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ABSTRACT. Let Xp be the Shimura curve associated with an indefinite rational
quaternion algebra of discriminant D, and let p be a prime dividing D. In their
investigations on the arithmetic of Xp, Jordan and Skorobogatov introduced a cover-
ing Xp,p of Xp whose maximal étale quotient is referred to as the Shimura covering of
Xp at p. The goal of this note is to describe the group of modular automorphisms of
the curve Xp , and its quotients. As an application, we construct cyclic étale Galois
coverings of Atkin-Lehner quotients of Xp.

INTRODUCTION

Modular curves and Shimura curves have great arithmetic significance, for they are
moduli spaces of (fake) elliptic curves and, at the same time, thanks to the work of
Eichler, Shimura and Wiles, give rise to modular parameterizations of all elliptic curves
over Q. The study of diophantine properties of these curves is therefore of fundamental
importance in number theory.

In his celebrated article [Maz77], Mazur proved that for integers N > 13 the only
rational points on the modular curve X;(N) are cusps. This result yields in turn the
classification of rational torsion subgroups of elliptic curves over Q.

The research line started by Mazur in [Maz77] was intensively and successfully ex-
plored by many others. The general philosophy is that rational points on modular and
Shimura curves should correspond only to cusps or (fake) elliptic curves with complex
multiplication, except for a few exceptional cases.

One useful strategy to investigate the set of rational points on Shimura curves is to
apply descent (see [SkoOl]) to suitable étale coverings of them. The question of the
existence of rational points is then transferred to these coverings and their twists, and
one hopes this problem to have a simpler resolution (applications of this principle can
be found in [RAVP], [dVP]). Therefore, the knowledge of étale coverings of Shimura
curves is a necessary requirement to use the machinery of descent in order to tackle the
existence or nonexistence of rational points on them.

The main goal of this note is to determine the group of modular automorphisms of
a cyclic Galois covering of a Shimura curve introduced by Jordan in [Jor81] and, as an
application, to construct cyclic étale Galois coverings of its Atkin-Lehner quotients.
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1. STATEMENT OF THE MAIN RESULTS

Let Bp be an indefinite rational quaternion algebra of reduced discriminant D > 1,
and fix a maximal order Op C Bp. We denote by n : Bp — Q the reduced norm on Bp.
After fixing an identification ¢ : Bp ®@g R = My(R), the group of units B}, C GLa(R)
acts by linear fractional transformations on H* = C — R.

Let Ag be the ring of Q-adeles, and Ay := Ag s the ring of finite Q-adeles. Let
7= [1; Z¢ be the profinite completion of the ring of integers, and write Op :=0p ®ZZ
For a compact open subgroup K C @E, consider the topological space of double cosets

Xk = Bj\ (97 x (Bp ®g Ap)*/K),

where B} acts simultaneously on the left on both $* and (Bp ®g Af)*, and K acts
on the right on (Bp ®g Af)*: that is, for z € H*, 8= (8)¢ € (Bp ®g Af)*, b € B}
and k = (k@)g € K,

b- (276) k= (bZ, b/Bk) = (bZ, (bﬁﬁkf)é)

After the work of Shimura and Deligne (see, e.g., [Shi63], [Shi67], [Del71], [Mil04]),
X admits a canonical model which is an algebraic curve over Q. We will still denote
this Shimura curve by Xpg, which need not be geometrically connected: in general,
Xk xg C is the disjoint union of |Z* /n(K)| compact connected complex curves.

When we take K = @B, the curve Xp := X /Q is the usual Shimura curve asso-
ciated with the indefinite rational quaternion algebra Bp, which is the coarse moduli
scheme over Q classifying pairs (A,:) where A is an abelian surface and ¢ : Op —
End(A) is a monomorphism of rings (see [Shi63], [Shi67]). Such pairs are called fake
elliptic curves by some authors, or simply abelian surfaces with quaternionic multipli-
cation by Op. The curve Xp is projective and smooth, and it depends neither on the
choice of Op nor of 1, which are unique up to conjugation. In this case, Xp/Q is
geometrically connected.

When we let K vary, the algebraic curves X form an inverse system indexed by the
compact open subgroups K of (Bp®qAy)*, as there is a natural projection X g — X
whenever K’ C K.

The system { Xk }x is endowed with certain natural automorphisms. Namely, mul-
tiplication on the right by any element 8 € (Bp ®g Af)* induces an isomorphism of
algebraic curves

pr(B) : Xk — Xpg-1kp, [2,0] = [2,00]
which is defined over Q ([Mil04, Theorem 13.6]). If ¢ is an arbitrary prime and a4 €
Bg,q = (Bp ®g Qq)*, we will make a slight abuse of notation writing px (o) for the
automorphism pg (8), where 8 = (8¢)¢ € (Bp ®gAy)™ is defined by 3, = ag and By =1
at all primes ¢ # g. More generally, for a finite collection of elements ay, € Bg,ﬁi’
i=1,...,t, we shall write px(oy,,..., ) for pg(B), where 8 = (8¢)r € (Bp ®q Af)™
is defined by B¢, = a, at the primes ¢;, and Sy = 1 otherwise.

Let

N(K) = Norm(BD@)@Af)x(K) Q (BD ®Q Af)x

be the normalizer of K in (Bp ®q Af)*. For every f € N(K), px(B) is actually an
automorphism of Xg. Observe also that px(gk) is the identity automorphism on X
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for all ¢ € Q*, k € K. Indeed, for any pair 38,5 € N(K), px(8) = px(8’) if and only
if 3/ = qBk for some q € Q* and k € K. This leads us to consider the group

(1) Aut™ (X ) ;= N(K)/Q*K.

