The Albert algebra as a twisted group algebra

Alberto Elduque

Universidad de Zaragoza

Nonassociative Algebra in Action: Past, Present, and Future Perspectives

A conference in honor of Professor Kevin McCrimmon

Among the fine gradings on the Albert algebra \mathbb{A} , there appears a grading over \mathbb{Z}_3^3 , in which all the homogeneous components are 1-dimensional.

Among the fine gradings on the Albert algebra \mathbb{A} , there appears a grading over \mathbb{Z}_3^3 , in which all the homogeneous components are 1-dimensional.

This means that the Albert algebra \mathbb{A} may be described as the group algebra $\mathbb{F}[\mathbb{Z}_3^3]$, with "twisted" multiplication

$$e^{x} \cdot e^{y} = \sigma(x, y)e^{x+y},$$

for a suitable map $\sigma : \mathbb{Z}_3^3 \times \mathbb{Z}_3^3 \to \mathbb{F}$.

Among the fine gradings on the Albert algebra \mathbb{A} , there appears a grading over \mathbb{Z}_3^3 , in which all the homogeneous components are 1-dimensional.

This means that the Albert algebra \mathbb{A} may be described as the group algebra $\mathbb{F}[\mathbb{Z}_3^3]$, with "twisted" multiplication

$$e^{x} \cdot e^{y} = \sigma(x, y)e^{x+y},$$

for a suitable map $\sigma : \mathbb{Z}_3^3 \times \mathbb{Z}_3^3 \to \mathbb{F}$.

In this talk, the classification of fine gradings on the Albert algebra will be reviewed, and it will be shown that σ above can be chosen in a very symmetrical and simple form, which appeared for the first time in work of Griess (1990).

4 The Albert algebra as a twisted group algebra

2 Octonions

The Albert algebra as a twisted group algebra

G abelian group, $\mathcal A$ algebra over a field $\mathbb F.$

G-grading on \mathcal{A} :

$$\mathcal{A} = \oplus_{g \in G} \mathcal{A}_g,$$

 $\mathcal{A}_g \mathcal{A}_h \subseteq \mathcal{A}_{gh} \quad \forall g, h \in G.$

Example: Pauli matrices

 $\mathcal{A}=\mathsf{Mat}_n(\mathbb{F})$

$$X = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \epsilon & 0 & \dots & 0 \\ 0 & 0 & \epsilon^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \epsilon^{n-1} \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

(\$\epsilon\$ a primitive \$n\$th root of 1\$)
$$X^n = 1 = Y^n, \qquad YX = \epsilon XY$$
$$\mathcal{A} = \oplus_{(\overline{\imath}, \overline{\jmath}) \in \mathbb{Z}_n \times \mathbb{Z}_n} \mathcal{A}_{(\overline{\imath}, \overline{\jmath})}, \qquad \mathcal{A}_{(\overline{\imath}, \overline{\jmath})} = \mathbb{F} X^i Y^j.$$

Example: Pauli matrices

 $\mathcal{A}=\mathsf{Mat}_n(\mathbb{F})$

$$X = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \epsilon & 0 & \dots & 0 \\ 0 & 0 & \epsilon^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \epsilon^{n-1} \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

(\epsilon a primitive *n*th root of 1)
$$X^n = 1 = Y^n, \qquad YX = \epsilon XY$$
$$\mathcal{A} = \oplus_{(\overline{\imath}, \overline{\jmath}) \in \mathbb{Z}_n \times \mathbb{Z}_n} \mathcal{A}_{(\overline{\imath}, \overline{\jmath})}, \qquad \mathcal{A}_{(\overline{\imath}, \overline{\jmath})} = \mathbb{F} X^i Y^j.$$

 \mathcal{A} becomes a graded division algebra.

Cayley-Dickson process:

$$\begin{split} \mathbb{K} &= \mathbb{F} \oplus \mathbb{F}i, \qquad \quad i^2 = -1, \\ \mathbb{H} &= \mathbb{K} \oplus \mathbb{K}j, \qquad \quad j^2 = -1, \\ \mathbb{O} &= \mathbb{H} \oplus \mathbb{H}I, \qquad \quad l^2 = -1, \end{split}$$

 $\mathbb O$ is $\mathbb Z_2^3\text{-}\mathsf{graded}$ with

 $\deg(i) = (\bar{1}, \bar{0}, \bar{0}), \quad \deg(j) = (\bar{0}, \bar{1}, \bar{0}), \quad \deg(l) = (\bar{0}, \bar{0}, \bar{1}).$

Cartan grading: g = h ⊕ (⊕_{α∈Φ}g_α) (root space decomposition of a semisimple complex Lie algebra). This is a grading over Zⁿ, n = rank g.

