposes the obvious observation that for every σ ∈ GKv , the value
α̃Pv(σ)2 ∈ F×

p2
depends only on the class of σ in GabKv

.

Using the fact that α̃Pv |GLw
coincides with α(Av ,ιv), Lemma 2.15 implies that

NFp2/Fp
(α̃Pv |GLw

(σ)) = χp|GLw
(σ), for all σ ∈ GLw .

Since Lw has at most degree 2 over Kv, we can write

NFp2/Fp
(α̃Pv |GLw

(σ2)) = χp|GLw
(σ2) = χp(σ)2, for all σ ∈ GKv .

And, using that α̃Pv |GLw
(σ2) = ±α̃Pv(σ)2 for all σ ∈ GKv , we get that

(2.2) NFp2/Fp
(α̃Pv(σ)2) = χp(σ)2, for all σ ∈ GKv .

2.4. The case of Atkin-Lehner quotients of Shimura curves. Keeping the same
notations as in the previous section, put B×D,+ = {b ∈ BD : n(b) > 0} and define the
Atkin-Lehner group of XD to be

WD = NB×D,+
(O1

D)/Q×O1
D,

the normalizer of O1
D in B×D,+, up to homotheties and units in O1

D.

As is shown e.g. in [Jor81, p. 10], there is an isomorphism WD ' (Z/2Z)2r of abstract
groups, where 2r is the number of prime factors of D. A complete set of representatives
for WD is given by any set of elements {wm}m|D, where wm ∈ OD has reduced norm m
and m ranges over the positive divisors of D .

The action of an involution ωm = [wm] ∈WD can be modularly interpreted as follows.
If P = [(A, ι,L)] denotes the isomorphism class of an abelian surface with QM by BD,
regarded as a closed point of XD, then

(2.3) ωm(P ) = [(A, ιωm ,Lωm)],

where ιωm(β) = ι(w−1
m βwm) for β ∈ OD and Lωm = ι(wm)∗(L)

m .
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It follows from this description that the Atkin-Lehner group WD acts on XD as a
subgroup of algebraic involuting automorphisms over Q.

For an integer m > 1 dividing D, let X
(m)
D denote the quotient curve XD/〈ωm〉 and

write πm : XD → X
(m)
D for the natural projection. This quotient also admits a natural

moduli interpretation, which we now describe.

Definition 2.17. We say that OD admits a twist of degree δ ≥ 1 if there exists m ∈ Z,
m | D, such that

BD = Q + Qµ+ Qχ+ Qµχ = (
−Dδ,m

Q
),

with µ, χ ∈ OD, µ2 = −Dδ, χ2 = m and µχ = −χµ. In this case we say that the twist
is of norm m. If δ = 1, we say that OD admits a principal twist. Fixed an element
µ ∈ OD, µ2 + Dδ = 0, we say that the pair (OD, µ) admits a twist of norm m | D if
there exists χ ∈ OD satisfying the above conditions.

Note that OD does not necessarily admit twists of a fixed degree δ ≥ 1. However:

Lemma 2.18. Assume D = pm is odd, with p a prime such that (mp ) = −1. There

exists an integer δ ≥ 1 such that OD admits a twist of degree δ and norm m.

Proof. An easy computation of Hilbert symbols shows (using Čebotarev’s Theorem)

that there exist infinitely many primes δ such that BD ' (−Dδ,mQ ). Hence, we can

choose µ, χ ∈ BD such that µ2 + Dδ = 0, χ2 = m and µχ = −χµ. Furthermore, since
Z[µ, χ] is an integral order in BD and any maximal order is conjugated to OD, the
elements µ and χ can be taken to lie in OD. �

Theorem 1.2, which will be proved in Section 4, gives sufficient conditions for X
(m)
D (Q)

to be empty. Since we can only apply our methods when D is odd and m 6= D, by
[RSY05, Theorem 3.1] it is harmless to assume that D = pm for some odd prime p

with (mp ) = −1, as otherwise X
(m)
D (AQ) = ∅. In view of this, we will make the following

assumption for the rest of this section:

Assumption 2.19. D is odd, and D = pm for some prime p with (mp ) = −1.

By virtue of the previous lemma, choose elements µ, χ ∈ OD with µ2 + Dδ = 0,
χ2 = m and µχ = −χµ, for some integer δ ≥ 1. Without loss of generality, we can
assume that XD is the Shimura curve attached to the datum (BD,OD, ρµ).

Since n(χ) = −m and the set of elements of norm ±m in OD is a homogeneous space
under the action of O×D, we have χ = wmα for some α ∈ O×D of reduced norm −1.

Let Rm be the ring of integers of the quadratic field E = Q(
√
m), and denote by Hm

the Hilbert modular surface classifying isomorphism classes of triplets (A, i,L), where

- A is an abelian surface,
- i : Rm ↪→ End(A) is a ring monomorphism, and
- L is a weak polarization on A.

The element χ determines an embedding Rm ↪→ OD of Rm into OD. This embed-
ding in turn induces a forgetful map πRm : XD → Hm, given in terms of moduli by
the transformation (A, ι,L) 7→ (A, ι|Rm

,L). The next statement is easily obtained by
following the same arguments of the proof of [Rot04, Theorem 4.4]:
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Proposition 2.20. The map πRm is a quasifinite map that factors over Q into the

natural projection πm : XD → X
(m)
D of XD onto its quotient X

(m)
D and a birrational

morphism bRm : X
(m)
D 99K πRm(XD) ⊆ Hm into the image of XD by πRm in Hm.

Moreover, b−1
Rm

is defined on the whole πRm(XD) except for a finite set of CM points.

As a consequence, the Atkin-Lehner quotient X
(m)
D is a solution to the coarse mod-

uli problem of classifying isomorphism classes of abelian surfaces (A, i,L) with real
multiplication by E and admitting multiplication by (BD,OD, ρµ). As before, there
is no need to mention the weak polarization L and we shall rather work with pairs
(A, i : Rm ↪→ End(A)).

If k is a field of characteristic zero, a point Q in X
(m)
D is k-rational if and only if Q

corresponds under the moduli interpretation to the isomorphism class of a pair (A, i)/k̄
where:

- A is an abelian surface such that the ring End(A) contains OD;
- i : Rm ↪→ End(A);
- there exists a collection of isomorphisms f = {fs : s(A, i)→ (A, i)}s∈Gk

, that is,
for each s ∈ Gk there is an isomorphism fs : sA→ A such that the diagram

(2.4) sA
fs //

si(α)
��

A

i(α)
��

sA
fs // A

commutes for every α ∈ Rm.

Theorem 2.21 (Bruin-Flynn-González-Rotger). Let Q = [(A, i)] ∈ X(m)
D (k) be a non-

CM point and K/k be the (at most quadratic) extension of k generated by the coordinates

of π−1
m (Q). Write K = k(

√
δ) for some δ ∈ k×. Then

BQ = (BD ⊗Q k)⊗ (
δ,m

k
),

that is to say, (A, i) admits a model rational over K/k if and only if BD ⊗QK ' ( δ,mK ).

The main ingredient in the proof of Theorem 1.2 is the study of the Galois repre-

sentations attached to rational points on X
(m)
D over a local field. Let us describe these

representations in some detail here.

Let ` be a prime, Q` ∈ X
(m)
D (Q`) be a Q`-point on X

(m)
D and (A`, i`)/L be a pair as

above, defined over some finite extension L/Q`, such that Q` = [(A`, i`)]. The action of
GL on Tp(A`) gives rise to a Galois representation

%(A`,i),p : GL −→ AutRm(Tp(A`)) ⊆ Aut(Tp(A`)) ' GSp4(Zp).

Recall our running assumption that the prime p be inert in E, let p = pRm denote
the unique prime of E above p and Rm,p = Rm ⊗ Zp the completion of Rm along p.

The Galois group GL acts on Tp(A`) by Rm,p-linear transformations, giving rise to a
Galois representation

%(A`,i`),p : GL −→ AutRm(Tp(A`)) ' GL2(Rm,p),
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which may be regarded as a subrepresentation of %(A`,i`),p. Likewise, the reduction of
%(A`,i`),p modulo p yields a residual Galois representation

%̄(A`,i`),p : GL −→ AutRm(A`[p]) ' GL2(Fp2).