Definition 1.1. An automorphism of Xk is modular if it is of the form pr(B) for
some § € N(K). We call Aut™(Xg) the group of modular automorphisms of X,
which is naturally a subgroup of Autg(Xk).

For the Shimura curve X p, we recover the Atkin-Lehner group of Op,
Aut™ (X p) = Wp ~ (Z/22)* C Autg(Xp),

where 2r is the number of prime factors of D (see [Vig80, Chapter III, Exercises 5.4,
5.5]). The automorphisms wy,, in Wp act as rational involutions on Xp, the so-called
Atkin-Lehner involutions, and they are indexed by the positive divisors m of D.

The aim of the present note is to determine the group of modular automorphisms of
the Shimura curve defined by a certain compact open subgroup of @B attached to an
odd prime p dividing D, and to use this information to construct étale Galois coverings
of Atkin-Lehner quotients of Xp.

For such a prime p | D, let I, C Op,, := Op ®zZ, be the unique two-sided Op ,-ideal
of reduced norm pZ,, and define K, C @B to be the subgroup of elements in @B that
locally at p are congruent to 1 modulo [,. Write Xp , for the canonical model over
Q of the curve Xk, defined as above. This Shimura curve has appeared a few times
in the literature, with applications to the study of rational points on Xp over number
fields (see, e.g., [Jor81], [Sko05]). As we show in [RAVP], a better understanding of it
is useful to study the scarcity of rational points on Atkin-Lehner quotients of Shimura
curves.

The curve Xpp xq Q(up) is the disjoint union of p — 1 irreducible curves which are
conjugate by the action of Gal (Q(up)/Q) (see [Sko05] and Section [2| below), and the
natural finite flat morphism Xp , — Xp induced by the inclusion K, C @B is a Galois
covering whose automorphism group A := Aut(Xp,/Xp) is isomorphic to the cyclic
group ]F;J{il} ~ Z/z’QT_lZ.

We show in Section [4] that the Atkin-Lehner involutions w,, € Wp on Xp can be
lifted to involutions w,, on the curve Xp ,, and they generate an abelian subgroup
Wpyp ~ (Z/22)* of Aut(Xp,p). Write Wp,,, ~ (Z/2Z)* " for the subgroup of Wp,
generated by the involutions @, associated with positive divisors m of D/p.

Both A and Wp ), are in fact subgroups of Aut™d(X D.,p), and we prove in Section
that one actually has Aut™®4(Xp ) = AWp,. More precisely, the first main result of
this note can be summarized as follows:

Theorem 1.2. (i) The Atkin-Lehner involutions wy,, € Wp on Xp lift to involu-
tions Wy, on the curve Xp . The group Wp , generated by them is naturally a
subgroup of Aut™Y(Xp ), and Wp, ~ (Z/27)%".

(ii) The group Aut™(Xp,,) is isomorphic to
(& (@) X Wpypp = (B /{H1} % Z/22) x (2/22) 7,

where @, - 0 - Wy = 0P for any § € A.
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We leave open the question of studying whether the group Aut™°4(X p,p) of modular
automorphisms of Xp , is the full group Aut(Xp ) or not.

In his PhD thesis [Jor81, Chapter 5], Jordan showed that the maximal étale quo-
tient of the covering f : Xp, — Xp has degree (p?> — 1)/2e¢,, where e, = e,(D) is a
positive integer dividing 6 which depends on the arithmetic of Bp (see below for
its definition). In Section |§| we apply Theorem to investigate sufficient conditions

for the natural map f("™) : thlp) — X,(:)m) induced by f to factor through a cyclic étale

m)

Galois covering of the Atkin-Lehner quotient Xl() , where we write Xgrg = Xpp/(@Wm)

and Xl()m) := Xp/{wm) for the quotients of Xp, and Xp by the action of w,, and wy,,
respectively. In this direction, the second main result of this article is the following
(cf. Theorem [6.2)):

Theorem 1.3. Let s be a positive integer dividing (p* — 1)/2n, where

n— €p ifpj[m,
" lem(ey, (p+1)/2) ifp|m.

The map f™ l()mp) — X( factors through a cyclic étale Galois covering of degree s

of X](j if either of the following conditions holds:
(i) wm is fized point free,
(i) ptm, (7)) =1 and s divides p — 1,
(iii) p | m and (m/p) =-1, or
(iv) s divides (p* —1)/4n.

When the Atkin-Lehner involution w,, is fixed point free, descent techniques were

applied to the natural Xgn)—torsor Xp — X(Dm) under the constant group scheme Z/27

in [RSYO05] to prove the emptiness of Xj(jm)((@) in many cases. We hope the étale
(m)

coverings from the above theorem will be useful in the study of rational points on X,
also in the case where wy, has fixed points (details will appear in [dVP]).

2. THE SHIMURA CURVE Xp,

Fix for the rest of this note an indefinite rational quaternion algebra Bp of reduced
discriminant D and a maximal order Op C Bp as in the Introduction. Write D =
p1- - P2, where the p; are pairwise distinct primes and » > 1. For every prime p;
dividing D, the local maximal order Op ,, := Op ®z Zp, will be regarded as a matrix
ring after the choice of an isomorphism

) ~ x Y\
wpi . OD,’Pi — {( % > HEOPNIAS pr} < M2(Zp?)>
where Z, 2 is the ring of integers of the unique unramified quadratic extension Q, 2 of
Qp, and o € Gal (Qy: / Qp,) is the nontrivial automorphism (see [Jor&1l, p. 4]).