- Cartan grading: g = h ⊕ (⊕_{α∈Φ}g_α) (root space decomposition of a semisimple complex Lie algebra). This is a grading over Zⁿ, n = rank g.
- Jordan systems $\leftrightarrow \mathbb{Z}$ -gradings

$$\mathfrak{g} = \mathfrak{g}_{-n} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n.$$

- Cartan grading: g = h ⊕ (⊕_{α∈Φ}g_α) (root space decomposition of a semisimple complex Lie algebra). This is a grading over Zⁿ, n = rank g.
- Jordan systems $\leftrightarrow \mathbb{Z}$ -gradings

$$\mathfrak{g} = \mathfrak{g}_{-n} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n.$$

- Cartan grading: g = h ⊕ (⊕_{α∈Φ}g_α) (root space decomposition of a semisimple complex Lie algebra). This is a grading over Zⁿ, n = rank g.
- Jordan systems $\leftrightarrow \mathbb{Z}$ -gradings

 $\mathfrak{g} = \mathfrak{g}_{-n} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n.$

I. Kantor: "There are no Jordan algebras, there are only Lie algebras."

- Cartan grading: g = h ⊕ (⊕_{α∈Φ}g_α) (root space decomposition of a semisimple complex Lie algebra). This is a grading over Zⁿ, n = rank g.
- Jordan systems $\leftrightarrow \mathbb{Z}$ -gradings

$$\mathfrak{g} = \mathfrak{g}_{-n} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n.$$

I. Kantor: "There are no Jordan algebras, there are only Lie algebras."

K. McCrimmon: "Of course, this can be turned around: nine times out of ten, when you open up a Lie algebra you find a Jordan algebra inside which makes it tick." In what follows:

• $\mathbb F$ will denote an algebraically closed ground field, char $\mathbb F\neq 2.$

• The dimension of the algebras considered will always be finite.

• Γ is a *refinement* of Γ' if for any $g \in G$ there is a $g' \in G'$ such that $\mathcal{A}_g \subseteq \mathcal{A}_{g'}$. Then Γ' is a *coarsening* of Γ .

- Γ is a *refinement* of Γ' if for any g ∈ G there is a g' ∈ G' such that A_g ⊆ A_{g'}.
 Then Γ' is a *coarsening* of Γ.
- Γ is *fine* if it admits no proper refinement.

- Γ is a *refinement* of Γ' if for any g ∈ G there is a g' ∈ G' such that A_g ⊆ A_{g'}.
 Then Γ' is a *coarsening* of Γ.
- Γ is *fine* if it admits no proper refinement.
- Γ and Γ' are *equivalent* if there is an automorphism φ ∈ Aut A such that for any g ∈ G there is a g' ∈ G' with φ(A_g) = A'_{g'}.

The Albert algebra as a twisted group algebra

Theorem (E. 1998)

Up to equivalence, the fine gradings on ${\mathbb O}$ are

• the Cartan grading (weight space decomposition relative to a Cartan subalgebra of $g_2 = \mathfrak{Der}(\mathbb{O})$), and

• the \mathbb{Z}_2^3 -grading given by the Cayley-Dickson doubling process.

Sketch of proof:

The Cayley-Hamilton equation: x² - n(x, 1)x + n(x)1 = 0, implies that the norm has a well behavior relative to the grading:

$$n(\mathbb{O}_g)=0$$
 unless $g^2=e, \quad n(\mathbb{O}_g,\mathbb{O}_h)=0$ unless $gh=e.$

Sketch of proof:

The Cayley-Hamilton equation: x² - n(x, 1)x + n(x)1 = 0, implies that the norm has a well behavior relative to the grading:

$$n(\mathbb{O}_g)=0$$
 unless $g^2=e, \quad n(\mathbb{O}_g,\mathbb{O}_h)=0$ unless $gh=e.$

If there is a g ∈ G in the support with either g ≠ e ≠ g² or dim O_g ≥ 2, there are elements x ∈ O_g, y ∈ O_{g⁻¹} with n(x) = 0 = n(y), n(x, y) = 1. Then e₁ = xȳ and e₂ = yx̄ are orthogonal primitive idempotents in O_e, and one uses the corresponding Peirce decomposition to check that, up to equivalence, our grading is the Cartan grading.

