Graded simple algebras and modules

Alberto Elduque

Universidad de Zaragoza

Graded simple algebras

2 Loop algebras

3 Graded simple modules

Graded simple algebras

2 Loop algebras

Graded simple modules

Gradings

G abelian group, A algebra over a field \mathbb{F} .

G-grading on A:

$$\Gamma: \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g,$$

$$A_gA_h\subseteq A_{gh} \qquad \forall g,h\in G.$$

Examples

Cartan grading:

$$\mathfrak{g}=\mathfrak{h}\oplus\left(\oplus_{lpha\in\Phi}\mathfrak{g}_lpha
ight)$$

(root space decomposition of a semisimple complex Lie algebra).

This is a grading by \mathbb{Z}^n , $n = \operatorname{rank} \mathfrak{g}$.

Examples

Pauli matrices: $A = Mat_n(\mathbb{F})$

$$X = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \epsilon & 0 & \dots & 0 \\ 0 & 0 & \epsilon^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \epsilon^{n-1} \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

(ϵ a primitive *n*th root of 1)

$$\begin{split} X^n &= 1 = Y^n, \qquad YX = \epsilon XY \\ \mathcal{A} &= \bigoplus_{(\overline{\imath},\overline{\jmath}) \in \mathbb{Z}_n \times \mathbb{Z}_n} \mathcal{A}_{(\overline{\imath},\overline{\jmath})}, \qquad \qquad \mathcal{A}_{(\overline{\imath},\overline{\jmath})} = \mathbb{F} X^i Y^j. \end{split}$$

 \mathcal{A} becomes a graded division algebra.

Simple algebras

Let \mathcal{B} be an algebra over \mathbb{F} :

- \mathcal{B} is simple if it has no proper ideals. In other words, \mathcal{B} is simple if it is simple as a module for its multiplication algebra $\operatorname{Mult}(\mathcal{B})$.
- The **centroid** of \mathcal{B} is the centralizer of $\operatorname{Mult}(\mathcal{B})$ in $\operatorname{End}_{\mathbb{F}}(\mathcal{B})$:

$$C(\mathcal{B}) := \{ f \in \mathsf{End}_{\mathbb{F}}(\mathcal{B}) : (xy)f = (xf)y = x(yf) \ \forall x, y \in \mathcal{B} \}.$$

- $C(\mathcal{B})$ is commutative if $\mathcal{B}^2 = \mathcal{B}$, and it is a field (an extension field of \mathbb{F}) if \mathcal{B} is simple.
- \mathcal{B} is **central simple** if it is simple and *central*: $C(\mathcal{B}) = \mathbb{F}id$.

Graded-simple algebras

Let $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ be a graded algebra:

B is graded-simple if it has no proper graded ideals.
 Its centroid 'inherits' a G-grading:

$$C(\mathfrak{B})_g := \{ f \in C(\mathfrak{B}) : \mathfrak{B}_h f \subseteq \mathfrak{B}_{hg} \ \forall h \in G \}.$$

 • B is graded-central-simple if it is graded-simple and graded-central: C(B)_e = Fid.

Graded-simple algebras

Let $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ be a graded-simple algebra, then:

- $C(\mathcal{B})$ is a graded field (i.e., a commutative graded division algebra¹).
- \mathcal{B} is simple (ungraded) if and only if $C(\mathcal{B})$ is a field.
- $\mathbb{K} = C(\mathcal{B})_e$ is a field, and \mathcal{B} is graded-central-simple considered as an algebra over \mathbb{K} .

9/3

¹The group algebras of abelian groups are graded fields.

Split centroid

Let $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ be a graded-central-simple algebra with centroid $C(\mathcal{B})$.

Let H be the *support* of the induced grading on $C(\mathcal{B})$. This is a subgroup of G.

Definition

 $C(\mathcal{B})$ is said to **split** if it is isomorpic, as a G-graded algebra, to the group algebra $\mathbb{F}H$.