Fix also an odd prlme p dividing D, and let Xp,/Q be the canonical model of the
Shimura curve Xk, associated to the compact subgroup K, C @X, which is defined
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locally as

le?,f if £ £ p,

2 K, = K,y here K,,:=
® ¢ 1;[ ph Pt {1+Ip ite—p.

Using the isomorphism ,, we shall make the identification

pr Y .
IP:{(pay pax>.$,yezp2}gOD7p.

This section is devoted to studying the geometry of the Shimura curve Xp j, and we
start this task by describing the connected components of the complex curve Xp , xgC.
First, if we write B} c=1{be BJ : n(b) > 0}, by means of the natural homeomorphism

BS\$* x (Bp ®g Af)* — Bjy .\ 9 x (Bp ®g As)”
we see that
XDJ) XQC ~ BB,—i— \ (f) X (BD XQ Af)X/Kp).

Then, the set C := my(Xp,p xq C) of connected components of Xp , xg C is encoded
(see [Mil04, Lemmas 5.12, 5.13]) by the finite set

(3) By, \(Bp®gAp)* /Ky~ Q> \ AY/n(K,) ~ 2% /n(K,) ~ Z /(1 + 1),
where the first isomorphism is induced by the reduced norm, taking into account that
n(Bp®ghAyf)* = AJf and n(B}; | ) = Q7" because Bp is indefinite (see [Vig80, Théoréme
II1.4.1]). In fact, the set C is in bijection with the fibres of the natural map

By \ (9 x (Bp®gAf)*/Kp) = By \ (Bp ®gAp)* /Ky, [2,8] — [b],

and there is a homeomorphism

XD,p XQ(C ~ |_|1“C\5§,
ceC
where we identify C with a set of representatives of Bf; . \ (Bp ®q Af)* /K, and for
every ¢ € C we write I'c := B , NcKye™!. It is easy to check that n(1+1,) = 14 pZ,,
thus establishes a bijection between the set C and F.

In order to describe the connected components of Xp, xg C, under the natural
inclusion 0}, — (’)Bp we shall regard the intersection I'p, = OL N (1 +1,) as a
subgroup of the group O}, of units of norm 1 in Op, which acts by linear fractional
transformations on $). Then:

Lemma 2.1. Every connected component of Xp, Xq C is isomorphic to the compact
Riemann surface

VD,p = FD,p \.6

Proof. As before, let us identify C with a set of representatives of the finite double coset
BE  \(Bp®qgAyf)* /Ky, and let ¢ € C, ¢ = (c¢)¢ € (Bp ®g Ay)*. We can assume that
c¢ =1 for all the primes ¢ # p, thus c = (1,...,1,¢p,1,...) for some ¢, € le)’p.

Since p divides D, the maximal order Opj, C Bp, in the local quaternion division
algebra Bp, is unique, and consists of all the integral elements in Bp ), (see [Vig80,
Lemme II.1.5]). In particular, cpOp pc, e Op,p. Besides, since the reduced norm
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is invariant under conjugation and I, is the unique two-sided Op p-ideal of norm p,

we deduce that cpIpc;I = I, hence also ¢,(1 + Ip)cp1 = 1+ 1I,. As a consequence,
cKpc™! = K, so that all the connected components of X, are isomorphic to

(BB,+ N KP) \’S;»)’
and the statement follows by observing that Bf , N K, = Op N (1 + 1,). O

That is, the complex curve Xp , xgC is the disjoint union of p—1 compact connected
curves, and each of them is isomorphic to the Riemann surface Vp, =T'p, \ $. Even
though the curve Xp,, is defined over Q, its geometric connected components are only
defined over Q(y,). Indeed, the choice of Xp, as a model of Xf, over Q defines an
action of Aut(C) on Xk, (C), which is compatible with the action of Aut(C) on the set

C = B\ (Bp ®g Ay)* /Ky~ Q7" \ AF /n(K,) ~ Z* /n(K,)
through its quotient Gal (Q®/Q) ~ 7> under the map
XppxgC=~Bj \ (9% (Bp®gAp)*/K,) — Q>°\Af/n(K,)~ 2" /n(K,)
[2,6] — [n(b)].
If we identify a connected component ¢ € C with an element in BB7+ \(Bp®qAy)* /Ky,
then the open subgroup U, C Z* fixing [n(c)] € Z* /n(K,) is

Ue= 125 x (1 +p2p),
t#p
thus the number field contained in Q® fixed by the action of U. on Q% is the p-th
cyclotomic field Q(pyp). From this we deduce that every geometric connected component
of Xpp is defined over Q(pp).

Summing up, the curve Xp , xq Q(pp) is the disjoint union of p — 1 geometrically
connected curves defined over Q(y,). These connected components are conjugated by
the action of Gal (Q(1,)/Q), and all of them become isomorphic to the Riemann surface
Vb,p as complex curves.

2.1. Action of modular automorphisms on the set C. Let pg, (o) € Aut™4(Xp )
be the modular automorphism of Xp, defined by some a = (ag); € N(Kp). Let
[z, (Be)e] € Xp,p X C be a point on the Riemann surface underlying Xp , and assume
without loss of generality that z € $. Let also ¢ € C be the connected component of
Xp,pxgC in which this point lies, where again we identify C with a set of representatives
of the double coset

B, \ (Bp @g Ap)* /Ky~ Q7°\ AY/n(Kyp) ~ Z) /(1 + pZy) ~ F.