Sketch of proof:

The Cayley-Hamilton equation: x² - n(x, 1)x + n(x)1 = 0, implies that the norm has a well behavior relative to the grading:

$$n(\mathbb{O}_g)=0$$
 unless $g^2=e, \quad n(\mathbb{O}_g,\mathbb{O}_h)=0$ unless $gh=e.$

- If there is a g ∈ G in the support with either g ≠ e ≠ g² or dim D_g ≥ 2, there are elements x ∈ D_g, y ∈ D_{g⁻¹} with n(x) = 0 = n(y), n(x, y) = 1. Then e₁ = xȳ and e₂ = yx̄ are orthogonal primitive idempotents in D_e, and one uses the corresponding Peirce decomposition to check that, up to equivalence, our grading is the Cartan grading.
- Otherwise dim $\mathbb{O}_g = 1$ and $g^2 = e$ for any g in the support of the grading, and we get the \mathbb{Z}_2^3 -grading.

Cartan grading on the Octonions

 $\ensuremath{\mathbb{O}}$ contains canonical bases:

$$\mathcal{B} = \{e_1, e_2, u_1, u_2, u_3, v_1, v_2, v_3\}$$

with

$$\begin{array}{l} n(e_1,e_2)=n(u_i,v_i)=1, \quad \text{otherwise 0.} \\ e_1^2=e_1, \quad e_2^2=e_2, \\ e_1u_i=u_ie_2=u_i, \quad e_2v_i=v_ie_1=v_i, \quad (i=1,2,3) \\ u_iv_i=-e_1, \quad v_iu_i=-e_2, \quad (i=1,2,3) \\ u_iu_{i+1}=-u_{i+1}u_i=v_{i+2}, \ v_iv_{i+1}=-v_{i+1}v_i=u_{i+2}, \ \text{(indices modulo 3)} \\ \text{otherwise 0.} \end{array}$$

Cartan grading on the Octonions

 $\mathbb O$ contains canonical bases:

$$\mathcal{B} = \{e_1, e_2, u_1, u_2, u_3, v_1, v_2, v_3\}$$

with

$$\begin{array}{l} n(e_1,e_2)=n(u_i,v_i)=1, \quad \text{otherwise 0.} \\ e_1^2=e_1, \quad e_2^2=e_2, \\ e_1u_i=u_ie_2=u_i, \quad e_2v_i=v_ie_1=v_i, \quad (i=1,2,3) \\ u_iv_i=-e_1, \quad v_iu_i=-e_2, \quad (i=1,2,3) \\ u_iu_{i+1}=-u_{i+1}u_i=v_{i+2}, \quad v_iv_{i+1}=-v_{i+1}v_i=u_{i+2}, \ \text{(indices modulo 3)} \\ \text{otherwise 0.} \end{array}$$

The Cartan grading is determined by:

$$\deg u_1 = -\deg v_1 = (1,0), \quad \deg u_2 = -\deg v_2 = (0,1),$$

Theorem (Albuquerque-Majid 1999)

The octonion algebra is the twisted group algebra

$$\mathbb{O} = \mathbb{F}_{\sigma}[\mathbb{Z}_2^3],$$

with

$$\sigma(\alpha,\beta) = (-1)^{\psi(\alpha,\beta)},$$

$$\psi(\alpha,\beta) = \beta_1 \alpha_2 \alpha_3 + \alpha_1 \beta_2 \alpha_3 + \alpha_1 \alpha_2 \beta_3 + \sum_{i \le j} \alpha_i \beta_j.$$

Theorem (Albuquerque-Majid 1999)

The octonion algebra is the twisted group algebra

$$\mathbb{O} = \mathbb{F}_{\sigma}[\mathbb{Z}_2^3],$$

with

$$\sigma(\alpha,\beta) = (-1)^{\psi(\alpha,\beta)},$$

$$\psi(\alpha,\beta) = \beta_1 \alpha_2 \alpha_3 + \alpha_1 \beta_2 \alpha_3 + \alpha_1 \alpha_2 \beta_3 + \sum_{i \le j} \alpha_i \beta_j.$$

This allows to consider the algebra of octonions as an "associative algebra in a suitable category".

