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Setting

G : finitely generated abelian group,

L: finite-dimensional semisimple G -graded Lie algebra/F
(algebraically closed ground field of characteristic 0):

L =
⊕
g∈G

Lg , [Lg ,Lh] ⊆ Lgh ∀g , h ∈ G .

W : finite dimensional L-module with a compatible
G -grading:

W =
⊕
g∈G

Wg , LgWh ⊆Wgh ∀g , h ∈ G .

By complete reducibility, W is a direct sum of graded simple
modules.
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Main questions

(Q1) What the graded simple modules look like?

(Q2) Which L-modules admit a compatible G -grading?
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Graded simple associative algebras
(Bahturin et al., 2001–...)

Let R be a finite dimensional G -graded associative algebra/F:

R =
⊕
g∈G

Rg .

If R is graded simple, then

R ∼= EndD(W ),

for a graded division algebra D and a G -graded right D-module
W .
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Graded simple associative algebras

Moreover,

W is unique, up to isomorphisms and shifts of the grading.

The isomorphism class of the G -graded algebra D is
determined by R. This class is denoted by [R].

R ∼= Mk(D) ∼= Mk(F)⊗D, where Mk(F) is endowed with an
elementary grading: there are g1, . . . , gk ∈ G with

deg(Eij) = gig
−1
j .

(A grading induced by a grading on its irreducible module.)

[Mr (F)] = 1 if and only if the grading on Mr (F) is elementary.
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Graded division algebras

Let D be a G -graded division algebra/F.

Then the support is a subgroup T ≤ G and

D = span {Xt : t ∈ T}

where

XsXt = σ(s, t)Xst for a 2-cocycle σ : T × T → F×.

XsXt = β(s, t)XtXs , where β : T × T → F× is an alternating
bicharacter, uniquely determined by D.

D is simple (ungraded) if and only if β is nondegenerate.

[D] is determined by the pair (T , β).
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Example: Pauli grading

D = Mn(F), ε a primitive nth root of 1:

x =



1 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε2 . . . 0
...

...
...

. . .
...

0 0 0 . . . εn−1


y =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


xn = 1 = yn, yx = εxy .

For any G containing a subgroup T ' Z2
n, D is a G -graded division

algebra with support T with D(r̄ ,s̄) = FX(r̄ ,s̄) (X(r̄ ,s̄) := x ry s), and

X(r̄ ,s̄)X(r̄ ′,s̄′) = β
(

(r̄ , s̄), (r̄ ′, s̄ ′)
)
X(r̄ ′,s̄′)X(r̄ ,s̄)

with
β
(

(r̄ , s̄), (r̄ ′, s̄ ′)
)

= εsr
′−rs′ .
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Graded Brauer group

If R1 and R2 are finite-dimensional simple G -graded associative
algebras, then so is R1 ⊗ R2, so we may define a product:

[R1][R2] := [R1 ⊗ R2].

We thus obtain an abelian group: the G -graded Brauer group of
F, whose elements are the isomorphism classes of the
finite-dimensional simple G -graded associative algebras over F.
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G -gradings and Ĝ -actions

The character group: Ĝ := Hom(G ,F×) is a quasitorus.

The G -gradings on a vector space W (resp., an algebra A)
correspond bijectively to the homomorphisms Ĝ → GL(W ) (resp.
Ĝ → Aut(A)), as algebraic groups.

If A =
⊕

g∈G Ag , then the formula

αχ(a) = χ(g)a, for any g ∈ G and a ∈ Ag ,

gives the homomorphism Ĝ → Aut(A) : χ 7→ αχ.

Given a homomorphism Ĝ → Aut(A) : χ 7→ αχ, then
A =

⊕
g∈G Ag with

Ag := {a ∈ A : αχ(a) = χ(g)a ∀χ ∈ Ĝ}.
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Ĝ -actions and bicharacters

Let R be a simple G -graded associative algebra:
R ∼= Mk(D) ∼= Mk(F)⊗D, where D is a simple graded division
algebra, D = span {Xt : t ∈ T}.

Any χ ∈ Ĝ determines an automorphism αχ of R, which is the
conjugation by an element of the form

uχ = diag
(
χ(g1), . . . , χ(gk)

)
⊗ Xt .