Finally, consider again the canonical torsion subgroup Cp = A`[I(p)] of A` at p, now
regarded as a subgroup of A`[p]. The local quaternion algebra BD,p := BD ⊗Q Qp can
be written as BD,p = Ep + Epπ, where π2 = p and πβ = τβπ for any β ∈ Ep, with τ
the non-trivial element in Gal (Ep/Qp). Moreover, the local maximal order of BD,p is
OD,p = Rm,p +Rm,pπ (cf. [Vig80, p. 33]) and I(p)p := I(p)⊗Z Zp = pRm,p +Rm,pπ.

Since Tp(A`) is a principal OD,p-module, we have

A`[p] = Tp(A`)/pTp(A`) ' OD,p/pOD,p
and

Cp = OD,p/I(p)p ' Rm,p/pRm,p ' Fp2 .
Since I(p) is the unique two-sided OD-ideal of reduced norm p, the action of GL

leaves I(p) invariant. Moreover, GL acts Rm-linearly on Cp, giving rise to a character

α(A`,i`),p : GL −→ AutRm(Cp) ' F×
p2
.

Let P` ∈ XD(Q̄`) be a preimage of Q` under πm. Its field of moduli Q`(P`) is an
extension of Q` of degree at most 2, and it can be represented by the pair (A`, ι`)/Q̄`,
where ι` : OD ↪→ End(A`) is a monomorphism such that ι`|Rm

= i`. Moreover:

Lemma 2.22. The pair (A`, ι`) admits a model rational over any quadratic extension
K` of Q` containing Q`(P`).

Proof. Appealing to [Jor86, Theorem 1.1], it suffices to show that any quadratic exten-
sion K` of Q` containing Q`(P`) splits the quaternion algebra BD.

If ` - D, this is immediate as BD⊗QQ` ' M2(Q`). Assume therefore that ` | D. Since
we are assuming D is odd, the results in [JL85] (see also [Jor86, Theorem 0]) show that
XD(Q`) = ∅, so that [Q`(P`) : Q`] = 2 and we only need to prove that K` = Q`(P`)
splits BD. Indeed, by choosing any element e ∈ Z×` \ Z

×2
` , up to isomorphism the

only quadratic extensions of Q` are Q`(
√
e), Q`(

√
`) and Q`(

√
e`). And all of them are

subfields of BD,`, since

BD,` ' Q`(
√
e) + Q`(

√
e)π,

where π2 = ` and πβ = τβπ for all β ∈ Q`(
√
e), with τ ∈ Gal (Q`(

√
e)/Q`) the nontrivial

automorphism (see [Vig80, Théorème II.1.3]). Thus in any case K` splits BD. �

Therefore, we can choose a quadratic extension K` of Q` together with pairs (A`, ι`)
and (A, i` = ι`|Rm

) defined over K` representing P` and Q`, respectively. With these
choices, the following is an immediate consequence of Proposition 2.14 and Lemma 2.15.

Proposition 2.23. With notations as before:

(i) There is a Fp2-basis of A`[p] with respect to which

%̄(A`,i`),p =

(
(α(A`,i`),p)

p 0
∗ α(A`,i`),p

)
.

(ii) If p 6= `, then %12
(A`,i`),p

is unramified. In particular, α12
(A`,i`),p

is unramified.
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(iii) If χ̄p : GQ`
→ Aut(µp) ' F×p denotes the reduction of the p-cyclotomic character,

then NFp2/Fp
◦ α(A`,i`),p = χ̄p|GK`

. Hence, det(%̄(A`,i`),p) = χ̄p|GK`
.

As in the previous section, we can apply now the machinery introduced in §2.2 to

attach Galois representations to the points in X
(m)
D (Q`), even if they can not be repre-

sented by an abelian surface defined over Q`.

Lemma 2.24. Assume A` has no complex multiplication by Q(
√
−1) or Q(

√
−3). Then

the pair (A`, i`) satisfies Hypothesis 2.3.

Proof. Suppose first that A` has no complex multiplication. In this case, the commu-
tator of Rm ⊗Z Q ' Q(

√
m) = E in End0(A`) ' BD is E itself because it is a maximal

subfield of BD. Since E is a real quadratic field, its only units are ±1.
Assume now that A` has complex multiplication by an order in an imaginary qua-

dratic field M/Q. We have BD ↪→ End0(A`) ' M2(M), and the commutator of
Rm ⊗Z Q = E in End0(Av) is ME. It is easy to check that the only roots of unity
in ME are ±1, unless M = Q(

√
−1) or Q(

√
−3). �

From now on, assume that A` has no complex multiplication by Q(
√
−1) or Q(

√
−3).

In light of Lemma 2.24, we can attach to the point Q` = [(A`, i`)] ∈ X
(m)
D (Q`) Galois

representations

%Q`,p : GQ`
−→ AutRm(Tp(A`))/{±1} ' GL2(Rm,p)/{±1},

%̄Q`,p : GQ`
−→ AutRm(A`[p])/{±1} ' GL2(Fp2)/{±1}

and
αQ`,p : GQ`

−→ AutRm(Cp)/{±1} ' F×
p2
/{±1},

extending %(A`,i`),p, %̄(A`,i`),p and α(A`,i`),p, respectively.

As before, we write %̃Q`,p : GQ`
→ AutRm(Tp(A`)) and α̃Q`,p : GQ`

→ F×
p2

for the

lifts of %Q`,p and αQ`,p associated to a choice of f by (2.1). Again, these lifts are not
homomorphisms in general, but their restrictions to GK`

coincide with %(A`,i`),p and

α(A`,i`),p, respectively, and for any σ ∈ GQ`
it is easy to see that %̃Q`

(σ2) = ±%̃Q`
(σ)2

and α̃Q`
(σ2) = ±α̃Q`

(σ)2.

While both α(A`,i`),p and αQ`,p descend to characters on GabK`
and GabQ`

, respectively,

the map α̃Q`,p does not necessarily factor through GabK`
, though α̃2

Q`,p
does.

From Proposition 2.23 we deduce the following:

Corollary 2.25. With the above notations:

(i) If ` 6= p, α12
Q`,p

is unramified. More precisely, we have α̃Q`,p(I`)
24 = {1}.

(ii) det(%̄Q`,p(σ)) = ±χ̄p(σ) for every σ ∈ GQ`
.

To conclude with the basic properties of these representations, we now turn to give
an explicit description of %̄Q`,p in terms of the character αQ`,p.

To do so, choose a family of isomorphisms f = {fσ : σ(A`, i`) → (A`, i`)}σ∈GQ`

satisfying (2.4); this is possible because the field of moduli of (A`, i`) is Q`. For each
σ ∈ GQ`

, the automorphism BD → BD, β 7→ fσ
σβf−1

σ , is inner by the Noether-Skolem
Theorem, hence there exists an element ωσ ∈ OD such that fσ

σβf−1
σ = ωσβω

−1
σ for all

β ∈ BD. Moreover, by the commutativity of (2.4), β = ωσβω
−1
σ for every β ∈ E, so
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that ωσ belongs to the commutator of E in BD, which is E itself because it is a maximal
subfield of BD. This shows that, for every σ ∈ GQ`

, ωσ lies in Rm = OD ∩ E, and in
this way we obtain a character

ψ : GQ`
−→E×/Q×, σ 7−→ ωσ.

Actually, write Gal (K`/Q`) = {1, σ0} and fix an isomorphism of pairs

f0 : (σ0A`,
σ0i`)→ (A`, i`).

We can extend f0 to a collection of isomorphisms f = {fσ}σ∈GQ`
by setting fσ = id if

σ ∈ GK`
and fσ = f0 otherwise, and note that f satisfies (2.4). Accordingly, set ωσ = 1

if σ ∈ GK`
and ωσ = ω0 otherwise. Then the character ψ factors through the quotient

Gal (K`/Q`), thus we will regard

ψ : GQ`
−→{±1}

as a character with values in {±1} which is trivial on GK`
⊆ GQ`

.