The Albert algebra as a twisted group algebra

$$\mathbb{A} = H_3(\mathbb{O}, *) = \left\{ \begin{pmatrix} \alpha_1 & \bar{a}_3 & a_2 \\ a_3 & \alpha_2 & \bar{a}_1 \\ \bar{a}_2 & a_1 & \alpha_3 \end{pmatrix} \mid \alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}, \ a_1, a_2, a_3 \in \mathbb{O} \right\}$$

 $= \mathbb{F} E_1 \oplus \mathbb{F} E_2 \oplus \mathbb{F} E_3 \oplus \iota_1(\mathbb{O}) \oplus \iota_2(\mathbb{O}) \oplus \iota_3(\mathbb{O}),$

where

$$E_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$\iota_{1}(a) = 2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \overline{a} \\ 0 & a & 0 \end{pmatrix}, \quad \iota_{2}(a) = 2 \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ \overline{a} & 0 & 0 \end{pmatrix}, \quad \iota_{3}(a) = 2 \begin{pmatrix} 0 & \overline{a} & 0 \\ a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

The multiplication in A is given by $X \circ Y = \frac{1}{2}(XY + YX)$.

Then E_i are orthogonal idempotents with $E_1 + E_2 + E_3 = 1$. The rest of the products are as follows:

$$E_{i} \circ \iota_{i}(a) = 0, \quad E_{i+1} \circ \iota_{i}(a) = \frac{1}{2}\iota_{i}(a) = E_{i+2} \circ \iota_{i}(a),$$
$$\iota_{i}(a) \circ \iota_{i+1}(b) = \iota_{i+2}(\bar{a}\bar{b}), \quad \iota_{i}(a) \circ \iota_{i}(b) = 2n(a,b)(E_{i+1} + E_{i+2}),$$

for any $a, b \in \mathbb{O}$, with i = 1, 2, 3 taken modulo 3.

\mathbb{Z}_2^5 -grading:

 $\mathbb A$ is naturally $\mathbb Z_2^2\text{-}\mathsf{graded}$ with

$$\mathbb{A}_{(\bar{0},\bar{0})} = \mathbb{F}E_1 + \mathbb{F}E_2 + \mathbb{F}E_3,$$
$$\mathbb{A}_{(\bar{1},\bar{0})} = \iota_1(\mathbb{O}), \qquad \mathbb{A}_{(\bar{0},\bar{1})} = \iota_2(\mathbb{O}), \qquad \mathbb{A}_{(\bar{1},\bar{1})} = \iota_3(\mathbb{O}).$$

\mathbb{Z}_2^5 -grading:

 $\mathbb A$ is naturally $\mathbb Z_2^2\text{-}\mathsf{graded}$ with

$$\begin{split} \mathbb{A}_{(\bar{0},\bar{0})} &= \mathbb{F}E_1 + \mathbb{F}E_2 + \mathbb{F}E_3, \\ \mathbb{A}_{(\bar{1},\bar{0})} &= \iota_1(\mathbb{O}), \qquad \mathbb{A}_{(\bar{0},\bar{1})} = \iota_2(\mathbb{O}), \qquad \mathbb{A}_{(\bar{1},\bar{1})} = \iota_3(\mathbb{O}). \end{split}$$

This $\mathbb{Z}_2^2\text{-}grading$ may be combined with the fine $\mathbb{Z}_2^3\text{-}grading$ on \mathbb{O} to obtain a fine $\mathbb{Z}_2^5\text{-}grading:$

$$\deg E_i = (\bar{0}, \bar{0}, \bar{0}, \bar{0}, \bar{0}), \ i = 1, 2, 3,$$
$$\deg \iota_1(x) = (\bar{1}, \bar{0}, \deg x), \ \deg \iota_2(x) = (\bar{0}, \bar{1}, \deg x), \ \deg \iota_3(x) = (\bar{1}, \bar{1}, \deg x).$$

 $\mathbb{Z}\times\mathbb{Z}_2^3\text{-}\text{grading:}$

Take an element $\textbf{i}\in\mathbb{F}$ with $\textbf{i}^2=-1$ and consider the following elements in $\mathbb{A}:$

$$E = E_1, \quad \widetilde{E} = 1 - E = E_2 + E_3,$$

$$\nu(a) = \mathbf{i}\iota_1(a) \quad \text{for all} \quad a \in \mathbb{O}_0,$$

$$\nu_{\pm}(x) = \iota_2(x) \pm \mathbf{i}\iota_3(\bar{x}) \quad \text{for all} \quad x \in \mathbb{O},$$

$$S^{\pm} = E_3 - E_2 \pm \frac{\mathbf{i}}{2}\iota_1(1).$$

 \mathbb{A} is then 5-graded:

$$\mathbb{A} = \mathbb{A}_{-2} \oplus \mathbb{A}_{-1} \oplus \mathbb{A}_0 \oplus \mathbb{A}_1 \oplus \mathbb{A}_2,$$

with $\mathbb{A}_{\pm 2} = \mathbb{F}S^{\pm}$, $\mathbb{A}_{\pm 1} = \nu_{\pm}(\mathbb{O})$, and $\mathbb{A}_0 = \mathbb{F}E \oplus \left(\mathbb{F}\widetilde{E} \oplus \nu(\mathbb{O}_0)\right)$.

