# A few exceptional algebras



Alberto Elduque

Joint meeting of the NZMS, AustMS and AMS Fifty years of Communications in Algebra December 2024

- Kac's 10-dimensional Jordan superalgebra and an exceptional simple modular Lie superalgebra
- 2 Composition superalgebras and more exceptional simple Lie superalgebras
- From algebras to superalgebras via tensor categories

- Kac's 10-dimensional Jordan superalgebra and an exceptional simple modular Lie superalgebra
- 2 Composition superalgebras and more exceptional simple Lie superalgebras
- 3 From algebras to superalgebras via tensor categories

V. Kac obtained in 1977 the classification of the simple finite-dimensional simple Jordan algebras, over algebraically closed fields of characteristic zero, from his classification of simple Lie superalgebras.

### 🔋 V. Kac

Classification of simple ℤ-graded Lie superalgebras and simple Jordan superalgebras. Communications in Algebra 5 (1977), no. 13, 1375-1400. There appeared an exceptional Jordan superalgebra of dimension 10 = 6 + 4:  $K_{10}$ , related to the simple exceptional Lie superalgebra F(4).

 $K_{10}$  is a simple Jordan superalgebra over any field of characteristic  $\neq 2, 3$ .

McCrimmon showed in 2005 that  $K_{10}$  is even more exceptional in characteristic 5:

Over a field of characteristic 5,  $K_{10}$  satisfies the super-version of the Cayley-Hamilton equation of degree 3.

### Tits construction (1966)

- C a composition algebra (analogue of real numbers, complex numbers, quaternions and octonions),
- $\mathcal{J}$  a central simple Jordan algebra satisfying the Cayley-Hamilton equation of degree 3,

then

$$\mathcal{T}(\mathcal{C},\mathcal{J}) = \mathfrak{der}(\mathcal{C}) \oplus (\mathcal{C}_0 \otimes \mathcal{J}_0) \oplus \mathfrak{der}(\mathcal{J})$$

is a Lie algebra  $(char \neq 2, 3)$  under a suitable Lie bracket:

$$[a\otimes x,b\otimes y]=\frac{1}{3}tr(xy)D_{a,b}+\left([a,b]\otimes \left(xy-\frac{1}{3}tr(xy)1\right)\right)+2t(ab)d_{x,y}.$$

| $\mathcal{T}(\mathcal{C},\mathcal{J})$ | $H_3(\mathbb{F})$ | $H_3(\mathcal{K})$ | $H_3(\mathcal{Q})$ | $H_3(\mathcal{C})$ |
|----------------------------------------|-------------------|--------------------|--------------------|--------------------|
| $\mathbb{F}$                           | $A_1$             | $A_2$              | $C_3$              | $F_4$              |
| ${\cal K}$                             | $A_2$             | $A_2 \oplus A_2$   | $A_5$              | $E_6$              |
| $\mathcal{Q}$                          | $C_3$             | $A_5$              | $D_6$              | $E_7$              |
| ${\mathcal C}$                         | $F_4$             | $E_6$              | $E_7$              | $E_8$              |

( $\mathcal{K}$  is a quadratic étale algebra,  $\mathcal{Q}$  a quaternion algebra, and  $\mathcal{C}$  a Cayley algebra.)

In characteristic 5, the Jordan superalgebra  $K_{10}$  can be plugged in Tits construction:

$$\mathcal{T}(\mathcal{C}, K_{10}) = \mathfrak{der}(\mathcal{C}) \oplus (\mathcal{C}_0 \otimes (K_{10})_0) \oplus \mathfrak{der}(K_{10})$$

to get an exceptional simple Lie superalgebra of dimension 87 = 55 + 32:  $\mathfrak{el}(5;5)$ .