Proposition

- $C(\mathcal{B})$ splits if and only if there is a homomorphism of unital algebras $C(\mathcal{B}) \to \mathbb{F}$.
- If \mathbb{F} is algebraically closed², then $C(\mathfrak{B})$ splits.

10/30

 $^{{}^2\}mathbb{F}^{\times}$ is then a divisible group.

Graded simple algebras

2 Loop algebras

3 Graded simple modules

Loop algebras

Let G be an abelian group, H a subgroup of G, $\pi:G\to\overline{G}=G/H$ the canonical projection.

Let $\overline{\Gamma}: \mathcal{A} = \bigoplus_{\overline{g} \in \overline{G}} \mathcal{A}_{\overline{g}}$ be a \overline{G} -grading on an algebra \mathcal{A} .

Definition

The G-graded algebra

$$L_{\pi}(\mathcal{A}) := \bigoplus_{g \in G} \mathcal{A}_{\bar{g}} \otimes g \ \Big(\leq \mathcal{A} \otimes_{\mathbb{F}} \mathbb{F}G \Big),$$

where

$$(x_{\overline{g}_1}\otimes g_1)(y_{\overline{g}_2}\otimes g_2):=x_{\overline{g}_1}y_{\overline{g}_2}\otimes g_1g_2,$$

is called the **loop algebra** of $(A, \overline{\Gamma})$ relative to π .

Loop algebras: properties

- \mathcal{A} is graded-simple if and only if so is $L_{\pi}(\mathcal{A})$. In this case \mathcal{A} is graded-central if and only if so is $L_{\pi}(\mathcal{A})$.
- If \mathcal{A} is graded-simple, then the centroid $C(L_{\pi}(\mathcal{A}))$ is naturally isomorphic to the loop algebra $L_{\pi}(C(\mathcal{A}))$. In particular, if \mathcal{A} is central (i.e., $C(\mathcal{A}) = \mathbb{F}\mathrm{id}$), then $C(L_{\pi}(\mathcal{A}))$ is isomorphic to $\mathbb{F}H$ and, hence, it splits.

Graded-simple algebras and loop algebras

Theorem (Allison-Berman-Faulkner-Pianzola 2008)

Let $\Gamma: \mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ be a grading such that \mathcal{B} is a graded-simple algebra with split centroid: $C(\mathcal{B}) \cong \mathbb{F}H$, and let $\rho: C(\mathcal{B}) \to \mathbb{F}$ be a homomorphism of unital algebras. Then,

- $A := B/B(\ker \rho)$, is naturally $\overline{G} = G/H$ -graded. Besides, A is a central simple algebra (as an ungraded algebra!).
- The canonical projection $\Pi: \mathcal{B} \to \mathcal{A}$ restricts to linear isomorphism $\mathcal{B}_g \to \mathcal{A}_{\bar{g}}$ for any $g \in G$.
- \mathcal{B} is graded isomorphic to the loop algebra $L_{\pi}(\mathcal{A})$.

Graded-simple algebras and loop algebras

Sketch of proof

 Γ has a coarsening $\overline{\Gamma}$: $\mathfrak{B}=\bigoplus_{\overline{g}\in\overline{G}}\mathfrak{B}_{\overline{g}}$, where $\mathfrak{B}_{\overline{g}}=\bigoplus_{h\in H}\mathfrak{B}_{gh}$.

The ideal $\mathfrak{B}(\ker \rho)$ is a graded ideal for $\overline{\Gamma}$, so that \mathcal{A} inherits a grading by \overline{G} .