Lemma 2.26. There exists a Fp2-basis of A`[p] with respect to which

%̄Q`,p : GQ`
−→ GL2(Fp2)/{±1}

σ 7−→
(
ψ(σ)α̃Q`,p(σ)p 0

∗ α̃Q`,p(σ)

)
mod ± 1.

Proof. Write OD,p = Rm,p +Rm,p · π, and let x ∈ A`[p] be such that

A`[p] = OD,p/pOD,p · x = Rm,p/pRm,p · x+Rm,p/pRm,p · π(x).

We shall compute %̄Q`,p with respect to the Fp2-basis {x, π(x)} of A`[p]. Fix an
element σ ∈ GQ`

and write

%̃Q`,p(σ)(x) = fσ(σx) = uσ · x+ vσ · π(x)

for some uσ, vσ ∈ Rm,p, which are uniquely determined modulo p. In order to compute
%̃Q`,p(σ)(π(x)), first note that

fσ
σπf−1

σ = ωσπω
−1
σ = πτωσω

−1
σ = ψ(σ)π,

where τ ∈ Gal (Ep/Qp) denotes the non-trivial automorphism. This shows that

fσ(σ(π(x))) = ψ(σ)π(fσ(σx)) = ψ(σ)π(uσ · x+ vσ · π(x)) = ψ(σ)τuσ · π(x).

Switching uσ and ψ(σ)τuσ for ease of notation and reducing modulo ±1 and then
modulo p, we finally obtain that

%̄Q`,p(σ) =

(
ψ(σ)upσ 0
vσ uσ

)
mod ± 1.

We deduce that αQ`,p(σ) = uσ mod ± 1, so the lemma follows. �

Notice that the proof of the lemma recovers Proposition 2.23 (i), since the restriction
of %̃Q`,p and α̃Q`,p to GK`

coincide with %(A`,i`),p and α(A`,i`),p, respectively. We can thus
rewrite Proposition 2.23 (i) by saying that, in a suitable Fp2-basis of A`[p]:

%̄(A`,i`),p : GK`
−→ GL2(Fp2)

σ 7−→
(
α̃Q`,p(σ)p 0
∗ α̃Q`,p(σ)

)
.
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Let now σ` ∈ GQ`
be a Frobenius element at `, i.e. whose reduction coincides with

the Frobenius automorphism Fr` ∈ Gal (F̄`/F`).

Corollary 2.27. If ` 6= p and σ` ∈ GK`
, then the characteristic polynomial Φ`(T ) ∈

Rm[T ] of %(A`,i`),p(σ`) satisfies the congruence

Φ`(T ) ≡ T 2 − (α̃Q`,p(σ`) + `α̃Q`,p(σ`)
−1)T + ` mod p.

Proof. If σ` ∈ GK`
, then by the above observation Φ`(T ) satisfies the congruence

Φ`(T ) ≡ T 2 − (α̃Q`,p(σ`) + α̃Q`,p(σ`)
p)T +NFp2/Fp

(α̃Q`,p(σ`)) mod p.

Also, from Proposition 2.23 (iii), det(%̄(A`,i`),p(σ`)) = `, so we can write

α̃Q`,p(σ`)
pα̃Q`,p(σ`) = ` ∈ F×

p2
,

and therefore the statement follows noting that

α̃Q`,p(σ`) + α̃Q`,p(σ`)
p ≡ α̃Q`,p(σ`) + `α̃Q`,p(σ`)

−1 mod p.

�

Remark 2.28. We have already seen that, for a prime ` 6= p, the character α12
Q`,p

is
unramified. We now make an observation for the case ` = p. First, recall that the

local Artin reciprocity map gives us an isomorphism wp : Z×p
'→ Iabp ⊆ GabQp

. Also, the

character αQp,p factors through αQp,p : GabQp
→ F×

p2
/{±1}. Therefore, we can consider

the composition

αQp,p ◦ wp : Z×p
wp−−→
'

Iabp ⊆ GabQp

αQp,p−−−→ F×
p2
/{±1},

which is a continuous homomorphism. The image of Z×p ' Z/(p − 1)Z × Zp under

αQp,p ◦ wp is then a cyclic subgroup of F×
p2
/{±1}, but since αQp,p ◦ wp must be trivial

on the pro-p-part, αQp,p ◦ wp(Z×p ) is indeed a cyclic subgroup of F×p /{±1} ' Z/p−1
2 Z,

which we identify with the unique subgroup of index 2 of Z/(p − 1)Z. Therefore, for
any x ∈ Z×p ,

αQp,p(wp(x))2 = αQp,p(wp(x
2)) ∈ F×p /{±1}.

If we take any representative τ ∈ Ip of wp(x) ∈ Iabp , this implies that αQp,p(τ
2) ∈

F×p /{±1}. As a consequence, α̃Qp,p(τ
2) ∈ F×p for any τ ∈ Ip ⊆ GQp .

3. Proof of Theorem 1.1

Let (A, ι)/k̄ be an abelian surface with multiplication by OD. Fix an odd prime
factor p of D, and recall that Cp = A[I(p)], the canonical torsion subgroup of A at p, is
a cyclic OD-module isomorphic to OD/I(p) ' Fp2 .

We can consider the moduli problem of classifying isomorphism classes of triplets
(A, ι, xp), where (A, ι) is an abelian surface with multiplication by OD and xp is a
generator of its canonical torsion subgroup Cp, as an OD-module. Here, by an iso-

morphism (A, ι, xp)
'→ (A′, ι′, x′p) we mean an isomorphism of pairs (A, ι) → (A′, ι′)

sending xp to x′p. The solution XD,p/Q to this moduli problem leads to a cyclic Ga-
lois covering XD,p → XD, with automorphism group Aut(XD,p/XD) isomorphic to

F×
p2
/{±1} ' Z/p

2−1
2 Z. The curve XD,p/Q is not geometrically connected: if ζp denotes
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a primitive p-th root of unity, then XD,p ×Q Q(ζp) is the disjoint union of p − 1 geo-
metrically irreducible curves which are conjugate by the action of Gal (Q(ζp)/Q) (see
[Sko05] and [dVP] for details).

Jordan constructed explicitly the maximal étale subcovering ZD,p → XD of the cov-
ering XD,p → XD, commonly referred to as the Shimura covering. Its order (for p 6= 2)

is p2−1
2e , for e = 1, 2, 3 or 6, depending on the arithmetic of BD (see [Jor81, p. 108]). In

particular, the quotient of XD,p by Z/6Z leads to a subcovering fp : YD,p → XD of the
Shimura covering ZD,p/XD, hence it is étale, and

Aut(YD,p/XD) ' F×12
p2
' Z/

p2 − 1

12
Z.

This way, YD,p is an XD-torsor under the constant group scheme F×12
p2
' Z/p

2−1
12 Z

(see [Sko05, Corollary 1.2]). Therefore, by specialization of YD,p there is attached to
each point P ∈ XD(k) a continuous character φP : Gk → F12

p2 , by which the Galois

group Gk acts on the fibre of fp : YD,p → XD at P .
Assume for example that K/Q is an imaginary quadratic field, let v be a place of K

over a prime ` and let (Av, ιv) be a pair corresponding to a Kv-point Pv ∈ XD(Kv).
Assuming that K splits BD, Kv also splits BD, so that (Av, ιv) admits a model rational
over Kv by [Jor86, Theorem 1.1]. Then, by the modular interpretation of the Galois
covering XD,p → XD, the canonical isogeny character α(Av ,ιv) : GKv → AutOD

(Cp) '
F×
p2

at p satisfies φPv = α12
(Av ,ιv) (see [Sko05, Lemma 2.1]). Exploiting this relation

and performing descent to the torsor fp : YD,p → XD, Skorobogatov proved in [Sko05,
Theorem 3.1] the following result, which strengthens [Jor86, Theorem 6.3]. Here, P ′1(q)
is a finite set of primes depending on q, defined in a similar way to P1(q) (see [Sko05]
for details):

Theorem 3.1 (Skorobogatov). Let K be an imaginary quadratic field in which a prime
q is ramified, and let BD be a quaternion algebra in B1(q) whose discriminant is divisible
by a prime p 6∈ P ′1(q), p ≥ 5, and which is split by K. Then XD(AK)Br = ∅.