Then the connected component in which the point px,(a)([2, (B¢)e]) = [z, (Becwe)e] lies
is given by the class of n((Bsay)¢) in Q>° \A; /n(Kp) =~ ). Since the double coset

B, \ (Bp ®q Ap)*/O}

is trivial, there are elements b € Bp ., (V)¢ € @E such that (Beay)e = b(Be)e(Ve)e-

Hence, taking classes in B3+ \ (Bp ®q Af)* /K, we see that
[(Becwe)e) = [b(Beve)e) = [(Be)e(Ls -, L, 1, )]s
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and using the reduced norm we deduce that pg, ()([z, (B¢)¢]) lies in the connected com-
ponent given by c[n(v,)] € Fj. In other words, pg, () acts on C =~ F\ as multiplication
by [n(7p)]-

3. THE cycLIC GALOIS COVERING Xp, — Xp

Once we have described the geometry of the curve X p ;,, we study the natural covering
of Shimura curves Xp, — Xp induced by the inclusion K, C OE. Since K, is a normal
subgroup of O, we can regard the Shimura curve X 5x as the quotient of Xg, by the

D

action of @E This means that every automorphism of the covering

XKPZXDJ;XQ(C—)X XD XQ(C

o5 —

is of the form pg, (a) for some o € @g Moreover, after the choice of canonical models
Xpyp and Xp over Q for the curves Xk, and X;x, respectively, all these (modular)
D

automorphisms are defined over Q. Hence,
Aut(Xp,/Xp) == Autg(Xp,p/Xp) = Aut(Xp, xg C/Xp xg C)
and there is a surjective homomorphism
O — Awt(Xpp/Xp), a+— pr,(a),

whose kernel clearly contains the normal subgroup K, C @B Thus we have in fact a
surjective homomorphism

OF /Ky~ 0} /(1+1,) — Aut(Xp,/Xp)
ap(1+1,) — pr,(ap) =pr,(1,...,1,0p,1,...).
Since we have assumed p to be odd, —1 ¢ 141}, and the kernel of this last homomorphism
is {£1}, so that
(4) Aut(Xpp/Xp) = (Op /(1 + 1)) [{+1}.

Definition 3.1. We denote by A the group of covering automorphisms Aut(Xp ,/Xp),
regarded as a subgroup of AutmOd(XDJ,). The elements of A will be called diamond
automorphisms.

As explained in [Sko05|, the covering Xp, — Xp is Galois and cyclic of degree
(p? —1)/2, 50 A ~ F;:Q/{:I:l}, but for our purposes we shall study here the group A in

more detail. Similarly as in [Jor81, Chapter 5|, let us define the Nebentypus character
of Op at p as the homomorphism ¢, : O} » IE‘;Q given by the rule

ep(7) =2 mod pZy2 € FY5 if () = ( ‘Ta Oy ) with 2,y € Zy2.
P p% “x
The homomorphism ¢, is clearly surjective, and its kernel is 1 + I),. Therefore:

Lemma 3.2. The quotient OF, /(1 + Ip,) is isomorphic to FZQ.
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Actually, every equivalence class in O » /(1+1,) is represented (via 1,) by a matrix

z 0
5 (5 %) <c0,
for some z € Z;2, uniquely determined modulo pZ,:. Combining this lemma with ,
we obtain as we announced that

A =Aut(Xp,/Xp) ~ IFZQ/{:H}.

In particular, all the intermediate coverings of Xp , — Xp, which are in bijection
with the subgroups of A, are cyclic Galois coverings. For a subgroup ©® C A, the
corresponding curve Yg arises as the quotient of Xp , by the action of © by covering
automorphisms and deg(Ye — Xp) =[A: O].

Following the recipe in Section the diamond automorphism ¢ = pg, (ap) € A
defined by some o, € (’)Bp acts on the set C ~ T’ of geometric connected components of
Xp,p as multiplication by [n(ap)] € Fy'. If the class of a, in OF /(1 +1Ip) is represented
by a matrix as in , then this is the same as saying that § acts on C as multiplication

by N, X JFX (z) € Fy, where Z is the reduction of z modulo pZ,2. The next lemma
p

follows directly from this observation:

Lemma 3.3. The diamond automorphisms in A ~F*, /{+1} acting trivially on the set
p

C are exactly those in the unique subgroup of index p — 1 in A, which is identified with
F;Q/{:lzl}, where

Flo = ker(Ng 5/, : oo = Fy) ={Z € F); : =1} CF,.

In particular, two diamond automorphisms 4,4’ € A induce the same action on the
set C if and only if 14" € F;Q/{il}.

Besides, each geometric connected component of Xp , defines a covering of complex
Riemann surfaces

Vbp =Tpy\H—> Xp xqC=0p\ 9,
whose automorphism group can be determined as follows. First of all, by the very
definition of I'p ,, the natural inclusion of O}, in OB,p identifies the quotient O} /I'p
as a subgroup of O » /(14 I,). Secondly, the restriction of the Nebentypus character
of Op at p to O}, has kernel I'p , = O}, N (1 + I,,), but it is no longer Surjectiveﬂ onto
F,:
p

Lemma 3.4. The image of (91D under the Nebentypus character €, is IF;Q C IF;;, the

unique subgroup of order p+ 1 of FZQ. In particular,
Ob/Tpp=Op/(OpN(1+1y)) ~Fpe.

Proof. If v € O}, a straightforward computation using the definition of both v, and ¢,
shows that ¢, () lies in IF}DQ. Conversely, if T € IF;Q - IF;2 one can choose a representative

11t seems to be implicitly stated in [Jor81) p. 109] that the restriction of ¢, to Op is still surjective,
which in view of Lemma is not true.
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T € Z;2 of T such that 2%z = 1 + pa for some a € Z;. Therefore we can write
1 = 2% — py°y for some y € Z,2, hence

_ x Yy X
e ( Py x ) < Oby

has reduced norm 1 and satisfies €,(,) = Z. Applying [Miy89, Theorem 5.2.10], there
exists v € O}, such that v — 7, € pZy2, thus g,(7) = Z. O

Finally, the only nontrivial element of O}, acting as the identity on § is —1, but
—1 & I'p,. Therefore,

Aut(Vp,p/Xp xg C) = (Op/Tpy)/{+1} = Fp /{£1},
thus Vp, — OL \ $ ~ Xp xg C is a cyclic covering of order (p + 1)/2.