Then

uχ1uχ2 = β̂(χ1, χ2)uχ2uχ1 , with β̂(χ1, χ2) = β(t1, t2).

β̂ : Ĝ × Ĝ → F× is an alternating bicharacter: the commutation
factor for the action of Ĝ .
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Graded Brauer group and commutation factors

T and β are recovered from β̂ as

T =
(

rad β̂
)⊥ (

= {g ∈ G : χ(g) = 1 ∀χ ∈ rad β̂}
)
,

β(t1, t2) = β̂(χ1, χ2), where χi is any character such that
β̂(ψ, χi ) = ψ(ti ) for any ψ ∈ Ĝ , i = 1, 2.

Then the class [R] in the G -graded Brauer group can be identified
with the pair (T , β), and with the commutation factor β̂.

If [Ri ] ' β̂i , i = 1, 2, then

[R1][R2] = [R1 ⊗ R2] ' β̂1β̂2.
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β̂(ψ, χi ) = ψ(ti ) for any ψ ∈ Ĝ , i = 1, 2.

Then the class [R] in the G -graded Brauer group can be identified
with the pair (T , β), and with the commutation factor β̂.

If [Ri ] ' β̂i , i = 1, 2, then
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1 Graded modules. Main questions

2 Graded Brauer group

3 Brauer invariant

4 Solution to the main questions

5 Computation of Brauer invariants
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Ĝ -action on modules

Let L be a semisimple finite-dimensional G -graded Lie algebra.

Consider the associated homomorphism

η : Ĝ → Aut(L)
(
↪→ Aut(U(L))

)
: χ 7→ αχ.

Let W be a module for L endowed with a compatible G -grading,
and let ϕ : Ĝ → GL(W ) : χ 7→ ϕχ the associated action.

The compatibility condition is equivalent to:

ϕχ(xw) = αχ(x)ϕχ(w) for any x ∈ L, w ∈W , χ ∈ Ĝ .

That is, ϕχ is an isomorphism W →W αχ , so

any module with a compatible G -grading must satisfy W ∼= W αχ

for any χ ∈ Ĝ .

16 / 35
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That is, ϕχ is an isomorphism W →W αχ , so

any module with a compatible G -grading must satisfy W ∼= W αχ

for any χ ∈ Ĝ .
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Induced action on isomorphism classes of modules

Aut(L) acts (on the right) on the set of isomorphism classes of
L-modules: for any α ∈ Aut(L) and L-module V , V α denotes the
L-module defined on the same vector space V , but with the
‘twisted action’:

x .v = α(x)v for any x ∈ L and v ∈ V .

If α ∈ Int(L), then V α ∼= V , so the action of Aut(L) factors
through Out(L) = Aut(L)/ Int(L) ' Aut(Dyn).
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Induced action on dominant integral weights

Fix a Cartan subalgebra and a system {α1, . . . , αr} of simple roots,
and let Λ+ be the set of dominant integral weights.

Then we get a ‘bijection’:

{Action of Aut(L) on isomorphism classes of irreducible
L-modules}

l

{Action of Out(L) on Λ+ obtained by permutation of the vertices
of the Dynkin diagram}
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Action of Ĝ on Λ+

Then Ĝ acts on the isomorphism classes of irreducible L-modules
and, for any χ ∈ Ĝ , the automorphism αχ ∈ Aut(L) projects onto
some τχ ∈ Out(L).

For any dominant integral weight λ ∈ Λ+ consider the inertia
group

Kλ := {χ ∈ Ĝ : τχ(λ) = λ}

= {χ ∈ Ĝ : Vλ ∼= (Vλ)αχ}.

Kλ is (Zariski) closed in Ĝ and [Ĝ : Kλ] is finite.

Therefore, Hλ :=
(
Kλ
)⊥

is a finite subgroup of G , of size

|Hλ| = |Ĝλ| (the size of the orbit of λ), and Kλ is isomorphic to
the group of characters of G/Hλ.
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Irreducible modules do not admit in general a compatible
G -grading, but ...

Let Vλ be the irreducible L-module with highest weight λ,
ρ : U(L)→ End(Vλ) the associated representation.

We cannot expect Vλ to be endowed with a compatible G -grading,
or even a G/Hλ-grading.
However, for any χ ∈ Kλ, Vλ ∼= V

αχ
λ , so there is uχ ∈ End(Vλ)×

such that
ρ
(
αχ(x)

)
= uχρ(x)u−1

χ .