$\mathbb{Z}\times\mathbb{Z}_2^3\text{-}\text{grading:}$

The $\mathbb{Z}_2^3\text{-}\mathsf{grading}$ on $\mathbb O$ combines with this $\mathbb Z\text{-}\mathsf{grading}$

$$\mathbb{A} = \mathbb{F}S^- \oplus \nu^-(\mathbb{O}) \oplus \mathbb{A}_0 \oplus \nu^+(\mathbb{O}) \oplus \mathbb{F}S^+$$

to give a fine $\mathbb{Z}\times\mathbb{Z}_2^3\text{-}\mathsf{grading}$ as follows:

deg
$$S^{\pm} = (\pm 2, \bar{0}, \bar{0}, \bar{0}),$$

deg $\nu_{\pm}(x) = (\pm 1, \deg x),$
deg $E = 0 = \deg \widetilde{E},$
deg $\nu(a) = (0, \deg a),$

for homogeneous elements $x \in \mathbb{O}$ and $a \in \mathbb{O}_0$.

$$\mathbb{Z}_3^3$$
-grading (char $\mathbb{F} \neq 3$):

Consider the order three automorphism τ of \mathbb{O} :

$$au(e_i) = e_i, \ i = 1, 2, \quad au(u_j) = u_{j+1}, \ au(v_j) = v_{j+1}, \ j = 1, 2, 3,$$

and define a new multiplication on \mathbb{O} :

$$x * y = \tau(\bar{x})\tau^2(\bar{y}).$$

$$\mathbb{Z}_3^3$$
-grading (char $\mathbb{F} \neq 3$):

Consider the order three automorphism τ of \mathbb{O} :

$$au(e_i) = e_i, \ i = 1, 2, \quad au(u_j) = u_{j+1}, \ au(v_j) = v_{j+1}, \ j = 1, 2, 3,$$

and define a new multiplication on \mathbb{O} :

$$x * y = \tau(\bar{x})\tau^2(\bar{y}).$$

This is the *Okubo algebra*, which is \mathbb{Z}_3^2 -graded by setting

deg
$$e_1 = (\bar{1}, \bar{0})$$
 and deg $u_1 = (\bar{0}, \bar{1})$.

$$\mathbb{Z}_3^3$$
-grading (char $\mathbb{F} \neq 3$):

Define $\tilde{\iota}_i(x) = \iota_i(\tau^i(x))$ for all i = 1, 2, 3 and $x \in \mathbb{O}$. Then the multiplication in the Albert algebra

$$\mathcal{A} = \oplus_{i=1}^{3} (\mathbb{F} E_{i} \oplus \tilde{\iota}_{i}(\mathbb{O}))$$

becomes:

$$E_{i}^{\circ 2} = E_{i}, \quad E_{i} \circ E_{i+1} = 0,$$

$$E_{i} \circ \tilde{\iota}_{i}(x) = 0, \quad E_{i+1} \circ \tilde{\iota}_{i}(x) = \frac{1}{2}\tilde{\iota}_{i}(x) = E_{i+2} \circ \tilde{\iota}_{i}(x),$$

$$\tilde{\iota}_{i}(x) \circ \tilde{\iota}_{i+1}(y) = \tilde{\iota}_{i+2}(x * y), \quad \tilde{\iota}_{i}(x) \circ \tilde{\iota}_{i}(y) = 2n(x, y)(E_{i+1} + E_{i+2}),$$

for i = 1, 2, 3 and $x, y \in \mathbb{O}$.

\mathbb{Z}_{3}^{3} -grading (char $\mathbb{F} \neq 3$):

Assume now char $\mathbb{F} \neq 3$. Then the \mathbb{Z}_3^2 -grading on the Okubo algebra is determined by two commuting order 3 automorphisms $\varphi_1, \varphi_2 \in Aut(\mathbb{O}, *)$:

$$\begin{aligned} \varphi_1(e_1) &= \omega e_1, \qquad \varphi_1(u_1) = u_1, \\ \varphi_2(e_1) &= e_1, \qquad \varphi_2(u_1) = \omega u_1, \end{aligned}$$

where ω is a primitive third root of unity in \mathbb{F} .

