
COMPOSITION ALGEBRAS AND THEIR GRADINGS

ALBERTO ELDUQUE?

AAC Mini Course

Abstract. The goal of this course is the introduction of the basic properties

of the classical composition algebras (that is, those algebras which are anal-
ogous to the real, complex, quaternion or octonion numbers), and how these

basic properties are enough to get all the possible gradings on them. Then

a new class of (non unital) composition algebras will be defined and studied,
the so called symmetric composition algebras. Finally, the gradings on these

two families of composition algebras will be shown to induce some interesting

gradings on the exceptional simple Lie algebras.

1. Unital composition algebras. The Cayley-Dickson process.

Composition algebras constitute a generalization of the classical algebras of the
real R, complex C, quaternion H (1843), and octonion numbers O (1845).

Definition 1.1. A composition algebra (over a field F) is a not necessarily associa-
tive algebra C, endowed with a nondegenerate quadratic form (the norm) q : C → F
(i.e., the bilinear form q(x, y) = q(x + y) − q(x) − q(y) is nondegenerate) which is
multiplicative: q(xy) = q(x)q(y) ∀x, y ∈ C.

The unital composition algebras will be called Hurwitz algebras

Easy consequences:
• q(xy, xz) = q(x)q(y, z) = q(yx, zx) ∀x, y, z. (lx and rx are similarities of

norm q(x).)
• q(xy, tz) + q(ty, xz) = q(x, t)q(y, z) ∀x, y, z, t.

Assume now that C is unital:
• t = 1 ⇒ q(xy, z) = q

(
y, (q(x, 1)1 − x)z) = q(y, x̄z) (x̄ = q(x, 1)1 − x is an

order 2 orthogonal map). That is:

l∗x = lx̄, r∗x = rx̄.

Then lxlx̄ = rxrx̄ = q(x)id, and applied to 1 this gives:

x2 − q(x, 1)x + q(x)1 = 0, ∀x (quadratic algebras)

• q(xy, z) = q(xy, z̄) = q(x, z̄ȳ) = q(zx, ȳ) = q(z, ȳx̄), so that xy = ȳx̄.
That is, x 7→ x̄ is an involution (the standard involution), which satisfies
xx̄ = q(x)1 = x̄x, and x + x̄ = q(x, 1)1 ∀x.

• lxlx̄ = q(x)id ⇒ l2x − q(x, 1)lx + q(x)id = 0 ⇒ l2x = lx2 (x(xy) = x2y), and
in the same vein (yx)x = yx2. That is, Hurwitz algebras are alternative .
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Cayley-Dickson doubling process:
Let Q be a subalgebra of a Hurwitz algebra C such that q|Q is nondegenerate,

and let u ∈ C such that q(u) 6= 0 = q(u, Q). Then 1 ∈ Q, so that q(u, 1) = 0 and
hence u2 = −q(u)1. Then for any x ∈ Q, q(xu, 1) = q(x, ū) = −q(x, u) = 0, so that
xu = −xu. Then:

x(yu) = −x(yu) = −x(ūȳ) = u(x̄ȳ) = u(yx) = −(yx)ū = (yx)u,

(yu)x = −x̄(yu) = x̄(yu) = (yx̄)u,

(xu)(yu) = −ȳ((xu)u) = ȳ((xu)u) = ȳ(xu2) = αȳx,

(for α = −q(u) 6= 0).
Thus Q⊕Qu is a subalgebra of C and q|Q⊕Qu is nondegenerate.
Conversely, assume that Q is a Hurwitz algebra with norm q and 0 6= α ∈ F.

Consider the vector space C := Q⊕Qu (this is formal: just the direct sum of two
copies of Q), with multiplication:

(a + bu)(c + du) = (ac + αd̄b) + (da + bc̄)u,

and quadratic form
q(x + yu) = q(x)− αq(y).

Notation: C = CD(Q, α).
Then:

q
(
(a + bu)(c + du)

)
= q(ac + αd̄b)− αq(da + bc̄),

q(a + bu)q(c + du) =
(
q(a)− αq(b)

)(
q(c)− αq(d)

)
= q(ac) + α2q(cd)− α

(
q(da) + q(ba)

)
.

and these expressions are equal for any a, b, c, d ∈ Q if and only if:

q(ac, d̄b) = q(da, bc̄) ∀a, b, c, d ∈ Q

⇔ q
(
d(ac), b

)
= q

(
(da)c, b

)
∀a, b, c, d ∈ Q

⇔ d(ac) = (da)c ∀a, c, d ∈ Q

⇔ Q is associative.

Theorem 1.2. Let Q be a Hurwitz algebra with norm q and let 0 6= α ∈ F. Let
C = CD(Q,α) as above. Then:

(i) C is a Hurwitz algebra if and only if Q is associative.

(ii) C is associative if and only if Q is commutative. (As x(yu) = (yx)u.)

(iii) C is commutative if and only if Q = F1. (As xu = ux̄, so we must have
x = x̄ for any x.)

Remark 1.3. F is a Hurwitz algebra if and only if char F 6= 2.

Notation: CD(A,α, β) = CD
(
CD(A,α), β

)
.

Generalized Hurwitz Theorem 1.4. Every Hurwitz algebra over a field F is
isomorphic to one of the following types:

(i) The ground field F if its characteristic is 6= 2.

(ii) A quadratic commutative and associative separable algebra K(µ) = F1+Fv,
with v2 = v + µ and 4µ + 1 6= 0. Its norm is given by the generic norm.

(iii) A quaternion algebra Q(µ, β) = CD
(
K(µ), β

)
. (These are associative but

not commutative.)
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(iv) A Cayley algebra C(µ, β, γ) = CD
(
Q(µ, β), γ

)
. (These are alternative but

not associative.)
In particular, the dimension of any Hurwitz algebras is finite and restricted to 1, 2,
4 or 8.