For any $g \in G$, let $\bar{g} = \pi(g)$. Then

$$\mathfrak{B}_{\bar{\mathbf{g}}}=\mathfrak{B}_{\mathbf{g}}\,\mathcal{C}(\mathfrak{B})=\mathfrak{B}_{\mathbf{g}}=\mathfrak{B}_{\mathbf{g}}(\mathbb{F}1\oplus\ker\rho)=\mathfrak{B}_{\mathbf{g}}\oplus\mathfrak{B}_{\mathbf{g}}\ker\rho,$$

while
$$\mathcal{B}_{\mathbf{g}} \ker \rho = \mathcal{B}_{\mathbf{g}} \mathcal{C}(\mathcal{B}) \ker \rho = \mathcal{B}_{\bar{\mathbf{g}}} \ker \rho$$
. Hence we get
$$\mathcal{B}_{\bar{\mathbf{g}}} = \mathcal{B}_{\mathbf{g}} \oplus \mathcal{B}_{\bar{\mathbf{g}}} \ker \rho,$$

and this proves that Π restricts to linear isomorphisms $\mathcal{B}_g \cong \mathcal{A}_{\bar{g}}$. The map

$$\Phi: \mathcal{B} \longrightarrow L_{\pi}(\mathcal{A}), \qquad x_g \mapsto \Pi(x_g) \otimes g$$

gives the required isomorphism.

When is a graded algebra a loop algebra?

Proposition

 $\Gamma: \mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$, $H \leq G$, $\pi: G \to \overline{G} = G/H$ canonical projection.

Then \mathcal{B} is graded isomorphic to a loop algebra $L_{\pi}(\mathcal{A})$ if and only if $C(\mathcal{B})$ contains a graded subalgebra isomorphic, as a graded algebra, to the group algebra $\mathbb{F}H$.

Sketch of proof

It is enough to substitute $C(\mathfrak{B})$ by its subalgebra isomorphic to $\mathbb{F}H$, and ρ by the 'augmentation map' in the proof above.

Graded simple algebras and 'graded and simple' algebras

Consider the following groupoids:

- $\mathfrak{A}(\pi)$: the groupoid of central simple algebras with a \overline{G} -grading.
- $\mathfrak{B}(\pi)$: the groupoid of G-graded-central-simple algebras \mathcal{B} such that $C(\mathcal{B})$ splits and it is graded isomorphic to the group algebra $\mathbb{F}H$.

Proposition

The following are equivalent:

- $\mathcal{A} \in \mathfrak{A}(\pi)$,
- $L_{\pi}(\mathcal{A}) \in \mathfrak{B}(\pi)$,
- $L_{\pi}(A)$ is graded-central-simple with $H = \text{Supp}\left(C(L_{\pi}(A))\right)$.

Graded simple algebras and 'graded and simple' algebras

Theorem

- If $A \in \mathfrak{A}(\pi)$, then $L_{\pi}(A) \in \mathfrak{B}(\pi)$.
- If $\mathcal{B} \in \mathfrak{B}(\pi)$, then there is an $\mathcal{A} \in \mathfrak{A}(\pi)$ such that \mathcal{B} is graded isomorphic to $L_{\pi}(\mathcal{A})$.

Moreover, under some mild restrictions, if $\mathcal{A}, \mathcal{A}'$ are in $\mathfrak{A}(\pi)$ and their loop algebras are graded isomorphic, then \mathcal{A} is graded isomorphic to \mathcal{A}' .

Application

Let $\mathbb F$ be an algebraically closed field of characteristic zero, and let $\Gamma:\mathcal L=\bigoplus_{g\in G}\mathcal L_g$ a grading on a finite-dimensional semisimple Lie algebra. Then:

- ullet is uniquely the direct sum of graded-simple ideals, and
- each such ideal is, up to isomorphism, a loop algebra of a graded and simple Lie algebra.

Consequence

In order to classify gradings on semisimple Lie algebras, it is enough to classify gradings on simple Lie algebras.