- Kac's 10-dimensional Jordan superalgebra and an exceptional simple modular Lie superalgebra
- Composition superalgebras and more exceptional simple Lie superalgebras

3 From algebras to superalgebras via tensor categories

#### Definition

A superalgebra  $\mathcal{C}=\mathcal{C}_{\bar{0}}\oplus\mathcal{C}_{\bar{1}}$ , endowed with a regular quadratic superform  $q=(q_{\bar{0}},b),$  called the *norm*, is said to be a **composition superalgebra** in case

$$\begin{split} &\mathsf{q}_{\bar{0}}(x_{\bar{0}}y_{\bar{0}}) = \mathsf{q}_{\bar{0}}(x_{\bar{0}})q_{\bar{0}}(y_{\bar{0}}), \\ &\mathsf{b}(x_{\bar{0}}y,x_{\bar{0}}z) = \mathsf{q}_{\bar{0}}(x_{\bar{0}})\mathsf{b}(y,z) = \mathsf{b}(yx_{\bar{0}},zx_{\bar{0}}), \\ &\mathsf{b}(xy,zt) + (-1)^{|x||y|+|x||z|+|y||z|}\mathsf{b}(zy,xt) = (-1)^{|y||z|}\mathsf{b}(x,z)\mathsf{b}(y,t), \end{split}$$

All the composition (super)algebras will be assumed to be unital.

 $B(1,2) = \mathbb{F}1 \oplus V,$ 

 $\operatorname{char} \mathbb{F} = 3$ , V a two-dimensional vector space with a nonzero alternating bilinear form  $\langle . | . \rangle$ , with

 $1x = x1 = x, \quad uv = \langle u | v \rangle 1, \qquad \mathsf{q}_{\bar{0}}(1) = 1, \quad \mathsf{b}(u,v) = \langle u | v \rangle,$ 

is a composition superalgebra.

 $B(4,2) = \operatorname{End}_{\mathbb{F}}(V) \oplus V,$ 

 $\mathbb{F}$  and V as before,  $\operatorname{End}_{\mathbb{F}}(V)$  is equipped with the symplectic involution  $f \mapsto \overline{f}$ ,  $(\langle f(u) | v \rangle = \langle u | \overline{f}(v) \rangle)$ , the multiplication is given by:

- the usual multiplication (composition of maps) in  $\operatorname{End}_{\mathbb{F}}(V)$ ,
- $v \cdot f = f(v) = \overline{f} \cdot v$  for any  $f \in \operatorname{End}_k(V)$  and  $v \in V$ ,
- $u \cdot v = \langle . | u \rangle v \ (w \mapsto \langle w | u \rangle v) \in \operatorname{End}_{\mathbb{F}}(V)$  for any  $u, v \in V$ ,

and with quadratic superform

$$\mathbf{q}_{\bar{0}}(f) = \det f, \quad \mathbf{b}(u,v) = \langle u | v \rangle,$$

is a composition superalgebra.

#### Theorem

A composition superalgebra is either:

- a composition algebra,
- a  $\mathbb{Z}_2$ -graded composition algebra in characteristic 2,
- isomorphic to either B(1,2) or B(4,2) in characteristic 3.

#### A. Elduque and S. Okubo,

Composition superalgebras. Communications in Algebra **30** (2002), no. 11, 5447–5471. Symmetric construction of Freudenthal Magic Square

Let  ${\mathcal C}$  be a composition algebra over a field  ${\mathbb F}$  of characteristic not 2.

Its triality Lie algebra is

$$\begin{aligned} \mathfrak{tri}(\mathcal{C}) &:= \{ (d_0, d_1, d_2) \in \mathfrak{so}(\mathcal{C})^3 \mid \\ d_0(x \bullet y) &= d_1(x) \bullet y + x \bullet d_2(y) \ \forall x, y \in \mathcal{C} \} \end{aligned}$$

with  $x \bullet y = \overline{x} \overline{y}$ . ( $\overline{x}$  is the canonical involution.)

This is a Lie algebra with componentwise Lie bracket, and the cyclic permutation

$$\theta : (d_0, d_1, d_2) \mapsto (d_2, d_0, d_1)$$

is an automorphism (triality automorphism).

The vector space

$$\mathfrak{g}(\mathcal{C},\mathcal{C}') = (\mathfrak{tri}(\mathcal{C}) \oplus \mathfrak{tri}(\mathcal{C}')) \oplus (\oplus_{i=0}^{2} \iota_{i}(\mathcal{C} \otimes \mathcal{C}')),$$

where C and C' are composition algebras and  $\iota_i(C \otimes C')$  is just a copy of  $C \otimes C'$  (i = 0, 1, 2), becomes a Lie algebra with:

- the Lie bracket in  $\mathfrak{tri}(\mathcal{C})\oplus\mathfrak{tri}(\mathcal{C}')$ ,
- $[(d_0, d_1, d_2), \iota_i(x \otimes x')] = \iota_i(d_i(x) \otimes x'),$