Corollary 1.5. Two Hurwitz algebras are isomorphic if and only if its norms are
isometric.

Isotropic Hurwitz algebras: Let C be a Cayley algebra such that its norm q

represents 0 (split Cayley algebra). (This is always the situation if F is algebraically
closed.)

Take 0 6= x ∈ C with q(x) = 0 and take y ∈ C with q(x, ȳ) = 1 (q(., .) is
nondegenerate), then

q(xy, 1) = q(x, ȳ) = 1.

Let e1 = xy, so q(e1) = 0, q(e1, 1) = 1, and hence e2
1 = e1. Let e2 = ē1 = 1− e1, so

q(e2) = 0, e2
2 = e2, e1e2 = 0 = e2e1 and q(e1, e2) = q(e1, 1) = 1.

Then K = Fe1 + Fe2 is a composition subalgebra of C .

For any x ∈ K⊥, xe1 + xe1 = q(xe1, 1)1 = q(x, ē1)1 = q(x, e2)1 = 0. Hence
xe1 = −ē1x̄ = e2x. We get:

xe1 = e2x, xe2 = e1x.

Also, x = 1x = e1x+e2x, and e2(e1x) = (1−e1)(e1x) = ((1−e1)e1)x = 0 = e1(e2x).
Therefore,

K⊥ = U ⊕ V

with
U = {x ∈ C : e1x = x = xe2, e2x = 0 = xe1},
V = {x ∈ C : e2x = x = xe1, e1x = 0 = xe2}.

For any u ∈ U , q(u) = q(e1u) = q(e1)q(u) = 0, and hence U and V are isotropic
subspaces of C. And for any u1, u2 ∈ U and v ∈ V :

q(u1u2,K) ⊆ q(u1,Ku2) ⊆ q(U,U) = 0,

q(u1u2, v) = q(u1u2, e2v) = −q(e2u2, u1v) + q(u1, e2)q(u2, v) = 0.

Hence U2 is orthogonal to K and V , so it must be contained in V . Also V 2 ⊆ U .
Besides,

q(U,UV ) ⊆ q(U2, V ) ⊆ q(V, V ) = 0,

q(UV, V ) ⊆ q(U, V 2) ⊆ q(U,U) = 0,

so UV + V U ⊆ K. Moreover, q(UV, e1) ⊆ q(U, e1V ) = 0, so that UV ⊆ Fe1 and
V U ⊆ Fe2.

Therefore the decomposition C = K ⊕ U ⊕ V is Z/3Z-grading of C.
Moreover, the trilinear map

U × U × U −→ F
(x, y, z) 7→ q(xy, z),

is alternating (for any x ∈ U , q(x) = 0 = q(x, 1), so x2 = 0 and hence q(x2, z) = 0;
but q(xy, y) = −q(x, y2) = 0 too).

Take a basis {u1, u2, u3} of U with q(u1u2, u3) = 1 (this is always possible
because q(U2, U) 6= 0 since q is nondegenerate). Then {v1 = u2u3, v2 = u3u1, v3 =
u1u2} is the dual basis in V (relative to q) and the multiplication table is:
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e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0

e2 0 e2 0 0 0 v1 v2 v3

u1 0 u1 0 v3 −v2 −e1 0 0

u2 0 u2 −v3 0 v1 0 −e1 0

u3 0 u3 v2 −v1 0 0 0 −e1

v1 v1 0 −e2 0 0 0 u3 −u2

v2 v2 0 0 −e2 0 −u3 0 u1

v3 v3 0 0 0 −e2 u2 −u1 0

(For instance, q(u1v1, e2) = −q(u1, e2v1) = −q(u1, v1) = −q(u1, u2u3) = −1, so
that u1v1 = −e1; v1v2 = v1(u3u1) = −v1(u1u3) = u1(v1u3) − (u1v1 + v1u1)u3 =
1u3 = u3, ...)
Notation: The split Cayley algebra above is denoted by C(F) and the basis con-
sidered is called a canonical basis of C(F).

Theorem 1.6. Let n = 2, 4 or 8. Then there is, up to isomorphism, a unique
Hurwitz algebra with isotropic norm of dimension n:

(i) Fe1 + Fe2 in dimension 2, which is just the cartesian product of two copies
of F.

(ii) Fe1 + Fe2 + Fu1 + Fv1 in dimension 4, which is isomorphic to Mat2(F),
with the norm given by the determinant.

(iii) C(F) in dimension 8.

What about real Hurwitz algebras?
If Q is a real Hurwitz algebra which is not split (q does not represent 0) then q

is positive definite, the norm of CD(Q,α) is positive definite if and only if α < 0,
and in this case (change u to

√
−α

−1
u) CD(Q,α) = CD(Q,−1). Thus the list of

real Hurwitz algebras is:
• the split ones: R⊕ R, Mat2(R), C(R),
• the “division” ones: R, C = CD(R,−1), H = CD(C,−1), and O =

CD(H,−1).

There are many good references that cover the material in this section. Let us
mention, for instance, [KMRT98, Chapter VIII] or [ZSSS82, Chapter 2].
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2. Symmetric composition algebras. Triality.

Definition 2.1. A composition algebra (S, ∗, q) is said to be a symmetric compo-
sition algebra if l∗x = rx for any x ∈ S (that is, q(x ∗ y, z) = q(x, y ∗ z) for any
x, y, z ∈ S).

Theorem 2.2. Let (S, ∗, q) be a composition algebra. The following conditions are
equivalent:

(a) (S, ∗, q) is symmetric.
(b) For any x, y ∈ S, (x ∗ y) ∗ x = x ∗ (y ∗ x) = q(x)y.