Now assume thatK does not necessarily splits BD, and construct an extension Lw/Kv

as in the previous section, over which the pair (Av, ιv) corresponding to Pv admits a
rational model. We can assume that (Av, ιv) is defined over Lw. Then, again because
of the modular interpretation of XD,p → XD we have that φPv |GLw

= α12
(Av ,ιv), where

now α(Av ,ιv) : GLw → AutOD
(Cp) ' F×

p2
.

In order to avoid restricting to GLw , we can use the character αPv : GKv → F×
p2
/{±1}

attached to the point Pv:

Lemma 3.2. For any σ ∈ GKv , α̃Pv(σ)24 = φPv(σ)2. In terms of αPv , we have

αPv(σ)12 = φPv(σ) mod ± 1, ∀σ ∈ GKv .

Proof. Since α̃Pv restricted to GLw coincides with α(Av ,ιv), we can write (α̃Pv |GLw
)12 =

φPv |GLw
. Therefore, if σ ∈ GKv then

α̃Pv(σ)24 = (±α̃Pv(σ2))12 = (α̃Pv |GLw
(σ2))12 = φPv |GLw

(σ2) = φPv(σ)2,

so the lemma follows. �
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Together with Corollary 2.16, we obtain:

Corollary 3.3. For p 6= `, φ2
Pv

is unramified.

We are now in position to prove Theorem 1.1, which follows clearly from Theorem
3.4 and Corollary 3.5 below. The finite set of primes P1(q) and the set of indefinite
algebras B1(q) associated to a prime q were defined in the Introduction.

Theorem 3.4. Let K be an imaginary quadratic field in which a prime q is ramified.
If BD ∈ B1(q) is such that D is divisible by a prime p 6∈ P1(q), p ≥ 5, and p is not split
in K then XD(K) consists only of CM-points.

Proof. Let p 6∈ P1(q), p ≥ 5, be a prime factor of D such that p is not split in K, and let
p be the unique prime of K above p. Let also K ′/Q be a quadratic extension splitting
the algebra BD and such that q is not inert in K ′. If D = p1 · · · p2r, the existence of
such a K ′ reduces to the existence of a discriminant d such that ( dpi ) 6= 1, i = 1, . . . , 2r

and (dq ) 6= −1. By Čebotarev’s Theorem, there are infinitely many such d.

Assume P ∈ XD(K) is a K-rational point that has no complex multiplication by
neither Q(

√
−1) nor Q(

√
−3). By the modular interpretation of XD, we can choose

an abelian surface (A, ι)/K̄ with multiplication by OD whose field of moduli is K. By
means of the diagonal embedding XD(K) ↪→ XD(AK), the point P defines a sequence of
local points {Pv}v ∈ XD(AK). For each one of these points, say Pv ∈ XD(Kv), we can
choose the same abelian surface (A, ι) representing it, now regarded as an abelian surface
over K̄v. However, let v′ be a place of K ′ above the same rational prime ` lying below
v and, with the same notations as before, consider the composite field Lw := Kv ·K ′v′ .
Then, since K ′v′ splits BD, we can choose a model (Av, ιv) of (A, ι)/K̄v rational over
Lw. In particular, Pv = [(Av, ιv)]. Note that (Av, ιv) has no complex multiplication by
neither Q(

√
−1) nor Q(

√
−3).

The global character φ : GK → F×12
p2

obtained by specialization of the torsor fp at P

restricts to each one of the local characters φPv attached to each point Pv on GKv . By
Corollary 3.3 we have that φ2 is unramified away from p. Moreover, the restriction of
φPv to GLw coincides with the Galois representation α12

(Av ,ιv).

On the other hand, let q be the unique prime of K above q, and let σq ∈ GKq

be a Frobenius element at q, i.e. an element inducing the Frobenius automorphism
Frq ∈ Gal (F̄q/Fq) under reduction. We claim that α̃Pq(σ

2
q)24 = q24.

By global class field theory, we have an exact sequence∏
v

Uv−→GabK−→Cl(K)−→0,

where Uv is the group of units of the ring of integers of Kv and Uv → GabK is defined
by the local Artin map wv. The idèle in

∏
v Uv all of whose components equal 1/q

except the component at q which equals π2/q, with π a uniformizer at q, maps to
Frob2

q, the square of a Frobenius element Frobq ∈ GabK at q. Then, σ2
q · Frob−2

q ∈ IKq

and φ2(σ2
q) = φ2(Frob2

q), since φ2 is unramified away from p. But now observe that

φ2(σ2
q) = φ2

Pq
(σ2

q) = α̃Pq(σ
2
q)24

and
φ2(Frob2

q) = φ2
Pp

(wp(q
−1)) = α̃Pp(wp(q

−1))24,
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so that our claim is reduced to proving that α̃Pp(wp(q
−1))24 = q24. There are two cases:

(a) p is inert in K. In this case, the group of units Up is an extension of F×
p2

by

a pro-p-group. The homomorphism αPp ◦ wp : Up → Iabp → F×
p2
/{±1} must

be trivial on the pro-p-part, so that αPp ◦ wp factors through a homomorphism

µ : F×
p2
→ F×

p2
/{±1}. If a ∈ F×

p2
is a generator of the cyclic group F×

p2
, then

the class [a] of a in F×
p2
/{±1} is a generator of F×

p2
/{±1} as well, so that the

homomorphism µ is determined by an integer c (uniquely determined modulo
(p2 − 1)/2) such that µ(a) = [a]−c.

Then, if we denote by ũ ∈ F×
p2

the reduction modulo p of u ∈ Up, we have

αPp(wp(u)) = µ(ũ) = [ũ]−c. In particular, α̃Pp(wp(u)) = ±ũ−c.
On the other hand, from [Ser72, Prop. 3, 8] we have χp(wp(u)) = NFp2/Fp

(ũ)−1

for every u ∈ Up. Thus, applying (2.2),

NFp2/Fp
(α̃Pp(wp(u))2) = χp(wp(u))2 = NFp2/Fp

(ũ)−2 = ũ−2(p+1) ∈ F×p ,

and we also have

NFp2/Fp
(α̃Pp(wp(u))2) = NFp2/Fp

(ũ−2c) = ũ−2c(p+1) ∈ F×p .

From this we get that 2c ≡ 2 mod p− 1. Therefore, α̃Pp(wp(q
−1))24 = q24 as

claimed.
(b) p is ramified in K. In this case, Up is an extension of F×p by a pro-p-group.

Hence, the homomorphism αPp ◦wp : Up → Iabp → F×
p2
/{±1} factors now through

a homomorphism µ : F×p → F×
p2
/{±1}. Then, αPp(wp(Up)) must be contained in

the unique cyclic subgroup of order p− 1 of F×
p2
/{±1}. In particular, for every

u ∈ Up, αPp(wp(u))2 lies in F×p /{±1} ⊆ F×
p2
/{±1}, which is the unique subgroup

of order (p− 1)/2 of F×
p2
/{±1}.

So, if we denote again by ũ ∈ F×p the reduction of u modulo p, there exists an

integer c, uniquely determined modulo (p− 1)/2 such that αPp(wp(u))2 = [ũ]−c,

where [ũ] denotes the class of ũ in F×p /{±1}. In particular, α̃Pp(wp(u))2 = ±ũ−c.
Now, [Ser72, Prop. 3, 8] implies χp(wp(u)) = NFp/Fp

(ũ)−2 = ũ−2, so that
applying (2.2) we get

NFp2/Fp
(α̃Pp(wp(u))2) = χp(wp(u))2 = ũ−4.

On the other hand,

NFp2/Fp
(α̃Pp(wp(u))2) = (±ũ−c)2 = ũ−2c,

since α̃Pp(wp(u))2 ∈ F×p . Hence, 2c ≡ 4 mod p− 1. We deduce that

α̃Pp(wp(q
−1))24 = q24 ∈ F×p ,

and the claim also follows in this case.