The homomorphism

Kλ −→ Aut
(
End(Vλ)

)
, χ 7→ Aduχ ,

corresponds to a compatible Ḡ := G/Hλ-grading on End(Vλ).
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Brauer invariant and Schur index

The class [End(Vλ)] in the
(
G/Hλ

)
-graded Brauer group is called

the Brauer invariant of λ. (Notation: Br(λ))

The associated commutation factor β̂λ : Kλ × Kλ → F× is
determined by the commutation of the uχ’s:

uχ1uχ2 = β̂λ(χ1, χ2)uχ2uχ1 .

The degree of the graded division algebra D representing Br(λ) is
called the Schur index of λ.
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Brauer invariant and Schur index

Proposition

The L-module (Vλ)k admits a Ḡ = G/Hλ-grading that makes it a
graded simple L-module (where L is endowed with the natural
induced Ḡ -grading) if and only if k equals the Schur index of λ.
This grading is unique up to isomorphism and shift.

Sketch of proof:

End((Vλ)k) ∼= Mk(F)⊗ End(Vλ). If k is the Schur index of λ and
D represents Br(λ), then Dop ∼= Mk(F).
Thus End((Vλ)k) admits a Ḡ -grading with

End((Vλ)k) ∼= Dop ⊗ End(Vλ) ∼= Dop ⊗Mr (D).

Hence [End((Vλ)k)] = 1, so the Ḡ -grading on (Vλ)k is elementary,
i.e., it is induced by a Ḡ -grading on (Vλ)k .
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Induced graded vector space

Let H be a finite subgroup of G , Ḡ = G/H, and let
U =

⊕
ḡ∈Ḡ Uḡ be a Ḡ -graded vector space.

Then K = H⊥ is a finite index subgroup of Ĝ and

W = IndĜ
K U := FĜ ⊗FK U

is a Ĝ -module; i.e., a G -graded vector space.

If U is a Ḡ -graded L-module, then W is a G -graded L-module:

x .(χ⊗ u) := χ⊗ αχ−1(x)u.
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Graded simple modules: (Q1)

For each Ĝ -orbit O in Λ+, select a representative λ.

If k is the Schur index of Vλ, equip U = (Vλ)k with a compatible(
G/Hλ

)
-grading and consider

W (O) := IndĜ
Kλ

U.

Theorem

Up to isomorphisms and shifts, the W (O)’s are the graded-simple
finite dimensional L-modules.
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Modules admitting compatible gradings: (Q2)

Theorem

An L-module V admits a compatible G -grading if and only if for
any λ ∈ Λ+ the multiplicities of Vµ in V , for all the elements µ in

the orbit Ĝλ, are equal and divisible by the Schur index of λ.

In particular, for λ ∈ Λ+,

Vλ admits a compatible G -grading
if and only if

Hλ and Br(λ) are trivial.

26 / 35



Modules admitting compatible gradings: (Q2)

Theorem

An L-module V admits a compatible G -grading if and only if for
any λ ∈ Λ+ the multiplicities of Vµ in V , for all the elements µ in
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Back to graded simple modules: another point of view

Let W be a graded simple module. Its centralizer EndL(W ) is a
graded division algebra.

Take a maximal graded subfield F of the centralizer.
F is isomorphic to a group algebra FH for a subgroup H of G .
Let π : G → G/H be the natural projection and let ρ : F → F× be
a homomorphism of unital algebras.

Theorem

V := W /W ker(ρ) is a simple G/H-graded module.

W is isomorphic, as a G -graded module, to the loop module

Lπ(V ) :=
⊕
g∈G

Vḡ ⊗ g
(
⊆ V ⊗ FG

)
.
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Background on algebraic groups

Let G be a semisimple algebraic group with Lie(G) = L.
Consider the central isogenies

Gsc → G→ Gad

Z (Gsc) = ker
(
Gsc → Gad

)
is isomorphic to the group of

characters of Λ/Λr.
(Λ is the weight lattice and Λr the root lattice.)

Aut(L) = Gad o Aut(Dyn).
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Gradings come into scene

η : Ĝ → Aut(L), χ 7→ αχ, a ‘G -grading’ on L.