Proof. If (S, ∗, q) is symmetric, then for any x, y, z ∈ S,

q
(
(x ∗ y) ∗ x, z

)
= q(x ∗ y, x ∗ z) = q(x)q(y, z) = q

(
q(x)y, z)

whence (b), since q is nondegenerate. Conversely, take x, y, z ∈ S with q(y) 6= 0, so
that ly and ry are bijective, and hence there is an element z′ ∈ S with z = z′ ∗ y.
Then:

q(x ∗ y, z) = q(x ∗ y, z′ ∗ y) = q(x, z′)q(y) = q
(
x, y ∗ (z′ ∗ y)

)
= q(x, y ∗ z).

This proves (a) assuming q(y) 6= 0, but any isotropic element is the sum of two non
isotropic elements, so (a) follows. �

Remark 2.3.
• Condition (b) above implies that ((x ∗ y) ∗ x) ∗ (x ∗ y) = q(x ∗ y)x, but also

((x ∗ y) ∗ x) ∗ (x ∗ y) = q(x)y ∗ (x ∗ y) = q(x)q(y)x, so that condition (b)
already forces the quadratic form q to be multiplicative.

• Let (S, ∗, q) be a symmetric composition algebra. Take an element a ∈ S
with q(a) 6= 0 and define a new multiplication and nondegenerate quadratic
form on S by means of

x • y = (a ∗ x) ∗ (y ∗ a), q̃(x) = q(x)q(a).

Then (S, •, q̃) is again a composition algebra. Consider the element e =
1

q(a)2 a ∗ a. Then

e • x = (a ∗ e) ∗ (x ∗ a) =
1

q(a)2
(a ∗ (a ∗ a)) ∗ (x ∗ a) =

1
q(a)

a ∗ (x ∗ a) = x,

and x • e = x too for any x ∈ S. Hence (S, •, q̃) is a Hurwitz algebra.
Therefore the dimension of any symmetric composition algebra is restricted
to 1, 2, 4 or 8.

Examples 2.4. (Okubo 1978 [Oku78])
• Para-Hurwitz algebras: Let C be a Hurwitz algebra with norm q and

consider the composition algebra (C, •, q) with the new product given by

x • y = x̄ȳ.

Then q(x • y, z) = q(x̄ȳ, z) = q(x̄, zy) = q(x, zy) = q(x, y • z), for any
x, y, z, so that (C, •, q) is a symmetric composition algebra. (Note that
1 • x = x • 1 = x̄ = q(x, 1)1− x ∀x: 1 is the para-unit of (C, •, q).)

• Okubo algebras: Assume char F 6= 3 (the case of char F = 3 requires a
different definition), and let ω ∈ F be a primitive cubic root of 1. Let A
be a central simple associative algebra of degree 3 with trace tr, and let
S = A0 = {x ∈ A : tr(x) = 0} with multiplication and norm given by:

x ∗ y = ωxy − ω2yx− ω − ω2

3
tr(xy)1,

q(x) = −1
2

tr(x2), (it is valid in characteristic 2!)
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Then, for any x, y ∈ S:

(x ∗ y) ∗ x = ω(x ∗ y)x− ω2x(x ∗ y)− ω − ω2

3
tr

(
(x ∗ y)x

)
1

= ω2xyx− yx2 − ω2 − 1
3

tr(xy)x− x2y + ωxyx +
1− ω

3
tr(xy)x

− ω − ω2

3
tr

(
(ω − ω2)x2y

)
1 (tr(x) = 0)

= −
(
x2y + yx2 + xyx

)
+ tr(xy)x + tr(x2y)1 ((ω − ω2)2 = −3).

But if tr(x) = 0, then x3 − 1
2 tr(x2)x + det(x)1 = 0, so

x2y + yx2 + xyx−
(
tr(xy)x +

1
2

tr(x2)y
)
∈ F1.

Since (x ∗ y) ∗ x ∈ A0, we have (x ∗ y) ∗ x = − 1
2 tr(x2)y = x ∗ (y ∗ x).

Therefore (S, ∗, q) is a symmetric composition algebra.
In case ω 6∈ F, take K = F[ω] and a central simple associative algebra A

of degree 3 over K endowed with a K/F-involution of second kind J . Then
take S = K(A, J)0 = {x ∈ A0 : J(x) = −x} (this is a F-subspace) and use
the same formulae above to define the multiplication and the norm.

For instance, for F = R, take A = Mat3(C), S = su3 = {x ∈ Mat3(C) :
tr(x) = 0, xT = −x}

Remark 2.5. Given an Okubo algebra, note that for any x, y ∈ S,

x ∗ y = ωxy − ω2yx− ω − ω2

3
tr(xy)1,

y ∗ x = ωyx− ω2xy − ω − ω2

3
tr(xy)1,

so that

ωx ∗ y + ω2y ∗ x = (ω2 − ω)xy − (ω + ω2)
ω − ω2

3
tr(xy)1,

and

xy =
ω

ω2 − ω
x ∗ y +

ω2

ω2 − ω
y ∗ x +

1
3
q(x, y)1,

and the product in A is determined by the product in the Okubo algebra.

Classification (char F 6= 3):
We can go in the reverse direction of Okubo’s construction. Given a symmetric

composition algebra (S, ∗, q) over a field containing ω, define the algebra A = F1⊕S
with multiplication determined by the formula

xy =
ω

ω2 − ω
x ∗ y +

ω2

ω2 − ω
y ∗ x +

1
3
q(x, y)1,

for any x, y ∈ S. Then A is a separable alternative algebra of degree 3.
In case ω 6∈ F, then we must consider A = F[ω]1 ⊕

(
F[ω] ⊗ S

)
, with the same

formula for the product. In F[ω] we have the Galois automorphism ωτ = ω2. Then
the conditions J(1) = 1 and J(s) = −s for any s ∈ S induce a F[ω]/F-involution of
the second kind in A.

Theorem 2.6. (char F 6= 3)

ω ∈ F : The symmetric composition algebras are, up to isomorphism, the al-
gebras (A0, ∗, q) for A a separable alternative algebra of degree 3.