\mathbb{Z}_{3}^{3} -grading (char $\mathbb{F} \neq 3$):

The commuting order 3 automorphisms φ_1 , φ_2 of $(\mathbb{O}, *)$ extend to commuting order 3 automorphisms of \mathbb{A} :

$$\varphi_j(E_i) = E_i, \quad \varphi_j(\tilde{\iota}_i(x)) = \tilde{\iota}_i(\varphi_j(x)).$$

On the other hand, the linear map $\varphi_3 \in \mathsf{End}(\mathcal{A})$ defined by

$$\varphi_3(E_i) = E_{i+1}, \quad \varphi_3(\tilde{\iota}_i(x)) = \tilde{\iota}_{i+1}(x),$$

is another order 3 automorphism, which commutes with φ_1 and φ_2 .

\mathbb{Z}_{3}^{3} -grading (char $\mathbb{F} \neq 3$):

The commuting order 3 automorphisms φ_1 , φ_2 of $(\mathbb{O}, *)$ extend to commuting order 3 automorphisms of \mathbb{A} :

$$\varphi_j(E_i) = E_i, \quad \varphi_j(\tilde{\iota}_i(x)) = \tilde{\iota}_i(\varphi_j(x)).$$

On the other hand, the linear map $\varphi_3 \in \mathsf{End}(\mathcal{A})$ defined by

$$\varphi_3(E_i) = E_{i+1}, \quad \varphi_3(\tilde{\iota}_i(x)) = \tilde{\iota}_{i+1}(x),$$

is another order 3 automorphism, which commutes with φ_1 and φ_2 .

The subgroup of Aut(A) generated by $\varphi_1, \varphi_2, \varphi_3$ is isomorphic to \mathbb{Z}_3^3 and induces a \mathbb{Z}_3^3 -grading on A.

\mathbb{Z}_{3}^{3} -grading (char $\mathbb{F} \neq 3$):

The commuting order 3 automorphisms φ_1 , φ_2 of $(\mathbb{O}, *)$ extend to commuting order 3 automorphisms of \mathbb{A} :

$$\varphi_j(E_i) = E_i, \quad \varphi_j(\tilde{\iota}_i(x)) = \tilde{\iota}_i(\varphi_j(x)).$$

On the other hand, the linear map $\varphi_3 \in \mathsf{End}(\mathcal{A})$ defined by

$$\varphi_3(E_i) = E_{i+1}, \quad \varphi_3(\tilde{\iota}_i(x)) = \tilde{\iota}_{i+1}(x),$$

is another order 3 automorphism, which commutes with φ_1 and φ_2 .

The subgroup of Aut(A) generated by $\varphi_1, \varphi_2, \varphi_3$ is isomorphic to \mathbb{Z}_3^3 and induces a \mathbb{Z}_3^3 -grading on A.

All the homogeneous components have dimension 1.

Theorem (Draper–Martín-González 2009 (char = 0), E.–Kochetov 2010)

Up to equivalence, the fine gradings of the Albert algebra are:

- The Cartan grading (weight space decomposition relative to a Cartan subalgebra of f₄ = Der(A)).
- The Z⁵₂-grading obtained by combining the natural Z²₂-grading on 3 × 3 hermitian matrices with the fine grading over Z³₂ of O.
- **3** The $\mathbb{Z} \times \mathbb{Z}_2^3$ -grading obtained by combining a 5-grading and the \mathbb{Z}_2^3 -grading on \mathbb{O} .
- The \mathbb{Z}_3^3 -grading with dim $\mathbb{A}_g = 1 \ \forall g \ (\text{char } \mathbb{F} \neq 3)$.

The fine gradings on $\mathfrak{f}_4 = \mathfrak{Der}(\mathbb{A})$ are the ones induced by these.

Theorem (Draper–Martín-González 2009 (char = 0), E.–Kochetov 2010)

Up to equivalence, the fine gradings of the Albert algebra are:

- The Cartan grading (weight space decomposition relative to a Cartan subalgebra of f₄ = Der(A)).
- The Z⁵₂-grading obtained by combining the natural Z²₂-grading on 3 × 3 hermitian matrices with the fine grading over Z³₂ of O.
- **3** The $\mathbb{Z} \times \mathbb{Z}_2^3$ -grading obtained by combining a 5-grading and the \mathbb{Z}_2^3 -grading on \mathbb{O} .
- The \mathbb{Z}_3^3 -grading with dim $\mathbb{A}_g = 1 \ \forall g \ (\text{char } \mathbb{F} \neq 3)$.

The fine gradings on $\mathfrak{f}_4 = \mathfrak{Der}(\mathbb{A})$ are the ones induced by these.

All the gradings up to isomorphism on $\mathbb A$ and $\mathfrak f_4$ have been classified too (E.–Kochetov).