Now, since q is not inert in K ′, if q′ is a prime of K ′ above q, the residue field of K ′q′
is Fq. As a consequence, also the residue field of LQ = Kq ·K ′q′ is Fq.
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Then, since Aq/LQ has potential good reduction, following the construction of Serre

and Tate [ST68, p. 498] we get an abelian surface Ãq defined over Fq such that the

quaternion algebra BD ⊆ End0
Lq

(Aq) embeds in End0
Fq

(Ãq). Moreover, σq ∈ GLQ
, and

its action on the Tate modules Tp(Aq) and Tp(Ãq) is the same.
As in [Jor86, §5], the trace of %̄(Aq,ιq)(σ

n
q ) is the reduction modulo p of an integer aq,n,

|aq,n| ≤ 2qn/2, such that

aq,n mod p = TrFp2/Fp
(α(Aq,ιq)(σ

n
q )) = α(Aq,ιq)(σ

n
q ) + qnα(Aq,ιq)(σ

n
q )−1.

In particular, if aq := aq,2 then

aq mod p = α(Aq,ιq)(σ
2
q) + q2α(Aq,ιq)(σ

2
q)−1.

Since α(Aq,ιq) = α̃Pq|GLQ
and σq ∈ GLQ

, using the claim proved above we can write

aq mod p = α̃Pq(σ
2
q) + q2α̃Pq(σ

2
q)−1 = q(ζ + ζ−1),

where ζ =
α̃Pp (σ2

q)

q is a 24-th root of unity. Computing the possible values of q(ζ + ζ−1)

we get that either aq mod p = 0 or p divides

aq ± q, a2
q − 2q2, a2

q − 3q2, aq ± 2q, or a4
q − 4a2

qq
2 + q4.

Since |aq| ≤ 2q, the hypothesis p 6∈ P1(q) implies that actually

aq = 0,±q,±
√

2q,±
√

3q,±2q, or ± q
√

2±
√

3.

But, since aq is an integer, the only possibilities are aq = 0,±q, or ±2q. Now, if we let
ξ be a 48-th root of unity such that ξ2 = ζ, the trace of the characteristic polynomial
of %̄(Aq,ιq)(σq) is the reduction modulo p of an integer bq := aq,1 of absolute value at

most 2
√
q with bq mod p =

√
q(ξ + ξ−1). Applying the Honda-Tate theory (see [Jor86,

Theorem 2.1]) for both cases, we get the following list of possibilities:

aq = 0, q = 2: then Q(
√
−1) splits BD;

aq = q = 3: then Q(
√
−3) splits BD;

aq = −2q: then Q(
√
−q) splits BD.

In any case, we obtain a contradiction with the assumption that BD ∈ B1(q), hence the
statement follows. �

Directly from the above proof, we see that for a pair (BD,K) satisfying the hypotheses
of Theorem 3.4, XD(K) contains only points with CM by either Q(

√
−1) or Q(

√
−3).

Thus, in order to give sufficient conditions for the emptiness of XD(K), it remains
to study the sets XD(K) ∩ CM(Q(

√
−1)) and XD(K) ∩ CM(Q(

√
−3)). Here, for an

imaginary quadratic field L, CM(L) denotes the union of the sets CM(R) ⊆ XD(Q̄),
where R ranges through the quadratic orders in L.

In all cases where we can prove that XD(K) = ∅, it is almost immediate from the
proof of Theorem 3.4 that this is accounted for by the Brauer-Manin obstruction.

Corollary 3.5. Assume the pair (BD,K) satisfies the hypotheses of Theorem 1.1.

(i) If K 6= Q(
√
−1),Q(

√
−3), then XD(K) = XD(AK)Br = ∅.

(ii) If K = Q(
√
−1) and there exists a prime ` ≡ 1 mod 4 dividing D, then

XD(K) = XD(AK)Br = ∅.
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(iii) If K = Q(
√
−3) and there exists a prime ` ≡ 1 mod 3 dividing D, then

XD(K) = XD(AK)Br = ∅.

Proof. The existence of CM points on Shimura curves and their fields of definition are
well characterized and described. Using the results from [GR06, §5], for example, it
immediately follows that XD(K) is empty under the hypotheses of the statement.

Now, assume that XD(AK) 6= ∅, as otherwise there is nothing to prove. Assume there
exists a sequence of local points Pv ∈ XD(Kv), one for each nonarchimedean place v of
K, and let φPv : GKv → F×12

p2
denote the local character given by specialization of the

torsor fp at Pv. Assume that all these local characters are the restriction of a global

character φ : GK → F×12
p2

. For each point Pv, we can choose a pair (Av, ιv)/K̄v with field

of moduli Kv representing it, and then the proof of Theorem 3.4 applies verbatim to get
a contradiction, showing that such a sequence of local points cannot exist. Therefore,
the descent subset XD(AK)fp associated to the torsor fp is empty, and applying the
main theorem of descent theory of Colliot-Thélène and Sansuc (see [Sko01, Theorem
6.1.2]) the statement follows. �

Since the hypotheses of Corollary 3.5 are explicit and computable, we can produce
pairs (BD,K) such that K is deficient for XD, that is, such that XD(K) = ∅. Using
the work of Jordan and Livné in [JL85], we can even give explicit sufficient conditions
for XD to be a counterexample to the Hasse principle over K. Let us recall first some
notations from [JL85].

For an order R in an imaginary quadratic field L, let us set

S(R) =
h(R)

[R× : Z×]

∏
q|D

q prime

(
1−

{
R

q

})
,

where h(R) is the class number of R, and for a rational prime q,{
R

q

}
=

{
1 if q | cond(R),

(Lq ) otherwise.

Note that S(R) 6= 0 if and only if the conductor of R is prime to D and L splits BD.
Then, define

(3.1) Σ`(D) =
1

2

∑
s∈Z
s2<4`

∑
R

S(R),

where R runs through the set of orders in imaginary quadratic fields L such that R
contains the roots of x2 + sx+ `.

Corollary 3.6. Let g = g(XD) be the genus of XD. Under the hypotheses of Corollary
3.5, assume also that the following conditions hold:

(i) Σ`(D) 6= 0 for every prime ` < 4g2, ` - D, ` not inert in K.
(ii) For every prime ` | D ramifying in K, either Q(

√
−`) splits BD or ` = 2 and

Q(
√
−1) splits BD.

(iii) For every prime ` | D splitting in K, either D = 2` with ` ≡ 1 mod 4, or ` = 2
and D = 2q1 · · · q2r−1 with primes qi ≡ 3 mod 4 not splitting in K.
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Then XD is a counterexample to the Hasse principle over K.

Proof. The statement follows directly from the work in [JL85], together with the fact
that XD(Q`) 6= ∅ for every prime ` > 4g2, by Weil’s bound. �

Table 1 in the introduction collects some counterexamples to the Hasse principle
arising from the above corollary that are given by exceptional pairs (BD,K), that is,

for which K = Q(
√
d) fails to split BD.

4. Proof of Theorem 1.2

We turn now our attention to the Atkin-Lehner quotients X
(m)
D , for which we need

to construct a suitable étale covering in order to apply similar techniques to those used
by Skorobogatov.

As in Section 2.4, we place ourselves under Assumption 2.19, so that D = pm is odd
and (mp ) = −1. Towards the proof of Theorem 1.2, we assume moreover that p ≡ 3

mod 4. By Ogg’s formula for the number of fixed points of ωm, this implies that ωm is

fixed point free, hence the natural quotient map πm : XD → X
(m)
D is unramified. Ap-

plying descent to this double cover of X
(m)
D , some sufficient conditions for the emptiness

of X
(m)
D (Q) were found in [RSY05].

Here we shall construct an étale covering of X
(m)
D from the covering YD,p → XD

defined in the previous section. The basic idea behind our construction is that ωm
can be lifted to an involution ω̂m on XD,p, which induces in turn an involution lifting
ωm on each intermediate covering of XD,p → XD. A detailed study of the group of
modular automorphisms of the curve XD,p provides a criterion to construct cyclic étale
Galois coverings of Atkin-Lehner quotients of XD from the intermediate coverings of
XD,p → XD (see [dVP]), but for the purposes of this note we can proceed in a simpler
way as follows.