Two symmetric composition algebras are isomorphic if and only if so are
the corresponding alternative algebras.
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ω 6∈ F : The symmetric composition algebras are, up to isomorphism, the al-
gebras

(
K(A; J)0, ∗, q

)
for A a separable alternative algebra of degree 3 over

K = F[ω], and J a K/F-involution of the second kind.
Two symmetric composition algebras are isomorphic if and only if so are

the corresponding alternative algebras, as algebras with involution.

Possibilities for such algebras A: Let K = F[ω], so that K = F if ω ∈ F.
• A = K × C, with deg C = 2 (⇒ C is a Hurwitz algebra!), then (A0, ∗, q)

is isomorphic to the para-Hurwitz algebra attached to C if K = F, and
(KA, J)0, ∗, q) to the one attached to Ĉ = {x ∈ C : J(x) = x̄} if K 6= F.

• A is a central simple associative algebra of degree 3, and hence (A0, ∗, q) or(
K(A, J)0, ∗, q

)
is an Okubo algebra.

• A = K ⊗F L, for a cubic field extension L of F (if ω 6∈ F L = {x ∈ A :
J(x) = x}) and dimF S = 2.

Remark 2.7. The classification in characteristic 3 follows a different path to arrive
at a similar result: any symmetric composition algebra is either para-Hurwitz or
“Okubo”, with a few exceptions in dimension 2.

Remark 2.8. Assume that (S, ∗, q) is a two-dimensional symmetric composition
algebra.

If there is an element a ∈ S such that q(a) 6= 0 and a ∗ a ∈ Fa, then we may
scale a and get an element e ∈ S such that e ∗ e = e (so that q(e) = 1). Then S is
the para-Hurwitz algebra attached to the Hurwitz algebra defined over S with the
multiplication

x · y = (e ∗ x) ∗ (y ∗ e),
with unity 1 = e.

Otherwise, take a ∈ S with q(a) = 1 (this is always possible). Then a ∗ a 6∈ F,
so that S = Fa⊕ F(a ∗ a), and the multiplication is completely determined by the
scalar α = q(a, a ∗ a):

a ∗ (a ∗ a) = (a ∗ a) ∗ a = q(a)a = a,

(a ∗ a) ∗ (a ∗ a) = −((a ∗ a) ∗ a) ∗ a + q(a, a ∗ a)a = a ∗ a− αa.

Triality:
Assume char F 6= 2, and let (S, ∗, q) be a symmetric composition algebra. Con-

sider the associated orthogonal Lie algebra

so(S, q) = {d ∈ EndF(S) : q
(
d(x), y

)
+ q

(
x, d(y)

)
= 0 ∀x, y ∈ S}.

The triality Lie algebra of (S, ∗, q) is defined as the following Lie subalgebra of
so(S, q)3 (with componentwise bracket):

tri(S, ∗, q) = {(d0, d1, d2) ∈ so(S, q)3 : d0(x ∗ y)d1(x) ∗ y + x ∗ d2(y) ∀x, y, z ∈ S}.
Note that the condition d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) for any x, y ∈ S is

equivalent to the condition

q
(
x ∗ y, d0(z)

)
+ q

(
d1(x) ∗ y, z

)
+ q

(
x ∗ d2(y), z

)
= 0,

for any x, y, z ∈ S. But q(x ∗ y, z) = q(y ∗ z, x) = q(z ∗ x, y). Therefore, the linear
map:

θ : tri(S, ∗, q) −→ tri(S, ∗, q)
(d0, d1, d2) 7→ (d2, d0, d1),

is an automorphism of the Lie algebra tri(S, ∗, q).



8 ALBERTO ELDUQUE

Theorem 2.9. Let (S, ∗, q) be an eight-dimensional symmetric composition algebra
over a field of characteristic 6= 2. Then:

(i) Principle of Local Triality: The projection map:
π0 : tri(S, ∗, q) −→ so(S, q)

(d0, d1, d2) 7→ d0

is an isomorphism of Lie algebras.

(ii) For any x, y ∈ S, the triple

tx,y =
(
σx,y = q(x, .)y − q(y, .)x,

1
2
q(x, y)id− rxly,

1
2
q(x, y)id− lxry

)
belongs to tri(S, ∗, q), and tri(S, ∗, q) is spanned by these elements. More-
over, for any a, b, x, y ∈ S:

[ta,b, tx,y] = tσa,b(x),y + tx,σa,b(y).

Proof. Let us first check that tx,y ∈ tri(S, ∗, q):
σx,y(u ∗ v) = q(x, u ∗ v)y − q(y, u ∗ v)x

rxly(u) ∗ v =
(
(y ∗ u) ∗ x

)
∗ v = −(v ∗ x) ∗ (y ∗ u) + q(y ∗ u, v)x,

u ∗ lxry(v) = u ∗
(
x ∗ (v ∗ y)

)
= −u ∗

(
y ∗ (v ∗ x)

)
+ q(x, y)u ∗ v

= (v ∗ x) ∗ (y ∗ u) + q(u, v ∗ x)y + q(x, y)u ∗ v,

and hence

σx,y(u ∗ v)−
(1

2
q(x, y)id− rxly

)
(u) ∗ v − u ∗

(1
2
q(x, y)id− lxry

)
(v) = 0.