4 The Albert algebra as a twisted group algebra

In order to present the Albert algebra as a twisted group algebra:

$$\mathbb{A} = \mathbb{F}_{\sigma}[\mathbb{Z}_3^3],$$

in a nice way, i.e., with a simple expression for σ , it is important to look at the fine \mathbb{Z}_3^3 -grading on \mathbb{A} in a suitable way.

In order to present the Albert algebra as a twisted group algebra:

$$\mathbb{A} = \mathbb{F}_{\sigma}[\mathbb{Z}_3^3],$$

in a nice way, i.e., with a simple expression for σ , it is important to look at the fine \mathbb{Z}_3^3 -grading on \mathbb{A} in a suitable way.

Tits construction of the Albert algebra provides such a way.

Tits construction

Let $\mathcal{R} = Mat_3(\mathbb{F})$. Then

$$\mathbb{A}=\mathcal{R}_0\oplus\mathcal{R}_1\oplus\mathcal{R}_2,$$

with \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 copies of \mathcal{R} .

Tits construction

Let $\mathcal{R} = Mat_3(\mathbb{F})$. Then

$$\mathbb{A} = \mathcal{R}_0 \oplus \mathcal{R}_1 \oplus \mathcal{R}_2,$$

with \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 copies of \mathcal{R} .

The product in A satisfies $\mathcal{R}_i \circ \mathcal{R}_j \subseteq \mathcal{R}_{i+j} \pmod{3}$ and it is given by:

0	a_0'	b_1'	<i>c</i> ₂ '
a ₀	$(a \circ a')_0$	$(\bar{a}b')_1$	$(c'\bar{a})_2$
b_1	$(\bar{a}'b)_1$	$(ar{a}b')_1 \ (b imes b')_2$	$(\overline{bc'})_2$
с2		$(\overline{b'c})_0$	$(c imes c')_1$

where

•
$$a \circ a' = \frac{1}{2}(aa' + a'a),$$

• $a \times b = a \circ b - \frac{1}{2}(\operatorname{tr}(a)b + \operatorname{tr}(b)a) + \frac{1}{2}(\operatorname{tr}(a)\operatorname{tr}(b) - \operatorname{tr}(ab))1,$
• $\bar{a} = a \times 1 = \frac{1}{2}(\operatorname{tr}(a)1 - a).$

Another look at the \mathbb{Z}_3^3 -grading on \mathbb{A}

Assume char $\mathbb{F} \neq 3$. Take Pauli matrices in \mathcal{R} :

$$x = egin{pmatrix} 1 & 0 & 0 \ 0 & \omega & 0 \ 0 & 0 & \omega^2 \end{pmatrix}, \quad y = egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix},$$

where ω, ω^2 are the primitive cubic roots of 1, which satisfy

$$x^3 = 1 = y^3, \quad yx = \omega xy.$$

Another look at the \mathbb{Z}_3^3 -grading on \mathbb{A}

Assume char $\mathbb{F} \neq 3$. Take Pauli matrices in \mathcal{R} :

$$x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$

where ω, ω^2 are the primitive cubic roots of 1, which satisfy

$$x^3 = 1 = y^3, \quad yx = \omega xy.$$

These Pauli matrices give a grading over \mathbb{Z}_3^2 on \mathcal{R} , with

$$\mathcal{R}_{(\alpha_1,\alpha_2)}=\mathbb{F}x^{\alpha_1}y^{\alpha_2}.$$

Another look at the \mathbb{Z}_3^3 -grading on A

Assume char $\mathbb{F} \neq 3$. Take Pauli matrices in \mathcal{R} :

$$x = egin{pmatrix} 1 & 0 & 0 \ 0 & \omega & 0 \ 0 & 0 & \omega^2 \end{pmatrix}, \quad y = egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix},$$

where ω, ω^2 are the primitive cubic roots of 1, which satisfy

$$x^3 = 1 = y^3, \quad yx = \omega xy.$$

These Pauli matrices give a grading over \mathbb{Z}_3^2 on \mathcal{R} , with

$$\mathcal{R}_{(\alpha_1,\alpha_2)}=\mathbb{F}x^{\alpha_1}y^{\alpha_2}.$$

This grading combines with the \mathbb{Z}_3 -grading on \mathbb{A} induced by Tits construction, to give the unique, up to equivalence, fine grading over \mathbb{Z}_3^3 of the Albert algebra.