λ ∈ Λ+, ρ : L→ gl(Vλ) the associated representation.
If Sλ is the stabilizer of λ in Aut(Dyn), ρ integrates to a
representation

ρ̃ : Gsc o Sλ → GL(Vλ).

The elements of Z (Gsc) act by scalar multiplication on Vλ, so
ρ̃ induces a homomorphism

Ψλ : Z (Gsc)→ F×.
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Gradings come into scene

Let π : Gsc o Sλ → Gad o Sλ be the natural quotient map.(
Kλ → Gad o Sλ ↪→ Aut(L)

)
For χ ∈ Kλ, let α̃χ ∈ Gsc o Sλ be a preimage of αχ. Then

ρ
(
αχ(x)

)
= ρ̃(α̃χ)ρ(x)ρ̃(α̃χ)−1.

Ĝ is abelian, so the commutators [α̃χ1 , α̃χ2 ] lie in Z (Gsc), and
the commutation factor is given by:

β̂λ(χ1, χ2) = Ψλ

(
[α̃χ1 , α̃χ2 ]

)
.
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Trivial Brauer invariants

Theorem

1 λ ∈ Λr =⇒ Br(λ) = 1.

2 Λ = Λr (i.e., Int(L) is simply connected) and Aut(Dyn) = 1
=⇒ any L-module admits a compatible grading.

Corollary

If L is simple of type G2, F4, or E8, then any L-module admits a
compatible grading.
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Brauer invariants for the classical simple Lie algebras

The Brauer invariant Br(λ), λ =
∑r

i=1 mi$i , can be explicitly
computed.

If β̂λ is not trivial, it can be described in terms of the
commutation factor of the natural module, or of the spin
modules.
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E6,7

For E6, the Brauer invariant is either trivial or isomorphic to
[(M3(F),Pauli grading)].

For E7, the Brauer invariant is either trivial or isomorphic to
[(M2(F),Pauli grading)].

34 / 35



E6,7

For E6, the Brauer invariant is either trivial or isomorphic to
[(M3(F),Pauli grading)].

For E7, the Brauer invariant is either trivial or isomorphic to
[(M2(F),Pauli grading)].

34 / 35



E6,7

For E6, the Brauer invariant is either trivial or isomorphic to
[(M3(F),Pauli grading)].

For E7, the Brauer invariant is either trivial or isomorphic to
[(M2(F),Pauli grading)].

34 / 35



A. Elduque and M. Kochetov.

Gradings on simple Lie algebras.

Mathematical Surveys and Monographs 189,

American Mathematical Society, 2013.

A. Elduque and M. Kochetov.

Graded modules over classical simple Lie algebras with a grading.

Israel J. Math. 207 (2015), no. 1, 229–280.

A. Elduque and M. Kochetov.

Gradings on the Lie algebra D4 revisited.

J. Algebra 441 (2015), 441–474.

C. Draper, A. Elduque, and M. Kochetov.

Gradings on modules over Lie algebras of E types.

In preparation.

That’s all. Thanks

35 / 35



A. Elduque and M. Kochetov.

Gradings on simple Lie algebras.

Mathematical Surveys and Monographs 189,

American Mathematical Society, 2013.

A. Elduque and M. Kochetov.

Graded modules over classical simple Lie algebras with a grading.

Israel J. Math. 207 (2015), no. 1, 229–280.

A. Elduque and M. Kochetov.

Gradings on the Lie algebra D4 revisited.

J. Algebra 441 (2015), 441–474.

C. Draper, A. Elduque, and M. Kochetov.

Gradings on modules over Lie algebras of E types.

In preparation.

That’s all. Thanks

35 / 35



Type A: inner

L = slr+1(F) and assume that the image of Ĝ → Aut(L) is
contained in Int(L).

b b b bα1 α2 αr−1 αr

In this case the G -grading in L is induced by a G -grading on
R = Mr+1(F).

For any λ =
∑r

i=1 mi$i ∈ Λ+, Hλ = 1 and

Br(λ) = β̂
∑r

i=1 imi ,

where β̂ : Ĝ × Ĝ → F is the commutation factor for the action of
Ĝ on R.
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Ĝ on R.