Also σx,y ∈ so(S, q) and
(

1
2q(x, y)id−rxly

)∗
= 1

2q(x, y)id−rylx (adjoint relative to

the norm q), but rxlx = q(x)id, so rxly + rylx = q(x, y)id and hence
(

1
2q(x, y)id−

rxly

)∗
= −

(
1
2q(x, y)id−rxly

)
, so that 1

2q(x, y)id−rxly ∈ so(S, q), and 1
2q(x, y)id−

lxry ∈ so(S, q) too. Therefore, tx,y ∈ tri(S, ∗, q).
Since the Lie algebra so(S, q) is spanned by the σx,y’s, it is clear that the projec-

tion π0 is surjective (and hence so are π1 and π2). Consider an element (d0, d1, d2)
in kerπ0. Hence d0 = 0 and d1(x) ∗ y + x ∗ d2(y) = 0 for any x, y ∈ S. But since
π1 is onto, the subspace {d1 ∈ so(S, q) : ∃d2 ∈ so(S, q) (0, d1, d2) ∈ tri(S, ∗, q)}
is an ideal of the simple Lie algebra so(S, q). Hence either kerπ0 = 0 or for any
d ∈ so(S, q) there is another element d′ ∈ so(S, q) such that d(x) ∗ y + x ∗ d′(y) = 0
for any x, y ∈ S. This is impossible: take d = σa,b for linearly independent elements
a, b ∈ S and take x orthogonal to a, b and not isotropic. Then d(x) = 0, so we would
get x ∗ d′(y) = 0 for any y ∈ S. This forces d′ = 0 since lx is a bijection, and we
get a contradiction. Therefore, π0 is an isomorphism.

Finally the formula [ta,b, tx,y] = tσa,b(x),y + tx,σa,b(y) follows from the “same”
formula for the σ’s and the fact that π0 is an isomorphism. �

For the results in this section one may consult [EM93] or [KMRT98, Chapter
VIII].
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3. Gradings on composition algebras.

All the gradings considered here will be group gradings: C = ⊕g∈GCg, G a group
generated by {g ∈ G : Cg 6= 0} and CgCg′ ⊆ Cgg′ ∀g, g′ ∈ G.

3.1. Gradings on Hurwitz algebras.
Let C = ⊕g∈GCg be a graded Hurwitz algebra. For any x ∈ C, x2 − q(x, 1)x +
q(x)1 = 0. Always 1 ∈ Ce, and hence if x ∈ Cg, with g 6= e:

• q(x, 1) = 0 so that C̄h = Ch for any h ∈ G,
• q(x) = 0 unless g2 = e.

Take now x ∈ Cg, y ∈ Ch, then q(x, y) = q(xȳ, 1) = 0 unless gh = e. But then for
g 6= h−1, 0 = q(xȳ, 1)1 = xȳ + yx̄, so that either CgCh = 0 = ChCg, or gh = hg.

Thus, if g, h ∈ G, with g 6= h and Cg 6= 0 6= Ch, q(Cg + Cg−1) 6= 0 (q is
nondegenerate), so that (Cg + Cg−1)Ch 6= 0, and hence either

• CgCh 6= 0, and then gh = hg, or
• Cg−1Ch 6= 0, and then g−1h = hg−1, so gh = hg too.

We conclude that G is abelian. In what follows, additive notation for G will be
used.

Examples 3.1.
(1) Gradings induced by the Cayley-Dickson doubling process:

• If C = CD(Q,α) = Q⊕Qu, this is a Z2-grading: C0̄ = Q, C1̄ = Qu.
• If, moreover, Q = CD(K, β) = K ⊕ Kv, then C = K ⊕ Kv ⊕ Ku ⊕

(Kv)u is a Z2 × Z2-grading.
• Finally, if K = CD(F, γ) = F1⊕ Fw, then C is Z3

2-graded.
(2) Cartan grading: Take a canonical basis of the split Cayley algebra B =

{e1, e2, u1, u2, u3, v1, v2, v3}. Then C is Z2-graded with
C(0,0) = Fe1 ⊕ Fe2,

C(1,0) = Fu1, C(−1,0) = Fv1,

C(0,1) = Fu2, C(0,−1) = Fv2,

C(1,1) = Fv3, C(−1,−1) = Fu3.

Theorem 3.2. Any proper grading of a Cayley algebra is either a grading induced
by the Cayley-Dickson doubling process or it is a coarsening of the Cartan grading
of the split Cayley algebra.

Proof. Let C = ⊕g∈GCg be a grading of the Cayley algebra C. Then C0 is a
composition subalgebra of C.
First case: Assume that G is 2-elementary. Then take 0 6= g1 ∈ G with Cg1 6= 0.
The restriction q|Cg1

is nondegenerate so we may take an element u ∈ Cg1 with
q(u) 6= 0, so that Cg1 = C0u and C0⊕Cg1 = C0⊕C0u = CD(C0, α) with α = −q(u).
This is a composition subalgebra of C, and hence either C = C0⊕Cg1 and G = Z2,
or there is another element g2 ∈ G \ {0, g1} with Cg2 6= 0. Again take v ∈ Cg2

with q(v) 6= 0 and we get C0 ⊕ Cg1 ⊕ Cg2 ⊕ Cg1+g2 = (C0 ⊕ Cg1)⊕ (C0 ⊕ Cg1)v =
CD(C0 ⊕ Cg1 , β) = CD(C0, α, β), which is a Z2

2-graded composition subalgebra of
C. Again, either this is the whole C or we can repeat once more the process to get
C = CD(C0, α, β, γ) Z3

2-graded (and dim C0 = 1).
Second case: Assume that G is not 2-elementary, so there exists g ∈ G with
Cg 6= 0 and the order of g is > 2. Then q(Cg) = 0, so q is isotropic and hence C
is the split Cayley algebra. Take elements x ∈ Cg, y ∈ C−g with q(x, y) = −1 (q is
nondegenerate). That is, q(xy, 1) = q(x, ȳ) = −q(x, y) = 1.
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Our considerations on isotropic Hurwitz algebras show that e1 = xy satisfies
e2
1 = e1, q(e1) = 0, ē1 = 1 − e1 =: e2. Therefore Fe1 ⊕ Fe2 is a composition

subalgebra of C0 and hence the subspaces U = {x ∈ C : e1x = x = xe2} and
V = {x ∈ C : e2x = x = xe1} are graded subspaces of C and we may choose a basis
{u1, u2, u3} of U consisting of homogeneous elements and such that q(u1u2, u3) =
1. With v1 = u2u3, v2 = u3u1 and v3 = u1u2 we get a canonical basis B =
{e1, e2, u1, u2, u3, v1, v2, v3} of C formed by homogeneous elements and such that
deg(e1) = deg(e2) = 0. Let gi = deg(ui), i = 1, 2, 3. From uivi = −e1 we conclude
that deg(vi) = −gi, and from v1 = u2u3 we conclude that g1 + g2 + g3 = 0. The
grading is a coarsening of the Cartan grading. �

Up to symmetry, any coarsening of the Cartan grading is obtained as follows
(here g1 = (1, 0) and g2 = (0, 1)):

g1 = 0 : Then we obtain a 3-grading over Z: C = C−1 ⊕ C0 ⊕ C1, with
C0 = 〈e1, e2, u1, v1〉, C1 = 〈u2, v3〉, C−1 = 〈u3, v2〉. Its proper coarsenings
are all “2-elementary”.

g1 = g2 : Here we obtain a 5-grading over Z, with C−2 = Fu3, C−1 = 〈v1, v2〉,
C0 = 〈e1, e2〉, C1 = 〈u1, u2〉 and C2 = Fv3, which has two proper coarsen-
ings which are not 2-elementary:

g1 = g2 = g3 : This gives a Z3-grading: C0̄ = 〈e1, e2〉, C1̄ = U , C2̄ = V .

g3 = −g3 : This gives a Z4-grading.

g1 = −g1 : Here we get a Z× Z2-grading

C = C(0,0̄) ⊕ C(1,0̄) ⊕ C(−1,0̄) ⊕ C(0,1̄) ⊕ C(1,1̄) ⊕ C(1,1̄)

q q q q q q
〈e1, e2〉 Fu2 Fv2 〈u1, v1〉 Fu3 Fv3

Any of its coarsenings is a coarsening of the previous gradings.
g1 = −g2 : In this case g3 = 0, and this is equivalent to the grading obtained

with g1 = 0.

Theorem 3.3. Up to equivalence, the gradings of the split Cayley algebra are:

(i) The Zr
2-gradings induced by the Cayley-Dickson doubling process.

(ii) The Cartan grading over Z2.

(iii) The 3-grading: C0 = span {e1, e2, u3, v3}, C1 = span {u1, v2}, C−1 =
span {u2, v1}.

(iv) The 5-grading: C0 = span {e1, e2}, C1 = span {u1, u2}, C2 = span {v3},
C−1 = span {v1, v2}, C−2 = span {u3}.

(v) The Z3-grading: C0̄ = span {e1, e2}, C1̄ = U ,C2̄ = V .

(vi) The Z4-grading: C0̄ = span {e1, e2}, C1̄ = span {u1, u2}, C2̄ = span {u3, v3},
C3̄ = span {v1, v2}.

(vii) The Z× Z2-grading.

Remark 3.4. The gradings on quaternion algebras are obtained in a similar but
simpler way. Any grading is either induced by the Cayley-Dickson doubling process
(Zr

2-grading for 0 ≤ r ≤ 2) or it is the Cartan grading of Mat2(F).
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3.2. Gradings on symmetric composition algebras.
Let S = ⊕g∈GSg be a grading of the symmetric composition algebra (S, ∗, q). Take
nonzero homogeneous elements x ∈ Sa, y ∈ Sb and z ∈ Sc. Then

(x ∗ y) ∗ z + (z ∗ y) ∗ x = q(x, z)y,

so q(Sa, Sc) = 0 unless abc = b or cba = b. With b = a we get q(Sa, Sc) = 0
unless c = a−1. With c = a−1, since q is nondegenerate we may take x and z with
q(x, z) = 1, and hence either aba−1 = b or a−1ba = b. In any case ab = ba. Hence
again the grading group must be abelian and additive notation will be used.

Proposition 3.5. Let (S, ∗, q) be a para-Hurwitz algebra of dimension 4 or 8, so
that x ∗ y = x̄ · ȳ for a Hurwitz product. Then the gradings on (S, ∗, q) and on the
Hurwitz algebra (S, ·, q) coincide.

Proof. We know that given any grading S = ⊕g∈GSg of the Hurwitz algebra (S, ·, q),
S̄g = Sg for any g, and hence this is a grading too of (S, ∗, q). Conversely, let
S = ⊕g∈GSg be a grading of (S, ∗, q). Then

K = {x ∈ S : x ∗ y = y ∗ x ∀y ∈ S}
= {x ∈ S : x̄ · y = y · x̄ ∀y ∈ S} = F1,

because the dimension is at least 4. Thus F1 is a graded subspace of (S, ∗, q) and
as 1 ∗ 1 = 1, it follows that 1 ∈ S0. But then it is clear that S̄g = Sg for any g ∈ G
(because q(Sg, 1) = 0 unless g = 0) and the grading is a grading of the Hurwitz
algebra. �

Therefore it is enough to study the gradings of the Okubo algebras. (And of
the two-dimensional symmetric composition algebras, but this is quite easy: one
gets either the trivial grading or a Z2-grading of a para-Hurwitz algebra or some
Z3-gradings.)

Theorem 3.6. Let F be a field of characteristic 6= 3 containing the cubic roots of 1.
Then any grading of an Okubo algebra over F is a coarsening of either a Z2-grading
or of a Z2

3-grading.

Proof. Let (S, ∗, q) be an Okubo algebra over F and S = ⊕g∈GSg be a grading over
the abelian group G. Let A = F1 ⊕ S be the central simple associative algebra of
degree 3 with multiplication determined by

xy =
ω

ω2 − ω
x ∗ y +

ω2

ω2 − ω
y ∗ x +

1
3
q(x, y)1,

for any x, y ∈ S. Then since q(Sg, Sh) = 0 unless g + h = 0, the grading on S
induces a grading on A. By well-known results on gradings on associative algebras,
this is a coarsening of either the Cartan grading over Z2 of Mat3(F), or a Z2

3-grading
on either Mat3(F) or a central division algebra of degree 3. �

Remark 3.7. The gradings on Okubo algebras have been completely determined
over arbitrary fields, but the methods needed are different.

