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Setting

@ G: finitely generated abelian group,

e L: finite-dimensional semisimple G-graded Lie algebra/F
(algebraically closed ground field of characteristic 0):

L=cts [Lg Lnl S Lgn Vg, heG,
geG

@ W: finite dimensional £-module with a compatible
G-grading:

W = @ W, LoWy C W, Vg, heG.

geai

By complete reducibility, W is a direct sum of graded simple
modules.
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Main questions

(Q1) What the graded simple modules look like?

(Q2) Which £-modules admit a compatible G-grading?
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Graded simple associative algebras
(Bahturin et al., 2001-...)

Let R be a finite dimensional G-graded associative algebra/ F:

R=EPR,.

geaG

If R is graded simple, then
R = Endp (W),

for a graded division algebra D and a G-graded right D-module
w.
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Graded simple associative algebras

Moreover,

@ W is unique, up to isomorphisms and shifts of the grading.

@ The isomorphism class of the G-graded algebra D is
determined by R. This class is denoted by [R].

o R= M (D) = M(F) ® D, where My(F) is endowed with an
elementary grading: there are g1,...,gx € G with

deg(Ej) = gig; -

(A grading induced by a grading on its irreducible module.)

[M,(F)] = 1 if and only if the grading on M,(F) is elementary. |
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Graded division algebras

Let D be a G-graded division algebra/F.
Then the support is a subgroup T < G and

D=span{X;:te€ T}
where

o X X¢ =o0(s,t)Xs fora 2-cocycle o : T x T — F*.

o X X¢ = (s, t) Xt Xs, where B: T x T — F* is an alternating
bicharacter, uniquely determined by D.

@ D is simple (ungraded) if and only if 5 is nondegenerate.

e [D] is determined by the pair (T, ).
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Example: Pauli grading

D = M,(F), € a primitive nth root of 1:

100 ... O 010 0
0 e 0 ... O 0 01 0
R : 0 00O 1
000 el 1 00 0
x"=1=y" yX = €xy.
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Example: Pauli grading

D = M,(F), € a primitive nth root of 1:

10 0 ... O 010 0
0 e 0O ... O 0 01 0
oo : 0 0O 1
0 0 O el 100 0

x"=1=y" yX = €xy.

For any G containing a subgroup T ~ Z2, D is a G-graded division
algebra with support T with D75 = F X5 (X(75 = x"y®), and

XX sy =0 ((F, 3), (7, §/)>X(F’,§’)X(F,§)

with
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If R1 and Ry are finite-dimensional simple G-graded associative
algebras, then so is R; ® Ry, so we may define a product:

[R1][Ro] = [R1 ® Ro].
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Graded Brauer group

If R1 and Ry are finite-dimensional simple G-graded associative
algebras, then so is R; ® Ry, so we may define a product:

[R1][Ro] = [R1 ® Ro].

We thus obtain an abelian group: the G-graded Brauer group of
IF, whose elements are the isomorphism classes of the
finite-dimensional simple G-graded associative algebras over F.
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The character group: G:= Hom(G,IF*) is a quasitorus.

The G-gradings on a vector space W (resp., an algebra A)

correspond bijectively to the homomorphisms G — GL(W) (resp.

G — Aut(A)), as algebraic groups.

o If A= @gecﬂg' then the formula
ay(a) = x(g)a, forany g € G and a € A,

gives the homomorphism G — Aut(A) : y Qy.

e Given a homomorphism G — Aut(A) : x @y, then
A =@, Ag with

Ag ={acA:a(a)=x(g)aVxe 5}
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G-actions and bicharacters

Let R be a simple G-graded associative algebra:
R = M(D) = Mi(F) ® D, where D is a simple graded division
algebra, D =span{X;: t € T}.

Any x € G determines an automorphism a, of R, which is the
conjugation by an element of the form

Uy = diag(x(gl), e X(gk)> ® Xt.

Then

A

Uy Uyy = 5(X17X2)uxzuxla with B(Xla X2) - B(tla t2)-

CE GxG—F¥isan alternating bicharacter: the commutation
factor for the action of G.
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Graded Brauer group and commutation factors

T and 3 are recovered from 5 as

o T = (radﬁ)L(: {g € sz(g):1VX€radB}),

° @(tl, t2) = B(x1, x2), where X; is any character such that
B, xi) = ¥(t;) forany ¢ € G, i =1,2.
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Graded Brauer group and commutation factors

T and 3 are recovered from 5 as

o T = (radﬁ)L(: {g € sz(g):1VX€radB}),

~

° @(tl, t2) = B(x1, x2), where X; is any character such that
B, xi) = ¥(t;) forany ¢ € G, i =1,2.

Then the class [R] in the G-graded Brauer group can be identified
with the pair (T, /), and with the commutation factor 5.