By virtue of Lemma 2.18, we can choose a twist χm of norm m as a representative
of ωm in NB×D,+

(O1
D). Then χ2

m = m and wm = χmα for some α ∈ O×D of reduced norm

−1. The Atkin-Lehner involution ωm : XD → XD does not depend on this choice, and
notice that now the monomorphism ιωm is described by ιωm(β) = ι(χ−1

m βχm) for all
β ∈ OD. Having fixed this choice, we define an automorphism ω̂m : XD,p → XD,p using
the moduli interpretation of XD,p by the rule

(4.1) P = [(A, ι, xp)] 7−→ ω̂m(P ) = [(A, ιωm , xp)].

Since χm normalizes OD, observe that xp is still a generator of the canonical torsion
subgroup Cp ⊆ A[p] when we regard it as an OD-module via ιωm , hence ω̂m is well
defined. Moreover, the condition χ2

m = m implies that ω̂m certainly is an involution
lifting ωm to XD,p. In fact, it follows from standard moduli considerations that ω̂m is a
rational involution of the curve XD,p/Q.
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Let us denote by X
(m)
D,p := XD,p/〈ω̂m〉 the quotient of XD,p by the action of the

involution ω̂m. By construction, we have a commutative diagram

XD,p //

��

XD

��

X
(m)
D,p

// X
(m)
D ,

where the horizontal arrows are covering maps. It is clear from (4.1) that ω̂m commutes

with every automorphism α ∈ Aut(XD,p/XD). As a consequence, X
(m)
D,p → X

(m)
D is a

cyclic Galois covering with automorphism group

Aut(X
(m)
D,p/X

(m)
D ) ' Aut(XD,p/XD) ' Fp2/{±1}.

From the fact that the involution ω̂m commutes with every automorphism of XD,p →
XD we also deduce that ω̂m induces an involution lifting ωm on each intermediate
covering of XD,p → XD. By a slight abuse of notation, we will still denote these
involutions by ω̂m. In particular, if ZD,p → XD is the maximal étale subcovering of

XD,p → XD and we write Z
(m)
D,p := ZD,p/〈ω̂m〉, then the induced covering Z

(m)
D,p →

X
(m)
D is étale because under our assumptions ωm is fixed point free. Thus we have a

commutative diagram

ZD,p
ét //

��

XD

��

Z
(m)
D,p

ét // X
(m)
D ,

and the same is true if we replace ZD,p by YD,p and Z
(m)
D,p by Y

(m)
D,p := YD,p/〈ω̂m〉. Notice

that Aut(Y
(m)
D,p /X

(m)
D ) ' Z/p

2−1
12 Z. In particular:

Lemma 4.1. hp : Y
(m)
D,p → X

(m)
D is an X

(m)
D -torsor under the constant group scheme

F×12
p2
' Z/p

2−1
12 Z.

Then, if k is a field of characteristic zero and Q ∈ X(m)
D (k), by specialization of the

torsor hp at the point Q we get a continuous character ϕQ : Gk → F×12
p2

by which the

Galois group acts on the fibre of hp : Y
(m)
D,p → X

(m)
D at Q. For example, the specialization

of hp at a point Q` ∈ X
(m)
D (Q`) gives rise to a (local) Galois character ϕQ`

: GQ`
→ F×12

p2
.

Using the moduli interpretation of X
(m)
D (cf. Proposition 2.20), if (A`, i`) is a pair

parametrized by the point Q` ∈ X
(m)
D (Q`), then the local character ϕQ`

is closely related

to the Galois representation αQ`,p : GQ`
→ F×

p2
/{±1} attached to the point Q` in the

previous section. The proof of the next lemma is analogous to that of Lemma 3.2:

Lemma 4.2. For any σ ∈ GQ`
, α̃Q`,p(σ)24 = ϕQ`

(σ)2. In terms of αQ`,p, we have

αQ`,p(σ)12 = ϕQ`
(σ) mod ± 1, ∀σ ∈ GQ`

.
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Together with Corollary 2.25 (i) it follows immediately:

Corollary 4.3. For ` 6= p, the local character ϕ2
Q`

is unramified.

At this point, we have only considered abelian surfaces parametrized by local points

on X
(m)
D . However, we need to discuss some global considerations before proving Theo-

rem 1.2. In the following lemmas, we assume again thatD is odd. Let alsoQ ∈ X(m)
D (Q),

and let K/Q be an imaginary quadratic extension over which its preimages by πm lie.
That is, π−1

m (Q) = {P, ωm(P )} ⊆ XD(K).
Understanding the field K is of great importance, and this fact appears reflected in

the definition of the set B2(q) introduced before the statement of Theorem 1.2.

Lemma 4.4. The involution ωm is fixed point free if and only if the imaginary quadratic
field Q(

√
−m) does not embed in BD.

Proof. It follows immediately from the criterion of Hasse and the formula for the number
of fixed points of an Atkin-Lehner involution due to Ogg ([Ogg83]). �

Now, we use descent to prove the following:

Lemma 4.5. If Q(
√
−m) does not embed in BD, then K is unramified away from D.

Proof. By the above lemma, πm : XD → X
(m)
D is unramified, so it is an X

(m)
D -torsor

under the constant group scheme Z/2Z. By the work of Morita on integral models
of XD (see [Mor81]), πm extends to a smooth morphism of smooth and projective
schemes over Spec(Z[1/D]), and yields a torsor under Z/2Z, now regarded as a constant
Spec(Z[1/D])-group scheme.

As is well-known, the Q-rational points of X
(m)
D can be recovered from the Q-rational

points on the twisted torsors of πm : XD → X
(m)
D . More precisely,

X
(m)
D (Q) =

⋃
τ∈H1(Q,{±1})

τXD
(m)(Q),

where τXD
(m)(Q) is an abbreviation for τπm(τXD(Q)). Here the cohomology classes

τ ∈ H1(Q, {±1}) must be regarded as Galois quadratic characters τ : Gal (Q̄/Q) →
{±1}, hence they are in correspondence with quadratic extensions. Since XD has no
real points, we can restrict ourselves to the imaginary quadratic ones. Moreover, by
[SY04, Lemma 1.1] or [Sko05, p. 106], if L/Q is a quadratic extension ramified at a
prime not dividing D, then τLXD(Q) = ∅, where τL is the Galois quadratic character
corresponding to L. In other words, only the quadratic characters unramified away from

D contribute in the above decomposition of X
(m)
D (Q).

In particular, since P ∈ XD(K) and πm(P ) = Q ∈ X
(m)
D (Q), the class ζ(Q) ∈

H1(Q, {±1}) of the Q-torsor given by the fibre XD,Q → Q is the quadratic character
τK corresponding to the quadratic extension K/Q. Hence, the point Q comes from
a Q-rational point on the twisted curve τKXD. By the above discussion, K must be
unramified away from D. �

Indeed, Lemma 4.5 proves the case F = Q of [Rot08, Proposition 1.3], which states
how K depends on the pair (O, Rm). And finally:
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Proof of Theorem 1.2. First of all, notice that if (mp ) = 1, then X
(m)
D (AQ) = ∅ by

[RSY05, Theorem 3.1] and there is nothing to prove. Thus, we can assume (mp ) = −1,

placing ourselves under Assumption 2.19 as before.

Suppose there exists a point Q ∈ X(m)
D (Q) which has no complex multiplication by

neither Q(
√
−1) nor Q(

√
−3). By the modular interpretation of X

(m)
D , we can choose an

abelian surface (A, i) with real multiplication by the ring of integers Rm of E = Q(
√
m)

whose field of moduli is Q, and such that OD ↪→ EndQ̄(A), corresponding to the point

Q. The preimages of Q under π−1
m are rational over a quadratic extension K/Q, that is,

π−1
m (Q) = {P, ωm(P )} ⊆ XD(K). After Shimura, K must be imaginary. By means of

the diagonal embedding X
(m)
D (Q) ↪→ X

(m)
D (AQ), the point Q defines a sequence of local

points {Q`}` ∈ X
(m)
D (AQ). For each one of these points, say Q` ∈ X

(m)
D (Q`), we can

choose the same abelian surface (A, i) representing it. For the sake of clarity, however,
we denote it by (A`, i`). Note that (A`, i`) has no complex multiplication by neither
Q(
√
−1) nor Q(

√
−3).