What do these Z2 and Z2
3-gradings look like?

Z2-grading: The type of this grading on Mat3(F) (ω ∈ F) is (6, 0, 1), so its type
on S is (6, 1), with dim S0 = 2 and dim Sg ≤ 1 for g 6= 0. Take 0 6= g ∈ Z2

with Sg 6= 0 = S2g. Then S0 ⊕ Sg ⊕ S−g is a para-quaternion subalgebra S with
“para-unit” e ∈ S0. Consider the Hurwitz algebra (S, ·, q) with multiplication

x · y = (e ∗ x) ∗ (y ∗ e),

and unity e.
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Lemma 3.8. The map τ : S → S, such that τ(x) = q(x, e)e − x ∗ e is an order 3
automorphism of both (S, ∗) and (S, ·).

Proof. Define x̄ = q(x, e)e − x, then τ(x) = x̄ ∗ e = x ∗ e (q(e, x) = q(e ∗ e, x) =
q(e, e ∗ x)), so that τ(x) = re(x̄) = re(x), and hence τ3(x) = r3

e(x̄). But

((x∗e)∗e)∗e = −(e∗e)∗(x∗e)+q(x∗e, e)e = −e∗(x∗e)+q(x, e)e = −x+q(e, x)e = x̄.

Therefore, τ3 = id, and τ 6= id, because otherwise e would be a “para-unit” of
(S, ∗, q) and this would force this algebra to be para-Hurwitz. Also τ2(x) = (x ∗
e) ∗ e = q(e, x)e− x ∗ e = le(x̄) = le(x). Now,

τ(x) ∗ τ(y) = (q(e, x)e− x ∗ e) ∗ (q(e, y)e− y ∗ e)

= q(e, x)q(e, y)e− q(e, x)y − q(e, y)(x ∗ e) ∗ e + (x ∗ e) ∗ (y ∗ e)

= q(e, x)q(e, y)e− q(e, x)y − q(e, y)
(
q(e, x)e− e ∗ x

)
+

(
q(x ∗ e, e)y − e ∗ (y ∗ (x ∗ e))

)
= q(e, y)e ∗ x− e ∗ (y ∗ (x ∗ e))

= e ∗ (e ∗ (x ∗ y)) = q(e, x ∗ y)e− (x ∗ y) ∗ e = τ(x ∗ y),

and hence τ is an automorphism of (S, ∗, q). Since τ(e) = e, it follows that τ is an
automorphism too of (S, ·, q). �

Note that the restriction of τ to the subalgebra S0 ⊕ Sg ⊕ S−g is the identity,
that all the homogeneous subspaces are invariant under τ and that for any x, y ∈ S
x ∗ y = (e ∗ (x ∗ e)) ∗ ((e ∗ y) ∗ e) = (x ∗ e) · (e ∗ y) = τ(x̄) · τ2(ȳ). That is,

x ∗ y = τ(x̄) · τ2(ȳ), (3.9)

for any x, y ∈ S.
The automorphism τ being of order 3, it induces a Z3-grading of the Cayley

algebra (S, ·, q) with dim S0̄ = 4. There is just one possibility for such a grading
(which is a Z-grading too). It follows that there exists a canonical basis B =
{e1, e2, u1, u2, u3, v1, v2, v3} with S0̄ = span {e1, e2, u1, v1}, S1̄ = span {u2, v3} and
S2̄ = span {u3, v2}. That is, τ |S0̄

= id, τ |S1̄
= ωid and τ |S2̄

= ω2id. The Z2-grading
is given by the canonical Z2-grading on the Hurwitz algebra (S, ·, q) relative to this
basis, with the product given by (3.9). The grading is thus expressed in terms of
the Cartan grading of the split Cayley algebra.

Z2
3-grading: Here the type of this grading on the central simple associative algebra

A is (9), and hence the type in S is (8) with S0 = 0 and dim Sg = 1 for any g 6= 0.
The associative algebra A appears as a crossed product

A = alg
〈
x, y : x3 = α, y3 = β, yx = ωxy

〉
.

Think for example in A = Mat3(F), and x and y given by:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 1 0
0 0 1
1 0 0

 .

In this situation S = A0 = span
{
xiyj : 0 ≤ i, j ≤ 2, (i, j) 6= (0, 0)

}
and S(ı̄,̄) =

Fxiyj .

The material in this section is taken from [Eld98] and [Eldpr1].
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4. The Magic Square of exceptional Lie algebras. Induced gradings.

Throughout this lecture the characteristic of the ground field F will always be
assumed to be 6= 2, 3.

Given two symmetric composition algebras (S, ∗, q) and (S′, ?, q′), consider the
vector space:

g = g(S, S′) =
(
tri(S)⊕ tri(S′)

)
⊕

(
⊕2

i=0ιi(S ⊗ S′)
)
,

where ιi(S ⊗ S′) is just a copy of S ⊗ S′ (i = 0, 1, 2) and we write tri(S), tri(S′)
instead of tri(S, ∗, q) and tri(S′, ?, q′) for short. Define now an anticommutative
bracket on g by means of:

• the Lie bracket in tri(S)⊕ tri(S′), which thus becomes a Lie subalgebra of
g,

• [(d0, d1, d2), ιi(x⊗ x′)] = ιi
(
di(x)⊗ x′

)
,

• [(d′0, d
′
1, d

′
2), ιi(x⊗ x′)] = ιi

(
x⊗ d′i(x

′)
)
,

• [ιi(x⊗ x′), ιi+1(y ⊗ y′)] = ιi+2

(
(x ∗ y)⊗ (x′ ? y′)

)
(indices modulo 3),

• [ιi(x⊗x′), ιi(y⊗ y′)] = q′(x′, y′)θi(tx,y)+ q(x, y)θ′i(t′x′,y′) ∈ tri(S)⊕ tri(S′).