If [Rj] ~ Bj, i = 1,2, then

[R1][Ro] = [R1 @ Ra] = f130.

14 /35
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Let W be a module for £ endowed with a compatible G-grading,

and let ¢ : G — GL(W) : x — ¢, the associated action.

The compatibility condition is equivalent to:
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G-action on modules

Let £ be a semisimple finite-dimensional G-graded Lie algebra.
Consider the associated homomorphism

n: G — Aut(L) <<—> Aut(U(L))) DX Oy

Let W be a module for £ endowed with a compatible G-grading,
and let ¢ : G — GL(W) : x — ¢y, the associated action.

The compatibility condition is equivalent to:
Oy (xw) = ay(x)py(w) forany xe L, we W, x € G.
That is, ¢, is an isomorphism W — W%, so

any module with a compatible G-grading must satisfy W = Wx
for any x € G. J
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Induced action on isomorphism classes of modules

Aut(L) acts (on the right) on the set of isomorphism classes of
L-modules: for any o € Aut(£) and £-module V, V* denotes the
L-module defined on the same vector space V/, but with the
‘twisted action’:

x.v = a(x)v forany x € L and v € V.
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Induced action on isomorphism classes of modules

Aut(L) acts (on the right) on the set of isomorphism classes of
L-modules: for any o € Aut(£) and £-module V, V* denotes the
L-module defined on the same vector space V/, but with the
‘twisted action’:

x.v = a(x)v forany x € L and v € V.

If @ € Int(L), then V* = V| so the action of Aut(L) factors
through Out(£) = Aut(£)/ Int(£) ~ Aut(Dyn).

17/35
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Induced action on dominant integral weights

Fix a Cartan subalgebra and a system {aq,...,a,} of simple roots,
and let AT be the set of dominant integral weights.

Then we get a ‘bijection’:

{Action of Aut(£) on isomorphism classes of irreducible
L-modules}

!

{Action of Out(£) on AT obtained by permutation of the vertices
of the Dynkin diagram}
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Action of G on A*

Then G acts on the isomorphism classes of irreducible £-modules
and, for any x € G, the automorphism «, € Aut(£) projects onto
some 7, € Out(L).

For any dominant integral weight A\ € AT consider the inertia

group

Ky:i={x€G:n())=A}
={x€G:Vy=(Vy)™}.

Ky is (Zariski) closed in G and [G : K] is finite.

Therefore, Hy := (KA)L is a finite subgroup of G, of size

|Hy| = |GA| (the size of the orbit of A), and K is isomorphic to
the group of characters of G/H,.

19/35
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Irreducible modules do not admit in general a compatible
G-grading, but ...

Let V) be the irreducible £-module with highest weight A,
p: U(L) — End(V),) the associated representation.

We cannot expect V) to be endowed with a compatible G-grading,
or even a G/Hy-grading.

However, for any x € Ky, V) = V{'X, so there is u, € End(V))>
such that

plax(x)) = ”xP(X)U;I-

The homomorphism
Ky — Aut(End(VA)), X — Ady,,

corresponds to a compatible G := G/H,-grading on End(V)).

20 /35
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Brauer invariant and Schur index

The class [End(V4)] in the (G/H;)-graded Brauer group is called
the Brauer invariant of A\.  (Notation: Br()))

The associated commutation factor BAA KX Ky = FXis
determined by the commutation of the u,'s:

Uy Uxy, = B)\(Xla X2)UX2 Uy -

The degree of the graded division algebra D representing Br(\) is
called the Schur index of A.

21/35
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Brauer invariant and Schur index

Proposition

The £-module (V\)¥ admits a G = G/Hy-grading that makes it a
graded simple £-module (where L is endowed with the natural
induced G-grading) if and only if k equals the Schur index of \.
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Brauer invariant and Schur index

Proposition

The £-module (V\)¥ admits a G = G/Hy-grading that makes it a
graded simple £L-module (where L is endowed with the natural
induced G-grading) if and only if k equals the Schur index of .
This grading is unique up to isomorphism and shift.

Sketch of proof:

End((VA)¥) = My(F) @ End(V4). If k is the Schur index of A and
D represents Br(\), then D°P = M (F).
Thus End((V3)¥) admits a G-grading with

End((V)¥) = D° @ End(V)) = D @ M,(D).

Hence [End((V)\)¥)] = 1, so the G-grading on (V) is elementary,
i.e., it is induced by a G-grading on (V). O

v
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Induced graded vector space

Let H be a finite subgiroup of G, G = G/H, and let
U= @zcz Ug be a G-graded vector space.

Then K = H' is a finite index subgroup of G and
W = IndS U := FG @k U

is a @—module; i.e., a G-graded vector space.

If Uis a G-graded £-module, then W is a G-graded £-module:

x.(Xx ®u) == x ® ay-1(x)u.