36 / 35



Type A: inner

L = slr+1(F) and assume that the image of Ĝ → Aut(L) is
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Type A: outer

L = slr+1(F) and assume that the image of Ĝ → Aut(L) is not
contained in Int(L).
Then there exists a distinguished element h ∈ G of order 2 such
that the induced Ḡ = G/〈h〉-grading on L is ‘inner’: H$1 = 〈h〉.

For any λ =
∑r

i=1 mi$i ∈ Λ+,

If mi 6= mr+1−i for some i , then Hλ = 〈h〉 and

Br(λ) = β̂
∑r

i=1 imi ,

where β̂ is the commutation factor for the action of (G/〈h〉)̂
on R.

If r is even and mi = mr+1−i for all i , then Hλ = 1 and
Br(λ) = 1.

If r is odd and mi = mr+1−i for all i , then Hλ = 1, but Br(λ)
may be nontrivial (the description is quite technical).
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contained in Int(L).

Then there exists a distinguished element h ∈ G of order 2 such
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Type B

L = so2r+1(F), r ≥ 2.

b b b b b>
α1 α2 αr−2 αr−1 αr

Then the module V$1 is the natural (2r + 1)-dimensional module,
for i = 2, . . . , r − 1, V$i = ∧iV$1 , and V$r is the spin module
(i.e., the irreducible module for the even Clifford algebra Cl0̄(V$1)).

The G -grading on L is always induced by a compatible G -grading
on V$1 .

For any λ =
∑r

i=1 mi$i ∈ Λ+, Hλ = 1 and

Br(λ) = γ̂mr (it depends only on mr !)

where γ̂ is the commutation factor of the induced action of Ĝ on
Cl0̄(V$1).
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Type C

L = sp2r (F), r ≥ 2.

b b b b b<
α1 α2 αr−2 αr−1 αr

The G -grading on L is induced by a grading on
R = M2r (F) ' End(V$1).

For any λ =
∑r

i=1 mi$i ∈ Λ+, Hλ = 1 and

Br(λ) = β̂
∑b(r+1)/2c

i=1 m2i−1

where β̂ is the commutation factor of the action of Ĝ on R.
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Type D

L = so2r (F), r ≥ 4.

b b b b
b

b
�
�
�

@
@
@

α1 α2 αr−3 αr−2

αr−1

αr

Then the module V$1 is the natural 2r -dimensional module, for
i = 2, . . . , r − 2, V$i = ∧iV$1 , and V$r−1 and V$r are the two
half-spin modules (i.e., the irreducible modules for the even Clifford
algebra Cl0̄(V$1)).

The G -grading on L is induced by a grading on
R = M2r (F) ' End(V$1).

It is said to be inner if the image of Ĝ → Aut(L) is contained in
Int(L); otherwise it is called outer. (For r = 4 there are two
possibilities here.)
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Type D: inner

For any λ =
∑r

i=1 mi$i ∈ Λ+, Hλ = 1 and:

If mr−1 ≡ mr (mod 2), then Br(λ) depends only on the
commutation factor of the action of Ĝ on R.

Otherwise it also depends on the commutation factors of the
induced action of Ĝ on the two simple ideals of Cl0̄(V$1).
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Type D: outer

Here there exists a distinguished order 2 element h ∈ G such that
the induced Ḡ = G/〈h〉-grading on L is inner.

For any λ =
∑r

i=1 mi$i ∈ Λ+:

If mr−1 6= mr but mr−1 ≡ mr (mod 2), then Hλ = 〈h〉 and
Br(λ) = 1 (in the G/〈h〉-graded Brauer group!).

If mr−1 6≡ mr (mod 2), then Hλ = 〈h〉 and Br(λ) is given in
terms of the commutation factor of (G/〈h〉)̂ on Cl0̄(V$1).

If mr−1 = mr , then Hλ = 1 and

Br(λ) = β̂
∑br/2c

i=1 m2i−1 ,

where β̂ is the commutation factor of the action of Ĝ on R.
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Type D: outer
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Type D4: extra outer type

Here there exists a distinguished order 3 element h ∈ G such that
the induced Ḡ = G/〈h〉-grading on L is inner.

For any λ =
∑r

i=1 mi$i ∈ Λ+:

If m1 = m3 = m4, then Hλ = 1 and Br(λ) = 1.

Otherwise Hλ = 〈h〉 and Br(λ) = 1 (in the G/〈h〉-graded
Brauer group!).
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