The global character ϕ : GQ → F×12
p2

obtained by specialization of the torsor hp at

Q restricts to each one of the local characters ϕQ`
attached to each point Q` on GQ`

.
Therefore, by Corollary 4.3 we have that ϕ2 is unramified away from p.

Consider the abelian surface (Aq, iq) representing the point Qq ∈ X
(m)
D (Qq), and

the representation αQq ,p : GQq → F×
p2
/{±1}, as well as the map α̃Qq ,p : GQq → F×

p2
.

The local character ϕQq : GQq → F×12
p2

attached to Qq by specialization of fp satisfies

ϕ2
Qq

= α̃24
Qq ,p

and ϕq mod ± 1 = α12
Qq ,p

(see Lemma 4.2).

Choose a Frobenius element σq ∈ GQq , i.e. an element inducing Frq ∈ Gal (F̄q/Fq)
under reduction. We first claim that α̃Qq ,p(σq)

24 = q12 ∈ F×p .
For each prime `, consider the local Artin reciprocity map

w` : Z×`
'→ Iab` ,

and let

w :
∏
`

Z×`

∏
w`

� GabQ

be the global Artin map. Observe that the image under w of the idèle

β = (
1

q
, . . . ,

1

q
, 1,

1

q
, . . . ) ∈

∏
`

Z×` ,

where the 1 is in the qth position, is a Frobenius element Frobq ∈ GabQ at q. Therefore,

σq◦Frob−1
q ∈ Iq, and since ϕ restricted to Gal (Q̄q/Qq) coincides with ϕQq , whose square

is unramified, we have ϕ(σq)
2 = ϕ(Frobq)

2.
In order to show our claim, first note that we have

ϕ(σq)
2 = ϕQq(σq)

2 = α̃Qq ,p(σq)
24,

because ϕ|GQq
= ϕQq . Besides, since ϕ2 is unramified away from p,

ϕ(Frobq)
2 = ϕ(w(β))2 = ϕQp(wp(q

−1))2 = ϕQp(τq−1)2 = α̃Qp,p(τq−1)24,
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where we choose any representative τq−1 ∈ Ip of wp(q
−1) ∈ Iabp . Then, we must show

that α̃Qp,p(τq−1)24 = q12. More generally, let us denote by τx ∈ Ip any representative

of wp(x) ∈ Iabp , for x ∈ Z×p , and denote also by x̃ ∈ F×p the reduction modulo p of x.

By [Ser72, Prop. 3, 8], if χ̄p : GQp → F×p is the reduction modulo p of the p-cyclotomic

character, then we have χ̄p(τx) = x̃−1 for all x ∈ Z×p . Then (cf. Corollary 2.25, Lemma
2.26):

x̃−2 = χ̄p(τ
2
x) = ±det(%̄Qp,p(τ

2
x)) = ±ψ(τ2

x)NFp2/Fp
(α̃Qp,p(τ

2
x)) =

= ±α̃Qp,p(τ
2
x)2 = ±α̃Qp,p(τx)4,

where we have used that α̃Qp,p(τ
2) ∈ F×p for every τ ∈ Ip (see Remark 2.28). In

particular, for x = q−1 we get

(4.2) α̃Qp,p(τq−1)24 = q12 ∈ F×p ,

as we claimed.
Now, since (mp ) = −1 and p ≡ 3 mod 4, we have (−mp ) = 1, so that Q(

√
−m)

does not embed in BD. By Lemma 4.5, K is unramified away from D. Also, since
BD ∈ B2(q) the prime q is not inert in K. If we let q be a prime of K above q, then we
can regard the point P as a point in XD(Kq), where Kq is the completion of K at q,
so that according to Lemma 2.22 we can choose (Aq, ιq) and (Aq, iq) to be defined over
Kq := Kq. Moreover, note that the residue field of Kq/Qq is isomorphic to Fq.

On the other hand, since Aq/Kq has potential good reduction, following the construc-
tion of Serre and Tate at the end of p. 498 in [ST68], we can choose a finite totally
ramified extension Lq/Kq such that the closed fibre of the Néron model of Aq ×Kq Lq
over the ring of integers of Lq is an abelian surface Ãq over Fq. Moreover, the action of

the Frobenius element σq on the Tate modules Tp(Aq) and Tp(Ãq) is the same.

Besides, the quaternion algebra BD ⊆ End0
Kq

(Aq) is embedded in End0
Fq

(Ãq), since

the residue field of Kq/Qq is Fq. Moreover, σq ∈ Gal (Q̄q/Kq) ⊆ Gal (Q̄q/Qq), thus
by Corollary 2.27 the characteristic polynomial of %(Aq ,iq),p(σq) reduced modulo p is
congruent to

T 2 − (α̃Qq ,p(σq) + qα̃Qq ,p(σq)
−1)T + q ∈ Fp2 [T ].

This implies, by [Jor86, Theorem 2.1], that α̃Qq,p(σq) + qα̃Qq,p(σ−1
q ) is the reduction

modulo p of an integer aq of absolute value at most 2
√
q. Then, using (4.2) we can

write

aq ≡
√
q(ζ + ζ−1) mod p̄,

where ζ =
α̃Qq,p(σq)
√
q is a 24-th root of 1, and p̄ a prime of Q̄ over p. Computing the

possible values of
√
q(ζ + ζ−1) with ζ a 24-th root of 1 leads to

aq ≡ 0,±√q,±
√

2q,±
√

3q,±2
√
q or ±√q ·

√
2±
√

3 mod p̄.

In other words, p|a2
q−sq for some s = 0, 1, 2, 3, 4 or p|a4

q−4a2
qq+q

2. But since |aq| ≤ 2
√
q,

from the definition of P2(q) the above congruence must be an equality. Moreover, since
aq is an integer the only possibilities are (i) aq = 0, (ii) q = 2 and a2 = ±2 or (iii) q = 3
and aq = ±3.
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According to the classification of abelian surfaces admitting quaternionic multiplica-
tion over finite fields following from the Honda-Tate theory (see [Jor86, Theorem 2.1]),

we deduce that for these cases one has End0
Fq

(Ãq) ' M2(Q(
√
−q)), M2(Q(

√
−1)) or

M2(Q(
√
−3)), respectively. It follows that BD is split by Q(

√
−q), Q(

√
−1) or Q(

√
−3),

respectively, which contradicts the assumption that BD ∈ B2(q). Then, all the points

in X
(m)
D (Q) must have CM by either Q(

√
−1) or Q(

√
−3).

Finally, using again the results from [GR06, §5], one easily checks that (under our

hypotheses) both X
(m)
D (Q) ∩ πm(CM(Q(

√
−1))) and X

(m)
D (Q) ∩ πm(CM(Q(

√
−3))) are

empty. In other words, the points in X
(m)
D (Q̄) with CM by either Q(

√
−1) or Q(

√
−3)

cannot be rational. As a consequence, X
(m)
D (Q) = ∅. �

Now it is natural to ask whether the examples of Atkin-Lehner quotients of Shimura
curves without rational points arising from Theorem 1.2 include counterexamples to the
Hasse principle or not. In [RSY05, Theorem 3.1], a criterion for the existence of adelic

points on X
(m)
D was given, which together with Theorem 1.2 can be used to produce

counterexamples to the Hasse principle over Q. In the particular case where D is the
product of two primes, we obtain the following corollary, where for an integer n > 0 the
quantity Σn(D) is defined as in (3.1):

Corollary 4.6. Assume that D = pm satisfies the hypotheses of Theorem 1.2 with m a

prime such that (mp ) = −1, and let g be the genus of X
(m)
D . If for every prime ` 6= p,m

with ` < 4g2, Σ`(D) 6= 0 or Σ`m(D) 6= 0, then X
(m)
D is a counterexample to the Hasse

principle over Q.