Remark 3.5. There is a unique intermediate curve X0 /Q in the cyclic covering
Xpp — Xp for which X9 » — Xp is cyclic of degree (p + 1) /2, namely the quotient of
Xp,p by the unique subgroup of A of order p — 1. However, we warn the reader that
Xp 9 D p 18 not in general a model over Q for Vp p, as it may not be geometrically connected.
Actually, similarly as we did for determining the geometric connected components of
Xp,p, one can check that X7, 0 Dp 18 geometrically connected if and only if p=1 mod 4.

4. ATKIN-LEHNER INVOLUTIONS AND THEIR LIFTS TO Xpp

Now we turn our attention to another family of modular automorphisms of the
Shimura curve Xp ,. For every positive divisor m of D, we shall define an involution
Wm on Xp p lifting the usual Atkin-Lehner involution wy,, on Xp.

Let g be a prime dividing D. The usual Atkin-Lehner involution w, on Xp attached
to ¢ is defined adelically as the modular automorphism PO (wq), where

01
Wq:<q 0>60D’qﬂBqu
2

This way, w, € AutmOd(X p) = Wp is clearly an involution because wy; =¢q € Op 4 and

(1,...,1,¢,1,1,...) € QX@LX-). Besides, the action of w, on the Shimura curve Xp can
be interpreted in moduli-theoretic terms (see, e.g., [Jor81]).

The first attempt in order to lift the involution w, to Xp ) is to consider the modular
automorphism pg, (wg) € Aut™9(Xp ). Clearly, this automorphism lifts the involution
wq to Xp p, but now

(6) pr(Wq)2:pr(wg):pr(L'"an’la-")a

where the ¢ is in the g-th position, and this automorphism is not necessarily the identity
on Xp p:

Lemma 4.1. For each prime q # p dividing D, we have
PKp(Wq)2 =i, €A = AUt(XDm/XD)v

where 64 = pr,(1,..., L,¢g41,...), ¢t e (’)Ep. Besides, the automorphism pr,(Wp)
s an tnvolution.
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Proof. For the distinguished prime p, it follows immediately from @ that pr, (W%) acts
as the identity automorphism on Xp ,, since p € OF; , for all £ # p and

pr,(1/p)pr, (W)oK, (D, - 0. L,p...) = p, (1,1,...).

And for each prime ¢ | D/p, let k = (¢,...,¢,1,q,...,¢,1,q,...) € K, where the 1’s
are in the g-th and p-th positions. Then, using @ again, we see that

pr,(wWe)* = pr,(1/q)pr, (Wi pK, (k) = pr,(1,..., 1,471 1,...) =4,

as claimed. O

As a consequence, for primes g # p we see that the automorphism pg, (w,) lifting w,
is an involution on Xp ,, if and only if 6, = id, which is equivalent to saying that ¢ = +1
mod p. However, we can still lift the Atkin-Lehner involutions w, to involutions on Xp
as follows.

Continue assuming that ¢ # p, and choose an element s, € Z; such that its reduction

54 € ]F;2 modulo pZ,» satisfies 52 =qeF; C IF‘ZQ. Then consider the element

s 0
Ug = ( 61 %, ) € Op

which satisfies u2 € ¢(1+ I,) C Op ,» hence pr, (ug)? =6, .

Remark 4.2. The diamond automorphism pg, (uy) € A is well defined. It is clear
by construction that pgx,(u,) does not depend on the choice of s, modulo pZ,2. In
addition, since pg,(1,...,1,—1,1,...) (with the —1 in the p-th position) is the identity
automorphism on Xp ,, pr,(uq) does not depend on replacing s, by —s, either.

Definition 4.3. Let q be a prime dividing D. We define the modular automorphism
@y € Aut™(Xp ) by

o e d P (W) if ¢ =p,
! PK,(Wq, uq) = pK,(Wq)pK, (Uq) if ¢ # p-

Corollary 4.4. For every prime q dividing D, the automorphism wg € AutmOd(XDVP)
is an involution lifting the Atkin-Lehner involution wy, on Xp to the curve Xp,.

Finally, we observe that the involutions w,; commute pairwise as ¢ ranges over the
prime divisors of D. We state this fact in the following lemma, whose proof is left to
the reader:

. P A A
Lemma 4.5. For primes q,q dividing D, oWy = Wywy.

As a consequence, we can attach an involution w,, € AutmOd(X p,p) lifting wy,, to each
positive divisor m of D just by defining @y, as the product of the involutions w, as ¢
ranges over the prime divisors of m. We call @, the Atkin-Lehner involution on Xp
associated with m and write

Wpp = {&m:m|D,m >0} = (& : q| D,q prime) C Aut™(Xp )
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for the abelian group consisting of these involutions, which is generated by the involu-
tions w, with ¢ | D prime. It is naturally a subgroup of Aut™od( X p,p) and, by Lemma
there is a natural isomorphism

Wp,p =~ (Z/27)*".