• 
$$[(d'_0,d'_1,d'_2),\iota_i(x\otimes x')] = \iota_i(x\otimes d'_i(x')),$$

### Symmetric construction of Freudenthal magic square

• 
$$[\iota_i(x\otimes x'), \iota_{i+1}(y\otimes y')] = \iota_{i+2}((x \bullet y)\otimes (x' \bullet y')),$$

• 
$$\begin{bmatrix} \iota_i(x \otimes x'), \iota_i(y \otimes y') \end{bmatrix} = \mathsf{q}'(x', y')\theta^i(t_{x,y}) + \mathsf{q}(x, y)\theta'^i(t'_{x',y'}) \in \operatorname{tri}(\mathcal{C}) \oplus \operatorname{tri}(\mathcal{C}'), \\ \text{with } t_{x,y} := \left(s_{x,y}, \frac{1}{2}(r_y l_x - r_x l_y), \frac{1}{2}(l_y r_x - l_x r_y)\right), \text{ and} \\ s_{x,y} : z \mapsto q(x, z)y - q(y, z)x, \ l_x : z \mapsto x \bullet z, \text{ and } r_x : z \mapsto z \bullet x. \end{bmatrix}$$

### Freudenthal magic square

|                    | $\mathfrak{g}(\mathcal{C},\mathcal{C}')$ | 1     | 2                                                             | 4     | 8     |
|--------------------|------------------------------------------|-------|---------------------------------------------------------------|-------|-------|
|                    | 1                                        | $A_1$ | $egin{array}{c} A_2 \ A_2 \oplus A_2 \ A_5 \ E_6 \end{array}$ | $C_3$ | $F_4$ |
| $\dim \mathcal{C}$ | 2                                        | $A_2$ | $A_2 \oplus A_2$                                              | $A_5$ | $E_6$ |
| unit               | 4                                        | $C_3$ | $A_5$                                                         | $D_6$ | $E_7$ |
|                    | 8                                        | $F_4$ | $E_6$                                                         | $E_7$ | $E_8$ |

 $\dim \mathcal{C}'$ 

(Vinberg, Allison-Faulkner, Barton-Sudbery, Landsberg-Manivel, E.)

### Extended Freudenthal magic square in characteristic $\boldsymbol{3}$

The previous symmetric construction of Freudenthal magic square works if the composition algebras are replaced by composition superalgebras:

| $\mathfrak{g}(\mathcal{C},\mathcal{C}')$ | $\mathbb{F}$ | ${\cal K}$                     | $\mathcal{Q}$ | $\mathcal{C}$ | B(1,2) | B(4,2) |
|------------------------------------------|--------------|--------------------------------|---------------|---------------|--------|--------|
| $\mathbb{F}$                             | $A_1$        | $\tilde{A}_2$                  | $C_3$         | $F_4$         | 6 8    | 21 14  |
| ${\cal K}$                               |              | $	ilde{A}_2 \oplus 	ilde{A}_2$ | $\tilde{A}_5$ | $\tilde{E}_6$ | 11 14  | 35 20  |
| $\mathcal{Q}$                            |              |                                | $D_6$         | $E_7$         | 24 26  | 66 32  |
| $\mathcal{C}$                            |              |                                |               | $E_8$         | 55 50  | 133 56 |
| B(1,2)                                   |              |                                |               |               | 21 16  | 36 40  |
| B(4,2)                                   |              |                                |               |               |        | 78 64  |

(Cunha-E. 2007)

### Lie superalgebras in the extended magic square

|               | B(1,2)                                                                                          | B(4,2)                               |
|---------------|-------------------------------------------------------------------------------------------------|--------------------------------------|
| $\mathbb{F}$  | $\mathfrak{psl}_{2,2}$                                                                          | $\mathfrak{sp}_6 \oplus (14)$        |
| ${\cal K}$    | $\left(\mathfrak{sl}_2\oplus\mathfrak{pgl}_3 ight)\oplus\left((2)\otimes\mathfrak{psl}_3 ight)$ | $\mathfrak{pgl}_6\oplus(20)$         |
| $\mathcal{Q}$ | $(\mathfrak{sl}_2\oplus\mathfrak{sp}_6)\oplus((2)\otimes(13))$                                  | $\mathfrak{so}_{12}\oplus spin_{12}$ |
| $\mathcal{C}$ | $(\mathfrak{sl}_2\oplus\mathfrak{f}_4)\oplus((2)\otimes(25))$                                   | $\mathfrak{e}_7 \oplus (56)$         |
| B(1,2)        | $\mathfrak{so}_7 \oplus 2spin_7$                                                                | $\mathfrak{sp}_8 \oplus (40)$        |
| B(4,2)        | $\mathfrak{sp}_8 \oplus (40)$                                                                   | $\mathfrak{so}_{13}\oplus spin_{13}$ |