Graded simple algebras

2 Loop algebras

Graded simple modules

Graded modules

 \mathcal{R} G-graded unital associative \mathbb{F} -algebra³, \mathcal{W} a left \mathcal{R} -module,

- \mathcal{W} is a G-graded left \mathcal{R} -module if it is endowed with a grading as a vector space $\mathcal{W} = \bigoplus_{g \in G} \mathcal{W}_g$ and $\mathcal{R}_g \mathcal{W}_{g'} \subseteq \mathcal{W}_{gg'}$ for any $g, g' \in G$.
- In this case, W is **graded-simple** if it has no proper graded submodules.
- The centralizer C(W) is the graded algebra $C(W) = \bigoplus_{g \in G} C(W)_g$, where,

$$C(W)_g := \{ f \in \operatorname{End}_{\mathbb{R}}(W) : W_{g'}f \subseteq W_{g'g} \ \forall g' \in G \}.$$

If W is graded-simple, then C(W) is a graded division algebra.

• W is graded-central if $C(W)_e = \mathbb{F}id$.

21/30

 $^{^3 \}mbox{For instance}, \mbox{ the universal enveloping algebra of a graded Lie algebra}$

Loop modules

Let G be an abelian group, H a subgroup of G, $\pi: G \to \overline{G} = G/H$ the canonical projection.

Let $\mathcal R$ be a G-graded unital associative $\mathbb F$ -algebra, then $\mathcal R$ is naturally $\overline G$ -graded (a coarsening): $\mathcal R_{\overline g}:=\bigoplus_{g\in\pi^{-1}(\overline g)}\mathcal R_g$. Let $\mathcal V=\bigoplus_{\overline g\in\overline G}\mathcal V_{\overline g}$ be a $\overline G$ -graded $\mathcal R$ -module.

Definition

The G-graded module

$$L_{\pi}(\mathcal{V}) := igoplus_{g \in G} \mathcal{V}_{ar{g}} \otimes g \ \left(\leq \mathcal{V} \otimes_{\mathbb{F}} \mathbb{F}G
ight)$$

where

$$r_{g_1}(v_{\bar{g}_2}\otimes g_2):=r_{g_1}v_{\bar{g}_2}\otimes g_1g_2,$$

is called the **loop module** of \mathcal{V} relative to π .

Loop modules

Proposition

A G-graded left \mathcal{R} -module \mathcal{W} is graded isomorphic to a loop module $L_{\pi}(\mathcal{V})$ for a \overline{G} -graded left \mathcal{R} -module \mathcal{V} if and only if its centralizer $C(\mathcal{W})$ contains a graded subfield isomorphic to the group algebra $\mathbb{F}H$.

Graded simple modules

Proposition

Let \mathcal{W} be a G-graded-simple left \mathcal{R} -module.

- ② If $\mathcal W$ is graded-central and $\mathbb F$ is algebraically closed, any graded subfield of $C(\mathcal W)$ is isomorphic to the group algebra of its support.
- **3** If \mathbb{F} is algebraically closed and dim $\mathcal{W} < |\mathbb{F}|$ (these may be infinite cardinals), then \mathcal{W} is graded-central.

Graded simple modules

Proposition

Let \mathcal{V} be a \overline{G} -graded left \mathcal{R} -module.

- **1** If $L_{\pi}(\mathcal{V})$ is G-graded-simple, then \mathcal{V} is \overline{G} -graded-simple.
- ② The converse is not true, unless an extra restriction is fulfilled: the G-pregrading on $\mathcal V$ associated to its $\overline G$ -grading is thin.

Graded-simple modules and 'graded and simple' modules

Consider the following groupoids:

- $\mathfrak{M}(\pi)$: the groupoid whose objects are the simple, central, and \overline{G} -graded left \mathcal{R} -modules $\mathcal{V} = \bigoplus_{\overline{g} \in \overline{G}} \mathcal{V}_{\overline{g}}$ such that the G-pregrading associated to the \overline{G} -grading is thin.
- $\mathfrak{N}(\pi)$ is the groupoid whose objects are the pairs $(\mathcal{W}, \mathcal{F})$, where \mathcal{W} is a G-graded-simple left \mathcal{R} -module and \mathcal{F} is a maximal graded subfield of $C(\mathcal{W})$ isomorphic to the group algebra $\mathbb{F}H$ as a G-graded algebra.