Moreover, for any pair of positive divisors m, m’ of D, we have Wm@m = Gpm/ged(m,m?)?-

As we did for the diamond automorphisms, the discussion in Section allows us
to determine easily the action of a lifted Atkin-Lehner involution on the set C ~ [ of
geometric connected components of Xp , xq C:

Lemma 4.6. If m is a positive divisor of D and we regard the Kronecker symbol (5)

as taking values in Iy, then @, € Wp,, acts on C as multiplication by

(m) if ptm,
() wpim

Proof. 1t is enough to prove the statement for @, with ¢ | D prime. When ¢ # p, one
applies the recipe in Section to the automorphisms pk,(W,) and pg,(ug), whereas
for the prime p one only needs to deal with pg,(wp). The details are routinary and we
leave them to the reader. O

So far, we have introduced two natural abelian subgroups of the group AutmOd(X D.p)
of modular automorphisms of Xp ,. Namely, the group A = Aut(Xp,/Xp) of diamond
automorphisms and the group Wp ;, of Atkin-Lehner involutions. The above description
of Wp,, establishes part (i) of Theorem and in the next section we will conclude
the proof of part (ii). Before that, we show how an Atkin-Lehner involution interacts
with a diamond automorphism:

Proposition 4.7. Let § € A be a diamond automorphism, and let m | D, m > 0.
Then, in Aut™4(Xp ), it holds

5@, = {Wmfs prjfma

WmoP  if p | m.

Proof. Since Atkin-Lehner involutions on Xp , commute pairwise, it suffices to prove
the statement for m = ¢ prime. Moreover, we can also assume that 0 = pg, (), where
z 0
ap = < 0 o > € Op, for some z € Z;z.
If ¢ # p, the automorphism ¢ = pg, (o) commutes with both pg,(uq) and pg,(wg),
thus clearly 6@, = pr, (o) pr, (Wq)pK, (Ug) = pK,(We)pr, (Uq)pK, (ap) = ©gd. And for
the prime p, the congruence %z = 2P mod pZ,> implies that pg,(°ay,) = pk,(0p) =
pK,(ap)P, hence the statement follows from the identity a,w, = w) %p. O

5. THE GROUP Aut™9(Xp ) OF MODULAR AUTOMORPHISMS

At this point, we know that both A = Aut(Xp,/Xp) and Wp,, are subgroups of
the group AutmOd(X p,p) of modular automorphisms of Xp,. Moreover, notice that
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AN Wp, = {1}. Otherwise, some nontrivial Atkin-Lehner involution @, on Xp
would be an automorphism of the covering Xp, — Xp, and this would force the
corresponding Atkin-Lehner involution w,, on Xp to be trivial, that is to say, m = 1,
which is a contradiction. In addition, if we set G := (A, Wp,) C Aut™4(Xp,),
Proposition [£.7] implies that A is normal in G, which is therefore a semidirect product
of its subgroups A and Wp . In particular, |G| = (p? — 1)2% L.

The goal of this section is to prove part (ii) of Theorem [1.2| Recall from that
the group Aut™®4(Xp ) is defined as the quotient N(K,)/Q* K,, where N(K,) is the
normalizer of K, in (Bp ®g Ay)*. Writing K, = [[, K, as in (2)), observe that

N(Kp) = (Bp ®g Ap)* N ][ Ne(Kpe),
l
where Ny(Kpy) := Norranj z(KM)' For primes ¢ 1 D, the local quaternion algebra Bp g

is isomorphic to Ma(Qy) and all its maximal orders are conjugate to Ms(Zyg), hence the
normalizer of OF, in Bf, is Q Of ,. In contrast, for primes ¢ | D this normalizer

is the full group of units B} ,, because Op is the unique maximal order in the local
quaternion algebra Bp . At the prime p, since I, is the unique two-sided Op ,-ideal of
reduced norm p we also have N,(1+ I,) = Bj . Summing up,

(7) N(Kp) = {(bg)g S (BD Ko Af)X 1 by € Q;OBJ for all EJ[D}
Now consider the surjective homomorphism
0 N(Kp) — [ Ne(Kp)/ Q) K, (be)e — ([be))gp
oD
which induces an exact sequence
1— N, = ker(p) — N(K,) = [ Ne(Kpe) /Q) Kpe — 1.
4D

From (7)) and the definition of ¢, observe that N, = A; K, hence Aut™4(Xp ) fits in
the following short exact sequence:

(8) 1— AY K, /Q* Ky — Aut™(Xp ) — [ [ Ne(Kpe) /Q Ky — 1.
¢D

Lemma 5.1. The quotient A;KP/QXKP is isomorphic to F) /{£1}.
Proof. There is a natural isomorphism A7 K,/Q* K, ~ AT /(AT NQ*K,), and it is

an easy exercise to check that A? NQ*K, = Q*S, where S = (1 + pZp) [144, Z; -
Therefore, one obtains

AFIG,/Q K, ~ A% JQ*S = BX /S{£1} =~ (23 /(1 + pZ,)) {1} ~ F /{£1}.
O

Lemma 5.2. The group [[,p Ne(Kpe)/Qp Kpe is isomorphic to the direct product of
(Z/27)*" = and an extension of Z/27Z by Z/(p + 1)Z.
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Proof. For the primes ¢ | D/p (there are 2r—1 of them), the quotient Ny (K, ¢)/Q, Kp e =
Bp ,/Q; OF , is isomorphic to Z/2Z (see [Vig80, Chapter ITI, Exercises 5.4, 5.5]). In
contrast, at the prime p the quotient B v /Qy (1 + 1) fits in the short exact sequence

1—Q (’)Bp/(@; 1+1,) — Bap/@;(l +1,) — Bap/(@; Op,— 1

As before, By, /QFOp,  ~ Z/2Z, whereas the quotient Q) Of /Q; (1 + 1) is cyclic
of order p + 1 (the kernel of the surjective homomorphism O o IF;Q — [, obtained

by composing the Nebentypus character with the natural quotient map is Z) (1 + I,)),
hence the statement follows. O

As a direct consequence of Lemmas and together with :

Proposition 5.3. The group AutmOd(XDVI,) is generated by its subgroups A and Wp p,
i.€. AutmOd(XDJ,) = AWD,p =G.