24 /35
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Graded simple modules: (Q1)

For each G-orbit O in AT, select a representative \.
If k is the Schur index of V), equip U = (V,)* with a compatible
(G/H,)-grading and consider

W(0) := Ind&, U.

Theorem

Up to isomorphisms and shifts, the W(O)'s are the graded-simple
finite dimensional £L-modules.
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Modules admitting compatible gradings: (Q2)

Theorem

An L-module V' admits a compatible G-grading if and only if for
any A € N the multiplicities of V), in V, for all the elements 1 in

the orbit G A, are equal and divisible by the Schur index of .
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Modules admitting compatible gradings: (Q2)

Theorem

An L-module V' admits a compatible G-grading if and only if for
any A € N the multiplicities of V), in V, for all the elements 1 in

the orbit G A, are equal and divisible by the Schur index of .

In particular, for A € AT,

V/\ admits a compatible G-grading
if and only if
Hy and Br(\) are trivial.

26 /35
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Back to graded simple modules: another point of view

Let W be a graded simple module. Its centralizer Endg (W) is a
graded division algebra.

Take a maximal graded subfield F of the centralizer.

F is isomorphic to a group algebra FH for a subgroup H of G.

Let 7 : G — G/H be the natural projection and let p: F — F* be
a homomorphism of unital algebras.

Theorem
o V:=W/Wker(p) is a simple G/H-graded module.

e W is isomorphic, as a G-graded module, to the loop module

L(V) =P V;og (g V®FG).
geai
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Background on algebraic groups

@ Let G be a semisimple algebraic group with Lie(G) = £.

Consider the central isogenies
9SC N 9 N 9ad

o Z(5%) = ker(5* — G*) is isomorphic to the group of
characters of A/A".
(A is the weight lattice and A" the root lattice.)

o Aut(L) = G2 x Aut(Dyn).

29 /35
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Gradings come into scene

°: G — Aut(L), x — ay, a ‘G-grading’ on L.

@ A€ AT, p: L — gl(V,) the associated representation.
If S* is the stabilizer of X in Aut(Dyn), p integrates to a
representation
§:GC % SN = GL(Vy).

The elements of Z(G*°) act by scalar multiplication on V), so
p induces a homomorphism

v, Z(55) — F*.
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Gradings come into scene

o Let m:G% x S* — G2d » S be the natural quotient map.
(K = G2 % S — Aut(L))
For x € K), let &, € G° x S* be a preimage of ay. Then

pax(x)) = A ) p(x)A(dy) "
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Gradings come into scene

o Let m:G% x S* — G2d » S be the natural quotient map.
(K = G2 % S — Aut(L))
For x € K), let &, € G° x S* be a preimage of ay. Then

play(x)) = @) p(x)a(dy)
e G is abelian, so the commutators [Gryy, Gy, ] lie in Z(G%), and
the commutation factor is given by:

Ba(x1, x2) = Wi ([Gyy, o)) -

31/35
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Trivial Brauer invariants

Theorem
Q@ \e N' = Br(\)=1.
@ N=AN (ie, Int(L) is simply connected) and Aut(Dyn) = 1
= any L-module admits a compatible grading.

Corollary

If £ is simple of type Gy, Fy4, or Eg, then any L-module admits a
compatible grading.
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@ The Brauer invariant Br(\), A = Y"7_; m;w;j, can be explicitly
computed.
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Brauer invariants for the classical simple Lie algebras

@ The Brauer invariant Br(\), A = Y"7_; m;w;j, can be explicitly
computed.

o If BAA is not trivial, it can be described in terms of the
commutation factor of the natural module, or of the spin
modules.
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@ For Eg, the Brauer invariant is either trivial or isomorphic to
[(M3(F), Pauli grading)].
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@ For Eg, the Brauer invariant is either trivial or isomorphic to
[(M3(F), Pauli grading)].

@ For E;, the Brauer invariant is either trivial or isomorphic to
[(Ma(F), Pauli grading)].

34 /35



‘ A. Elduque and M. Kochetov.
Gradings on simple Lie algebras.
Mathematical Surveys and Monographs 189,
American Mathematical Society, 2013.

@ A. Elduque and M. Kochetov.
Graded modules over classical simple Lie algebras with a grading.
Israel J. Math. 207 (2015), no. 1, 229-280.

@ A. Elduque and M. Kochetov.
Gradings on the Lie algebra D, revisited.
J. Algebra 441 (2015), 441-474.

@ C. Draper, A. Elduque, and M. Kochetov.
Gradings on modules over Lie algebras of E types.
In preparation.

35/35



‘ A. Elduque and M. Kochetov.
Gradings on simple Lie algebras.
Mathematical Surveys and Monographs 189,
American Mathematical Society, 2013.