Proposition

If $\mathcal V$ is and object in $\mathfrak M(\pi)$, then $\left(L_\pi(\mathcal V),L_\pi(\mathbb F\mathrm{id})\right)$ is in $\mathfrak N(\pi)$.

In this way, we obtain a **loop functor** $L_{\pi}:\mathfrak{M}(\pi)\to\mathfrak{N}(\pi)$.

Graded-simple modules and 'graded and simple' modules

Theorem (E.-Kochetov 2016)

The loop functor $L_{\pi}:\mathfrak{M}(\pi)\to\mathfrak{N}(\pi)$ has the following properties:

- L_{π} is faithful, that is, injective on the set of morphisms $\mathcal{V} \to \mathcal{V}'$, for any objects \mathcal{V} and \mathcal{V}' in $\mathfrak{M}(\pi)$.
- **2** L_{π} is essentially surjective, that is, any object (W, \mathcal{F}) in $\mathfrak{N}(\pi)$ is isomorphic to $(L_{\pi}(V), L_{\pi}(\mathbb{F}1))$ for some object V in $\mathfrak{M}(\pi)$.
- **1** If V and V' are objects in $\mathfrak{M}(\pi)$ such that their images under L_{π} are isomorphic in $\mathfrak{N}(\pi)$, then V' is a 'twist' of V obtained by means of a character of H.

Corollary

Over an algebraically closed field, any finite-dimensional graded-simple module is, up to graded isomorphism, a loop module of a graded and simple module.

Application

Graded simple modules appear naturally in the study of gradings on Lie superalgebras: in any G-graded Lie superalgebra \mathcal{L} , $\mathcal{L}_{\bar{1}}$ is a G-graded module for $U(\mathcal{L}_{\bar{0}})$.

For example, let $\mathcal{L}=\mathcal{L}_{\bar{0}}\oplus\mathcal{L}_{\bar{1}}$ be the simple Lie superalgebra of type F(4) over an algebraically closed field of characteristic 0:

$$\mathcal{L}_{\bar{0}} = \mathfrak{so}_7 \oplus \mathfrak{sl}_2, \qquad \mathcal{L}_{\bar{1}} = \textit{spin} \otimes \textit{natural}.$$

As a module for \mathfrak{so}_7 , $\mathcal{L}_{\bar{1}}$ is the direct sum of two copies of the spin module.

Hence its centralizer $C(\mathcal{L}_{\bar{1}})$ is isomorphic to $M_2(\mathbb{F})$, and \mathfrak{sl}_2 embeds in $C(\mathcal{L}_{\bar{1}})$ as a graded (Lie) subalgebra.

Application

$$\mathcal{L}_{\bar{0}}=\mathfrak{so}_7\oplus\mathfrak{sl}_2,\qquad \mathcal{L}_{\bar{1}}=\textit{spin}\otimes\textit{natural}.$$

 $\mathcal{L}_{\bar{1}}$ is graded-simple as a module for \mathfrak{so}_7 if and only if $C(\mathcal{L}_{\bar{1}})$ is a graded division algebra. This module is then a loop module. In this situation, the restriction of the grading to \mathfrak{sl}_2 is a 'Pauli grading'.

Otherwise the grading on $C(\mathcal{L}_{\bar{1}})$, and hence on \mathfrak{sl}_2 , is toral.

This explain the existence of two very different types of gradings on $\mathcal L$ (Draper–E.–Martín-González 2011).

References

B. Allison, S. Berman, J. Faulkner, and A. Pianzola. *Realization of graded-simple algebras as loop algebras*, Forum Math. **20** (2008), no. 3, 395-432.

A. Elduque and M. Kochetov.

Graded simple modules and loop modules,

to appear in Contemporary Mathematics: Groups, Rings, Group Rings and Hopf Algebras, dedicated to Don Passman.

Preprint arXiv:1601.03008.

V. Mazorchuk and K. Zhao.

Graded simple algebras and graded simple representations.

Preprint arXiv:1504.05114.

Thank you!