Finally, we describe the structure of AutmOd(X D,p) as an abstract group. By Propo-
sitions and A is normal in Aut™4(Xp,) = AWp, with quotient isomorphic
to Wpp, thus the inclusion of Wp,, in AutmOd(X p,p) makes the short exact sequence

(9) 1—A— Aut™Y(Xp,) — Wp, —1

split. Therefore, Aut™°d(X D,p) is recovered as the semidirect product A xy Wp,, of its
subgroups A and Wp ,, where the action § : Wp, — Aut(A) is given by

5 ifptm,

N P A ~
0(om)(0) = @, 00, = Wmdwy, = {51] it p | m.

Now observe that the involutions in the subgroup Wp, , := (0, : ¢ prime, q | %) of
Wp,p of index two commute with the diamond automorphisms, hence the action ¢ is
trivial on Wp,, ., Since clearly Wp , = (@wp) X Wp,, ,, we get a natural isomorphism

AlltmOd(XD,p) = A Xg WD,p ~ (A Nn <L:)p>) X WD/p,pa

where now 7 : (w,) — Aut(A) is determined by the rule n(&,)(0) = wydw, = 67, and
this concludes the proof of Theorem

Remark 5.4. Identifying Wp , ~ Wp in the natural way, the short exact sequence @
becomes
1 — A — Aw™(Xp,) — Wp — 1,
0 )
Om, — W
which shows that the modular automorphisms of Xp ,, lifting an Atkin-Lehner involution
wm on X p are precisely those in the coset Aw,, = GmA.

Remark 5.5. Let @, € Wp,, be the Atkin-Lehner involution on Xp , associated with
a prime ¢ | D. After the previous remark, it is natural to ask whether there are other
involutions in AutmOd(X p,p) lifting wy or not. Indeed, the choice of W, is not unique.
By Remark every modular automorphism lifting w, can be written as dw, for
some 6 € A. If ¢ # p, @, commutes with every diamond automorphism, hence dw,
is an involution if and only if §2 = 1. Therefore, there are exactly two involutions in
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Aut™d(X p.p) lifting w,, namely @, and 7@w,, where 7 is the unique diamond involution
in A. In contrast, the involution @, associated to p does not commute with the diamond
automorphisms, and from the identity (6@,)? = d@,0w, = 6P we see that dw, is an
involution if and only if ¢ lies in the unique subgroup of A of order p + 1, thus there
are exactly p + 1 involutions in Aut™®4(Xp ) lifting w,.

We emphasize that the structure of the group Aut™4(X p,p) as stated in Theorem|1.2
does not depend on which involutions in Aut™°4(Xp ;) lifting the usual Atkin-Lehner
involutions on Xp we choose.

6. CYCLIC ETALE GALOIS COVERINGS OF X,(jm)

Let m be a positive divisor of D, and w,, be the corresponding Atkin-Lehner involu-

tion on Xp. We write X](jm) := Xp/{wnm) for the quotient of Xp by the action of w,,,
and m,, : Xp — Xl()m) for the natural projection map.

The cyclic Galois covering f : Xp , — Xp can be used to prove the nonexistence of
rational points on the Shimura curve Xp over imaginary quadratic fields under certain
congruence conditions (see [Jor86], [Sko05], [RAVP]). Combined with the work of Jordan
and Livné [JL85|, such results often lead to counterexamples to the Hasse principle
accounted for by the Brauer-Manin obstruction.

After the study of the group AutmOd(X p,p) of modular automorphisms of Xp p,, now
we want to obtain cyclic Galois coverings of X(Dm) from the intermediate coverings of

f:Xpp— Xp. Even more, we will construct cyclic étale Galois coverings of Xj(jm) that
can be used to study the set of rational points X l()m) (Q) by applying descent techniques.

Let @, be the Atkin-Lehner involution on Xp ), lifting w,,, and consider the natural
projection map 7, : Xpp — Xj(jnfp) := Xpp/{@m) onto the quotient. Then we have a

commutative diagram

(m) f(m) (m)
Xpp, —=Xp".

For every positive divisor s of (p? — 1)/2, we write O(s) C A for the unique (cyclic)
subgroup of A of index s, and fs : Xp,(s) — Xp for the intermediate covering of
f: Xp,p — Xp arising as the quotient of Xp, by O(s), so that deg(fs) = s.

By virtue of Proposition .7, the action of the Atkin-Lehner involution &y, on Xp,,
commutes with the action of each subgroup ©(s) of A. That is, @, induces an involution
on every intermediate curve Xp p(s) lifting wy,, which we will still denote by w,,. We
write Xl()n;)(s) for the quotient of Xp ,(s) by its action and fs(m) : Xl()”;)(s) — X(Dm) for
the natural induced map.

6.1. The Galois property. The covering Xp , — Xj(jm) obtained by composing f with

T is Galois of degree p? — 1, and its automorphism group Aut(Xp ,/ Xj(jm)) is the group
A = A(Dy,) € Aut™d(Xp )
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generated by A and (w,,). Therefore, the cyclic Galois coverings of Xj(jm) induced by
intermediate coverings of f : Xp, — Xp and not factoring through Xp are in one to
one correspondence with the normal subgroups of Alm) containing @,,. After Theorem
the subgroups of A™) containing &, are precisely those of the form ©(s)(cy,), as
s ranges through the positive divisors of (p? —1)/2.