A. Elduque and M. Kochetov.
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Gradings on modules over Lie algebras of E types.

In preparation.
That's all.  Thanks
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Type A: inner

L =sl,41(F) and assume that the image of G — Aut(L) is
contained in Int(£).

a1 %) Qr_1 Qp

In this case the G-grading in £ is induced by a G-grading on
:R - Mr+]_(IF).
Forany A =7 ; mjw; € AT, Hy =1 and

Br(\) = 327:1 im;.

where B . G x G — F is the commutation factor for the action of
G on R.
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Type A: outer

£ = sl,41(F) and assume that the image of G — Aut(£) is not
contained in Int(£).

Then there exists a distinguished element h € G of order 2 such
that the induced G = G/(h)-grading on L is ‘inner": Hy, = (h).

Forany A =>"7_; mjw; € AT,
@ If m; # m,41_; for some i, then Hy = (h) and

Br()\) = AXi1imi.

where 3 is the commutation factor for the action of (G/(h))A

on R.
@ If ris even and m; = m,;_; for all i, then Hy =1 and
Br(\) = 1.

e If ris odd and m; = m,1_; for all i, then Hy =1, but Br(\)
may be nontrivial (the description is quite technical).
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Then the module V, is the natural (2r + 1)-dimensional module,
fori=2,...,r—=1, Vg, = /\inl, and V, is the spin module
(i.e., the irreducible module for the even Clifford algebra €l5(V,))-
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Type B

L :502r+1(IF), r Z 2.

aq %) Qr_2 Qr_1 Qr

Then the module V, is the natural (2r + 1)-dimensional module,
fori=2,...,r =1, Vg, = N'Vg,, and V, is the spin module
(i.e., the irreducible module for the even Clifford algebra €l5(V,))-

The G-grading on £ is always induced by a compatible G-grading
on Vg, .

Forany A =>"7_; mjw; € AT, Hy =1 and
Br(A) =4™ (it depends only on m,!)

where 4 is the commutation factor of the induced action of G on
Q:[(_)(Vzm)'
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The G-grading on £ is induced by a grading on
R = My, (F) ~ End(V,).
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The G-grading on £ is induced by a grading on
R = My, (F) ~ End(V,).

Forany A =>"7_; mjw; € AT, Hy =1 and

Br(2) = BTG o

where B is the commutation factor of the action of G on R.
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Type D

L =s0,(F), r > 4.
Qr_1

o Qo Qr_3 Or_2

Qr

Then the module Vg, is the natural 2r-dimensional module, for
i=2,...,r—2, Vo, = AN'Vg,, and Vo, , and V,, are the two
half-spin modules (i.e., the irreducible modules for the even Clifford
algebra Cl5( Ve, ))-
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Qr_1

Qr

Then the module Vg, is the natural 2r-dimensional module, for
i=2,...,r—2, Vo, = AN'Vg,, and Vo, , and V,, are the two
half-spin modules (i.e., the irreducible modules for the even Clifford
algebra Cl5( Ve, ))-

The G-grading on £ is induced by a grading on

R = My, (F) ~ End(V,). R

It is said to be inner if the image of G — Aut(£) is contained in
Int(£L); otherwise it is called outer. (For r = 4 there are two
possibilities here.)
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Type D: inner

Forany A =>"7_; mjwj € AT, Hy =1 and:
o If m—1 = m, (mod 2), then Br(\) depends only on the
commutation factor of the action of G on R.

o Otherwise it also depends on the commutation factors of the
induced action of G on the two simple ideals of €l5(Vy,).
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Here there exists a distinguished order 2 element h € G such that
the induced G = G/(h)-grading on £ is inner.
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Type D: outer

Here there exists a distinguished order 2 element h € G such that
the induced G = G/(h)-grading on £ is inner.

Forany A =>"7_; mjw; € AT:
e If m_1 # m, but m,_; = m, (mod 2), then Hy = (h) and
Br(A) =1 (in the G/(h)-graded Brauer group!).
o If m,_1 # m, (mod 2), then Hy = (h) and Br(}\) is given in
terms of the commutation factor of (G/(h)) on €l5( Vs, ).
e If m,_y = m,, then Hy, =1 and

Br()) = A4 mi-

where BA is the commutation factor of the action of G on R.

v
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Type D,: extra outer type

Here there exists a distinguished order 3 element h € G such that
the induced G = G/(h)-grading on £ is inner.
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Type D,: extra outer type

Here there exists a distinguished order 3 element h € G such that
the induced G = G/(h)-grading on £ is inner.

Forany A =>"7_; mjw; € AT:
o If my = m3 = my, then Hy =1 and Br(\) = 1.
@ Otherwise Hy = (h) and Br(\) =1 (in the G/(h)-graded
Brauer group!).
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