In this way one obtains a whole bunch of new simple exceptional modular simple Lie superalgebras in characteristic 3.

Together with  $\mathfrak{el}(5;5)$  these account for most of the exceptional simple contragredient Lie superalgebras in low characteristics ( $\neq 2$ ).

- Kac's 10-dimensional Jordan superalgebra and an exceptional simple modular Lie superalgebra
- 2 Composition superalgebras and more exceptional simple Lie superalgebras

From algebras to superalgebras via tensor categories

Let  $\mathbb{F}$  be a field of characteristic p.

The category Rep  $C_p$ , whose objects are the finite-dimensional representations of the finite group  $C_p$  over  $\mathbb{F}$ , and whose morphisms are the equivariant homomorphisms, is a **symmetric tensor category**, with the usual tensor product of vector spaces and the braiding given by the usual swap:  $X \otimes Y \to Y \otimes X$ ,  $x \otimes y \mapsto y \otimes x$ .

A homomorphism  $f \in \operatorname{Hom}_{\operatorname{Rep} C_p}(X, Y)$  is said to be **negligible** if for all homomorphisms  $g \in \operatorname{Hom}_{\operatorname{Rep} C_p}(Y, X)$ ,  $\operatorname{tr}(fg) = 0$  holds. Denote by  $\operatorname{N}(X, Y)$  the subspace of negligible homomorphisms in  $\operatorname{Hom}_{\operatorname{Rep} C_p}(X, Y)$ .

Negligible homomorphisms form a tensor ideal and this allows us to define the **semisimplification** of  $\text{Rep }C_p$ , which is the Verlinde category  $\text{Ver}_p$ , whose objects are the objects of  $\text{Rep }C_p$ , but whose morphisms are given by

$$\operatorname{Hom}_{\operatorname{Ver}_p}(X,Y) := \operatorname{Hom}_{\operatorname{Rep}}_{\operatorname{C}_p}(X,Y)/\operatorname{N}(X,Y).$$

This is again a symmetric tensor category, with the tensor product in Rep  $C_p$ , and the braiding induced by the one in Rep  $C_p$ . Moreover, it is semisimple.

#### Theorem

The category sVec of vector superspaces is equivalent to the full tensor subcategory of  $\operatorname{Ver}_p$  generated by the one-dimensional and (p-1)-dimensional irreducible objects in  $\operatorname{Rep} C_p$ .

#### Consequence

Any order p automorphism of an algebra  $\mathcal{A}$  allows to see  $\mathcal{A}$  as an algebra in Rep C<sub>p</sub>, which induces an algebra in the categories Ver<sub>p</sub> and in sVec. But an algebra in the category sVec is a superalgebra. This superalgebra is said to be obtained by semisimplification of  $\mathcal{A}$ . The exceptional split central simple Jordan algebra, or Albert algebra, over a field of characteristic 5 is endowed with a suitable automorphism of order 5.

### Theorem (E.-Etingof-Kannan 2024)

Over a field of characteristic 5, Kac's superalgebra  $K_{10}$  is obtained by semisimplification of the Albert algebra.

#### Corollary

The exceptional modular simple Lie superalgebra  $\mathfrak{el}(5;5)$  is obtained by semisimplification of the exceptional simple Lie algebra  $E_8$ .

The algebra of (split) octonions over fields of characteristic 3 is endowed with some very specific order 3 automorphisms.

### Theorem (Daza-E.-Sayin 2024)

Over a field of characteristic 3, the composition superalgebras B(1,2) and B(4,2) are both obtained by semisimplification of the octonions.

#### Corollary

The exceptional modular simple Lie superalgebras in the extended Freudenthal magic square are all obtained by semisimplification of the exceptional simple Lie algebra  $E_8$ .

## Thank you!