Proof. First of all, we have X
(m)
pm (Q) = ∅ by Theorem 1.2. Secondly, by assumption we

have (mp ) = −1 and p ≡ 3 mod 4, so that using the Quadratic Reciprocity Law one

obtains

(
−m
p

) = 1, (
−p
m

) = −1.

Using [RSY05, Theorem 3.1], these conditions, together with the last hypothesis in the

statement, imply that X
(m)
pm (AQ) 6= ∅. �

Some counterexamples to the Hasse principle over Q arising from Corollary 4.6 are
shown in Table 2 in the introduction.

Remark 4.7. Assume D = pm satisfies the hypotheses of Theorem 1.2, so that

X
(m)
D (Q) = ∅. We were unable to prove that this is accounted for by the Brauer-Manin

obstruction and we leave it as an open question for the reader. The ultimate reason
why we did manage to prove the analogous statement for Shimura curves over imaginary
quadratic fields K and can not do so here relies on Theorem 2.21, which shows that the

obstruction BQ for a point Q ∈ X(m)
D (Q) to be represented by an abelian surface ad-

mitting a model over Q depends on the point Q. This is in contrast with Theorem 2.13,
which asserts that, for a point P ∈ XD(K), we have BP = BD ⊗Q K, independently of
the choice of P and even of the field K.

This raises the following questions, which we find interesting in themselves. Let X
be the moduli space of a family of abelian varieties, possibly equipped with additional
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structure (polarization, endomorphisms, marked torsion points, etc), and assume X
admits a canonical model over Q. Let k be a field of characteristic 0 and assume
Hypothesis 2.3 holds for all points P ∈ X(k).

Questions: Is the quaternion algebra BP ∈ Qk independent of the choice of P? If
not, is the set {BP , P ∈ X(k)} ⊂ Qk comparatively more manageable than the set X(k)
itself? If yes, is there in fact a quaternion algebra B ∈ QQ such that BP = B ⊗ k for
all P ∈ X(k), independently of the choice of k?

5. Appendix: a different approach

In Theorem 5.1 below we show how Lemma 4.5 together with [Rot08, Theorem 1.4]
allows us to prove the non-existence of rational points on some Atkin-Lehner quotients
of Shimura curves from a different approach to that of Theorem 1.2.

First, suppose that Q ∈ X(m)
D (Q), and let K/Q be an imaginary quadratic field such

that π−1
m (Q) = {P, ωm(P )} ⊆ XD(K). It follows from [Jor86, p. 93] that if D is odd

then BD ⊗K ' M2(K). In other words, by [Jor86, Theorem 1.1], we can choose a pair
(A, ι) defined over K such that P = [(A, ι)].

On the other hand, for a given rational prime q, let us define P0(q) ⊆ P2(q) to be the
set of prime factors of the non-zero integers in the set⋃

s,a

{a2 − sq},

where the union is over s = 0, 1, 2, 3, 4 and the integers a such that |a| ≤ 2
√
q. For

instance, we have P0(3) = {2, 3, 5, 11} and P0(5) = {2, 3, 5, 7, 11, 19}.

Theorem 5.1. Let p and m be two primes with p ≡ m ≡ 3 mod 4, (mp ) = −1 and

p 6= 3, 7, 11, 19, 43, 67, 163. If there exists an odd prime q such that p 6∈ P0(q), ( qp) = 1

and ( qm) = −1, then X
(m)
pm (Q) = ∅.

Proof. Suppose there exists a non-CM point Q ∈ X(m)
pm (Q), and let K be the imaginary

quadratic field such that π−1
m (Q) = {P, ωm(P )} ⊆ Xpm(K). By Lemma 4.5, K is un-

ramified at the primes not dividing pm. Hence the only possibilities for K are Q(
√
−p),

Q(
√
−m), Q(

√
−pm).

The last option is excluded because it is ramified at 2. But the case Q(
√
−m) can

also be excluded. Indeed, since (−mp ) = (−1
p )(mp ) = 1 we get that −m is a square

in Qp. If −mXpm denotes the twisted form τXpm of Xpm by the cohomology class
τ ∈ H1(Q,Z/2Z) corresponding to the imaginary quadratic field Q(

√
−m), this implies

that −mXpm ×Qp ' Xpm ×Qp, but Xpm(Qp) = ∅ by [JL85]. Hence K = Q(
√
−p).

But now observe that Bpm ' (−p,mQ ). Therefore, by [BFGR06, Theorem 4.5], the

pointQ corresponds, in the terminology of [Rot08], to a modular triplet (Opm, Rm,Q(
√
−p)).

By applying [Rot08, Theorem 1.4], we deduce (−qm ) = −1, but our assumptions imply

(
−q
m

) = (
−1

m
)(
q

m
) = 1,

and thus we get a contradiction. This shows that the only points in X
(m)
pm (Q) must

be CM-points. But, from [BFGR06, Proposition 5.1], which follows from the work in
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[GR06, §5], one can easily check that under the hypotheses of the statement X
(m)
D (Q)

does not contain CM-points. �

This result is significant progress with respect to [RSY05, Theorem 5.1] and [RSY05,

Corollary 5.2]. Fixed a prime q, it says that X
(m)
pm (Q) = ∅ whenever m and p are distinct

primes such that p 6∈ P0(q), p 6= 3, 7, 11, 19, 43, 67, 163, p ≡ m ≡ 3 mod 4, (mp ) = −1,

( qp) = 1 and ( qm) = −1. By Čebotarev Density Theorem, there exist infinitely many

such m and p.
As in Corollary 4.6, we can use [RSY05, Theorem 3.1] to produce Atkin-Lehner

quotients X
(m)
pm violating the Hasse principle over Q arising from Theorem 5.1. We

collect some of them in the next table.

Some pairs (p,m) such that X
(m)
pm (Q) = ∅ and X

(m)
pm (AQ) 6= ∅

(23, 7), (23, 11), (23, 19), (23, 43), (31, 3), (31, 11), (31, 23), (31, 31),
(31, 43), (47, 11), (47, 19), (47, 23), (47, 31), (47, 43), (59, 11), (59, 23),
(59, 31), (59, 43), (59, 47), (71, 7), (71, 11), (71, 23), (71, 31), (71, 31),
(71, 47), (79, 3), (79, 7), (79, 43), (79, 47), (83, 19), (83, 43), (83, 47)

Table 3.
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[BFGR06] N. Bruin, V. Flynn, J. Gonzàlez, V. Rotger, On finiteness conjectures for endomorphism
algebras of abelian surfaces, Math. Proc. Cambridge Philos. Soc. 141(2006), no. 3, 383-408.

[Cla03] P. L. Clark, Rational points on Atkin-Lehner quotients of Shimura curves, Thesis (Ph.D.)-
Harvard University, ProQuest LLC, Ann Arbor, MI, 2003.

[ES01] J. S. Ellenberg, C. Skinner, On the modularity of Q-curves, Duke Math. J. 109(2001), no. 1,
97-122.

[Gil10] F. Gillibert, Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de dis-
criminant pq, arXiv:1012.3414v1, 2010.
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1991, pp. 313-334.

[Mil79] J. S. Milne, Points on Shimura varieties mod p, In: Automorphic forms, representations and
L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc.
Sympos. Pure Math., 33, American Mathematical Society, Providence, RI, 1979, pp. 165-184.

[Mil86] J. S. Milne, Abelian varieties, In: Arithmetic geometry (Storrs, Conn, 1984), Springer, New
York, 1986, pp. 103-150.

[Mil04] J. S. Milne, Introduction to Shimura varieties, http://www.jmilne.org/math/xnotes.
[Mor81] Y. Morita, Reduction modulo P of Shimura curves, Hokkaido Math. J. 10(1981), no. 2, 209-238.
[Ogg83] A. P. Ogg, Real points on Shimura curves, In: Arithmetic and geometry, Vol. 1, Progr. Math.,
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Paris 1983-1984, Progr. Math., 59, Birkhäuser Boston, MA, 1985, pp. 199-217.
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