Corollary 6.1. Let s be a positive divisor of (p> —1)/2, and fs: Xpp(s) — Xp be the
above defined covering. Then:

(i) If p does not divide m, fs(m) : nglp)(s) — X(Dm) is a cyclic Galois covering of

degree s. In particular, Xl()mg — X](Dm) is cyclic and Galois with automorphism

group isomorphic to A.
(ii) If p divides m, f§m) : X(DTTLP)(S) — Xl()m) is a cyclic Galois covering if and only

if s divides p — 1. In particular, X](jnz p—1)— X](jm) s cyclic and Galois with

automorphism group isomorphic to A/(F;Q/{:tl}) ~ ).

Proof. If pt m, A ~ A x (&) is abelian, hence (i) is clear. As for (ii), if p | m one
checks that ©(s)(Wy,) is normal in A(™ if and only if ?~! € O(s) for all § € A. O

6.2. The étale property. Jordan showed in [Jor81, Chapter 5] that the maximal étale
quotient of f : Xp, — Xp (the so-called Shimura covering of Xp at p) is the covering
fre1  Xpp((p* —1)/2e,) = Xp, where e, := e,(D) is a positive divisor of (p* — 1)/2

2ep
depending on the arithmetic of Bp. Under our assumption of p being odd, this integer

is given by the recipe (see [Jor81l p. 108])

B B .
n e

where for a quadratic field F', we set (BTD) = 1 if F splits Bp and 0 otherwise. In
particular, for a positive divisor s of (p? — 1)/2, the covering fs : Xp,(s) — Xp is
étaleﬂ if and only if s divides (p? — 1)/2e,. Notice that e, divides 6.

Let s > 1 be a positive integer dividing (p? —1)/2, and assume that s | (p?>—1)/2e,, s0
that fs : Xpp(s) = Xp is a cyclic étale Galois covering of degree s. Assume moreover
that the induced covering fs(m) : th;) (s) — Xj(jm) is Galois. By virtue of Corollary

this is equivalent to assuming that s divides (p? — 1)/2n, where

ep if ptm,
n:= ‘
lem(ep, (p+1)/2) if p[m.
Observe that when p divides m the cyclic subgroup ©((p? — 1)/2n) of A contains

the subgroup ©(p — 1) ~ ]F;z/ {£1}, which by Lemma consists of all the diamond
automorphisms in A that act trivially on the set of connected components of Xp , xqC.

2In a more technical parlance, fs : Xpp(s) = Xp is an Xp-torsor under the constant group scheme
Z]SZ.
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Theorem 6.2. Let s be a positive integer dividing (p> — 1)/2n. The cyclic Galois

covering fém) : th;)(s) — X](:)m) is €tale if either of the following conditions holds:

(i) wm is fized point free,
(i) ptm, (%) =1 and s divides p — 1,
m/py _
(ili) p [ m and (5F) = =1, or
(iv) s divides (p* —1)/4n.
Proof. Write f' : Xp, — Xp,((p* — 1)/2n). By the definition of n, the covering

fs : Xpop(s) = Xp is étale, and the induced covering fsm) - XM () o5 XM is Qalois.

When w, is fixed point free, the projection map 7, : Xp — Xl()m) is étale, hence the
commutative diagram

XD,p(S) R Xp

T

X (s) — x5
implies that fs(m) : ngz (s) — Xém) is étale as well.
Now we show that fs(m) is also étale if either (ii), (iii) or (iv) holds, and we can

assume that wy, has fixed points. So let Q € Xp(Q) be a fixed point of w,,, and let

P € Xp,(Q) be any point such that f(P) = Q. Then,
f(wm(P)) = wm(f(P)) = wm(Q) =Q,

thus @y, acts on the fibre f~1(Q). Since f : Xp, — Xp is Galois, there exists a
diamond automorphism ég € A, which depends only on (@, such that

(11) Om(P) = dg(P) for every P € f1(Q).
In particular, 6(%2(P) = W2 (P) = P for every P € f~4Q). It follows that 522 €

O((p?—1)/2n) C O(s), and hence it induces the trivial automorphism of the covering f; :
Xpp(s) = Xp. Otherwise, the relation 653 (f'(P)) = f'(P) in Xpp((p* —1)/2n), where
dg is the class of d¢g in A/O((p?—1)/2n), would prevent the action of A/O((p?—1)/2n)

from being transitive on f;21,1 (@), and this would contradict the fact that f,2_, is an
T

2n
étale Galois covering. If s divides (p? — 1)/4n, we have
O((p* —1)/2n) C O((p* - 1)/4n) C O(s),
thus it actually holds dg € O(s). Repeating the argument for all the fixed points

Q € Xp(Q) of wy,, we deduce that all the corresponding diamond automorphisms d¢g
satisfying belong to ©(s). Therefore, every fibre of fs : Xp,(s) = Xp above a
point @ € Xp(Q) with w,,(Q) = @ consists of exactly s = deg(fs) points Py, ..., Ps
which are all fixed by @,,. In particular, the covering fs(m) : X](jnz (s) — X(Dm) is étale
when (iv) holds.

As for conditions (ii) and (iii), first observe that by the discussion in Section the
assumptions (%) =1 and (mT/p) = —1, respectively, are equivalent to saying that @y,
acts trivially on the set of connected components mo(Xp, xg C). Besides, the extra
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hypothesis s | (p — 1) in (ii) and the definition of n in (iii) imply that ©(p — 1) C O(s)
in both cases.

Hence, under condition (ii) or (iii), repeating the above argument the equality
implies that dg acts trivially on the set of connected components of Xp , xg C, since a
diamond automorphism cannot fix only one connected component of Xp , xg C. This

means that dg € O(p — 1) C O(s), thus fém) is an étale covering. O
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