Theorem 4.1. With this bracket, g(S, S′) is a Lie algebra and, if Sr and S′s denote
symmetric composition algebras of dimension r and s, then the Lie algebra g(Sr, S

′
s)

is a (semi)simple Lie algebra whose type is given by Freudenthal’s Magic Square:

S1 S2 S4 S8

S′1 A1 A2 C3 F4

S′2 A2 A2 ⊕A2 A5 E6

S′4 C3 A5 D6 E7

S′8 F4 E6 E7 E8

Proof. “Straightforward” (but lengthy). �

The Lie algebra g = g(S, S′) is naturally Z2
2-graded with

g(0̄,0̄) = tri(S)⊕ tri(S′),

g(1̄,0̄) = ι0(S ⊗ S′), g(0̄,1̄) = ι1(S ⊗ S′), g(1̄,1̄) = ι2(S ⊗ S′).

Now, this Z2
2-grading can be combined with gradings on S and S′ to obtain some

nice gradings of the exceptional simple Lie algebras.
Also, the triality automorphisms θ and θ′ induce an order 3 automorphism Θ ∈

Aut g such that{
Θ|tri(S) = θ, Θ|tri(S′) = θ′,

Θ
(
ιi(x⊗ x′)

)
= ιi+1(x⊗ x′) (indices modulo 3)

If ω ∈ F this gives a Z3-grading which can be combined too with the gradings on
S and S′.

Examples 4.2.
• The Z3

2-grading on a Cayley algebra C give a fine grading of the simple Lie
algebra g2 = Der C, where

g2 = ⊕0 6=α∈Z3
2
(g2)α,

and
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(g2)α is a Cartan subalgebra for any 0 6= α ∈ Z3
2!

(The only fine gradings on g2 (char F = 0) are this Z3
2-grading and the

Cartan grading. This has been proved independently by Draper and Mart́ın
[DM06] and by Bahturin and Tvalavadze [BT09].)

It induces too a Z3
2-grading on d4 = so(C, q) with

d4 = ⊕0 6=α∈Z3
2
(d4)α,

where again

(d4)α is a Cartan subalgebra for any 0 6= α ∈ Z3
2!

But this grading is not fine. It can be refined (if ω ∈ F) by means of the
triality automorphism θ of tri(C̄) ' so(C, q) to get a fine Z3

2 × Z3-grading
of type (14, 7).

• Let (O, ∗, q) be an Okubo algebra and assume that ω ∈ F. The Z2
3- grading

on O, combined with the automorphism Θ, induces a Z3
3-grading of f4 =

g(F,O). Again,

f4 = ⊕0 6=α∈Z3
3
(f4)α,

with dim(f4)α = 2 for any 0 6= α ∈ Z3
3, and

(f4)α ⊕ (f4)−α is a Cartan subalgebra for any 0 6= α ∈ Z3
3!

This can be extended to a Z3
3-grading on e6 = g(S2,O) with similar

properties: dim(e6)α = 3 and

(e6)α ⊕ (e6)−α is a Cartan subalgebra for any 0 6= α ∈ Z3
3!

• Consider now two Z3
2-graded para-Cayley algebras C̄ and C̄ ′. The natural

Z2
2-grading of g(C̄, C̄ ′) combined with the Z3

2-grading on C̄ ⊗ C̄ ′ induces a
Z5

2-grading:

e8 = ⊕0 6=α∈Z5
2
(e8)α,

such that

(e8)α is a Cartan subalgebra for any 0 6= α ∈ Z3
3!

This is a famous Dempwolff decomposition considered by Thompson [Tho76].

Jordan gradings: Alekseevskii [Al74] considered Jordan subgroups A of Aut g for
the simple complex Lie algebras. Any such group is abelian and:

(i) its normalizer is finite,

(ii) A is a minimal normal subgroup of its normalizer,

(iii) its normalizer is maximal among the normalizers of abelian subgroups sat-
isfying (i) and (ii).

He classified (1974) these groups and gave detailed models of all the possibilities
for classical simple Lie algebras. The exceptional cases are:
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g A dim gα (α 6= 0)

G2 Z3
2 2

F4 Z3
3 2

E8 Z3
5 2

D4 Z3
2 4

E8 Z5
2 8

E6 Z3
3 3

With the exception of the Z3
5-grading of E8, these are precisely the gradings

considered in the previous examples.

Some other related results: Assume F algebraically closed of characteristic 0.
• Fine gradings of F4 [DMpr]:

– Cartan grading (over Z4),
– The Z5

2-grading on f4 = g(k, C̄) (C a Cayley algebra) obtained by
combining the natural Z2

2-grading on g(k, C̄) and the Z3
2-grading on

C̄.
– The Z3

3-grading on f4 = g(k,O) obtained by combining the Z2
3-grading

on O with the Z3-grading induced by the automorphism Θ.
– A Z3

2 × Z-grading: the Z2
2-grading on g(k, C̄) can be “unfolded” to a

Z-grading compatible with the Z3
2-grading on C̄. (This is related to

the fact that C is a structurable algebra.)
• Fine gradings of D4 ([DMVpr], [Eldpr2]):

Among the 17 fine gradings of D4, there are 3 of them which have no
counterparts for Dn, n > 4:

– A Z2 × Z3-grading obtained by combining the Z2-grading on C and
the Z3-grading given by the triality automorphism.

– A Z3
2 × Z3-grading obtained by combining the Z3

2-grading on C and
the Z3-grading given by the triality automorphism.

– A Z3
3-grading obtained by combining the Z2

3- grading on O and the
Z3-grading given by the triality automorphism.

It is hoped that the construction g(S, S′) will allow nice descriptions of a large
portion of the fine gradings on the exceptional Lie algebras E6, E7, E8.

The results in this section are taken from [Eld04], [Eldpr1] and [Eld09].
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