Multiplication in Tits construction

For $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{Z}_3^3$ consider the element

$$Z^{lpha} := (x^{lpha_1}y^{lpha_2})_{lpha_3} \in \mathcal{R}_{lpha_3} \subseteq \mathbb{A}.$$

For $lpha=(lpha_1,lpha_2,lpha_3)\in\mathbb{Z}_3^3$ consider the element

$$Z^{\alpha} := (x^{\alpha_1}y^{\alpha_2})_{\alpha_3} \in \mathcal{R}_{\alpha_3} \subseteq \mathbb{A}.$$

Then, for any $\alpha, \beta \in \mathbb{Z}_3^3$:

$$Z^{lpha} \circ Z^{eta} = egin{cases} \omega^{ ilde{\psi}(lpha,eta)} Z^{lpha+eta} & ext{if } \dim_{\mathbb{Z}_3}(\mathbb{Z}_3lpha+\mathbb{Z}_3eta) \leq 1, \ -rac{1}{2}\omega^{ ilde{\psi}(lpha,eta)} Z^{lpha+eta} & ext{otherwise}, \end{cases}$$

where

$$\tilde{\psi}(\alpha,\beta) = (\alpha_2\beta_1 - \alpha_1\beta_2)(\alpha_3 - \beta_3) - (\alpha_1\beta_2 + \alpha_2\beta_1).$$

Multiplication in Tits construction

Consider now the elements (Racine 1990, unpublished)

 $W^{\alpha} := \omega^{-\alpha_1 \alpha_2} Z^{\alpha}.$

Multiplication in Tits construction

Consider now the elements (Racine 1990, unpublished)

 $W^{\alpha} := \omega^{-\alpha_1 \alpha_2} Z^{\alpha}.$

$$W^{\alpha} \circ W^{\beta} = \omega^{-\alpha_1 \alpha_2 - \beta_1 \beta_2} Z^{\alpha} \circ Z^{\beta}$$

$$= \begin{cases} \omega^{\tilde{\psi}(\alpha,\beta)-(\alpha_{1}\alpha_{2}+\beta_{1}\beta_{2})}Z^{\alpha+\beta} & \text{if } \dim_{\mathbb{Z}_{3}}(\mathbb{Z}_{3}\alpha+\mathbb{Z}_{3}\beta) \leq 1, \\ -\frac{1}{2}\omega^{\tilde{\psi}(\alpha,\beta)-(\alpha_{1}\alpha_{2}+\beta_{1}\beta_{2})}Z^{\alpha+\beta} & \text{otherwise,} \end{cases}$$
$$= \begin{cases} \omega^{\tilde{\psi}(\alpha,\beta)+(\alpha_{1}\beta_{2}+\alpha_{2}\beta_{1})}W^{\alpha+\beta} & \text{if } \dim_{\mathbb{Z}_{3}}(\mathbb{Z}_{3}\alpha+\mathbb{Z}_{3}\beta) \leq 1, \\ -\frac{1}{2}\omega^{\tilde{\psi}(\alpha,\beta)+(\alpha_{1}\beta_{2}+\alpha_{2}\beta_{1})}W^{\alpha+\beta} & \text{otherwise.} \end{cases}$$

The Albert algebra as a twisted group algebra

Theorem (Griess 1990)

The Albert algebra is, up to isomorphism, the twisted group algebra

$$\mathbb{A} = \mathbb{F}_{\sigma}[\mathbb{Z}_3^3],$$

with

$$\sigma(lpha,eta) = egin{cases} \omega^{\psi(lpha,eta)} & \textit{if } \dim_{\mathbb{Z}_3}(\mathbb{Z}_3lpha+\mathbb{Z}_3eta) \leq 1, \ -rac{1}{2}\omega^{\psi(lpha,eta)} & \textit{otherwise,} \end{cases}$$

where

$$\psi(\alpha,\beta) = (\alpha_2\beta_1 - \alpha_1\beta_2)(\alpha_3 - \beta_3).$$

The Albert algebra as a twisted group algebra

Theorem (Griess 1990)

The Albert algebra is, up to isomorphism, the twisted group algebra

$$\mathbb{A} = \mathbb{F}_{\sigma}[\mathbb{Z}_3^3],$$

with

$$\sigma(lpha,eta) = egin{cases} \omega^{\psi(lpha,eta)} & \textit{if } \dim_{\mathbb{Z}_3}(\mathbb{Z}_3lpha+\mathbb{Z}_3eta) \leq 1, \ -rac{1}{2}\omega^{\psi(lpha,eta)} & \textit{otherwise,} \end{cases}$$

where

$$\psi(\alpha,\beta) = (\alpha_2\beta_1 - \alpha_1\beta_2)(\alpha_3 - \beta_3).$$

That's all. Thanks