
COMPOSITION ALGEBRAS AND THEIR GRADINGS

ALBERTO ELDUQUE?

Mini-course at the “Universidad de Málaga”

Abstract. The goal of this course is the introduction of the basic properties

of the classical composition algebras (that is, those algebras which are anal-
ogous to the real, complex, quaternion or octonion numbers), and how these

basic properties are enough to get all the possible gradings on them. Then

a new class of (non unital) composition algebras will be defined and studied,
the so called symmetric composition algebras. Finally, the gradings on these

two families of composition algebras will be shown to induce some interesting

gradings on the exceptional simple Lie algebras.

1. Unital composition algebras. The Cayley-Dickson process.

Composition algebras constitute a generalization of the classical algebras of the
real R, complex C, quaternion H (1843), and octonion numbers O (1845).

Definition 1.1. A composition algebra (over a field F) is a not necessarily associa-
tive algebra C, endowed with a nondegenerate quadratic form (the norm) q : C → F
(i.e., the bilinear form q(x, y) = q(x + y) − q(x) − q(y) is nondegenerate) which is
multiplicative: q(xy) = q(x)q(y) ∀x, y ∈ C.

The unital composition algebras will be called Hurwitz algebras.

Easy consequences:

• q(xy, xz) = q(x)q(y, z) = q(yx, zx) ∀x, y, z. (lx and rx are similarities of
norm q(x).)

• q(xy, tz) + q(ty, xz) = q(x, t)q(y, z) ∀x, y, z, t.
Assume now that C is unital:

• t = 1 ⇒ q(xy, z) = q
(
y, (q(x, 1)1 − x)z) = q(y, x̄z) (x̄ = q(x, 1)1 − x is an

order 2 orthogonal map). That is:

l∗x = lx̄, r∗x = rx̄.

Then lxlx̄ = rxrx̄ = q(x)id, and applied to 1 this gives:

x2 − q(x, 1)x+ q(x)1 = 0, ∀x (quadratic algebras)

• q(xy, z) = q(xy, z̄) = q(x, z̄ȳ) = q(zx, ȳ) = q(z, ȳx̄), so that xy = ȳx̄.
That is, x 7→ x̄ is an involution (the standard involution), which satisfies
xx̄ = q(x)1 = x̄x, and x+ x̄ = q(x, 1)1 ∀x.

• lxlx̄ = q(x)id ⇒ l2x − q(x, 1)lx + q(x)id = 0 ⇒ l2x = lx2 (x(xy) = x2y), and

in the same vein (yx)x = yx2. That is, Hurwitz algebras are alternative .
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Cayley-Dickson doubling process:

Let Q be a subalgebra of a Hurwitz algebra C such that q|Q is nondegenerate,
and let u ∈ C such that q(u) 6= 0 = q(u,Q). Then 1 ∈ Q, so that q(u, 1) = 0 and
hence u2 = −q(u)1. Then for any x ∈ Q, q(xu, 1) = q(x, ū) = −q(x, u) = 0, so that
xu = −xu. Then:

x(yu) = −x(yu) = −x(ūȳ) = u(x̄ȳ) = u(yx) = −(yx)ū = (yx)u,

(yu)x = −x̄(yu) = x̄(yu) = (yx̄)u,

(xu)(yu) = −ȳ((xu)u) = ȳ((xu)u) = ȳ(xu2) = αȳx,

(for α = −q(u) 6= 0).
Thus Q⊕Qu is a subalgebra of C and q|Q⊕Qu is nondegenerate.

Conversely, assume that Q is a Hurwitz algebra with norm q and 0 6= α ∈ F.
Consider the vector space C := Q⊕Qu (this is formal: just the direct sum of two
copies of Q), with multiplication:

(a+ bu)(c+ du) = (ac+ αd̄b) + (da+ bc̄)u,

and quadratic form

q(x+ yu) = q(x)− αq(y).

Notation: C = CD(Q,α).
Then:

q
(
(a+ bu)(c+ du)

)
= q(ac+ αd̄b)− αq(da+ bc̄),

q(a+ bu)q(c+ du) =
(
q(a)− αq(b)

)(
q(c)− αq(d)

)
= q(ac) + α2q(bd)− α

(
q(da) + q(ba)

)
.

and these expressions are equal for any a, b, c, d ∈ Q if and only if:

q(ac, d̄b) = q(da, bc̄) ∀a, b, c, d ∈ Q
⇔ q

(
d(ac), b

)
= q
(
(da)c, b

)
∀a, b, c, d ∈ Q

⇔ d(ac) = (da)c ∀a, c, d ∈ Q
⇔ Q is associative.

Theorem 1.2. Let Q be a Hurwitz algebra with norm q and let 0 6= α ∈ F. Let
C = CD(Q,α) as above. Then:

(i) C is a Hurwitz algebra if and only if Q is associative.

(ii) C is associative if and only if Q is commutative. (As x(yu) = (yx)u.)

(iii) C is commutative if and only if Q = F1. (As xu = ux̄, so we must have
x = x̄ for any x.)

Remark 1.3. F is a Hurwitz algebra if and only if charF 6= 2.

Notation: CD(A,α, β) = CD
(
CD(A,α), β

)
.

Generalized Hurwitz Theorem 1.4. Every Hurwitz algebra over a field F is
isomorphic to one of the following types:

(i) The ground field F if its characteristic is 6= 2.

(ii) A quadratic commutative and associative separable algebra K(µ) = F1+Fv,
with v2 = v + µ and 4µ+ 1 6= 0. Its norm is given by the generic norm.

(iii) A quaternion algebra Q(µ, β) = CD
(
K(µ), β

)
. (These are associative but

not commutative.)
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(iv) A Cayley algebra C(µ, β, γ) = CD
(
Q(µ, β), γ

)
. (These are alternative but

not associative.)

In particular, the dimension of any Hurwitz algebras is finite and restricted to 1, 2,
4 or 8.

Corollary 1.5. Two Hurwitz algebras are isomorphic if and only if its norms are
isometric.

Isotropic Hurwitz algebras: Let C be a Cayley algebra such that its norm q

represents 0 (split Cayley algebra). (This is always the situation if F is algebraically
closed.)

Take 0 6= x ∈ C with q(x) = 0 and take y ∈ C with q(x, ȳ) = 1 (q(., .) is
nondegenerate), then

q(xy, 1) = q(x, ȳ) = 1.

Let e1 = xy, so q(e1) = 0, q(e1, 1) = 1, and hence e2
1 = e1. Let e2 = ē1 = 1− e1, so

q(e2) = 0, e2
2 = e2, e1e2 = 0 = e2e1 and q(e1, e2) = q(e1, 1) = 1.

Then K = Fe1 + Fe2 is a composition subalgebra of C .

For any x ∈ K⊥, xe1 + xe1 = q(xe1, 1)1 = q(x, ē1)1 = q(x, e2)1 = 0. Hence
xe1 = −ē1x̄ = e2x. We get:

xe1 = e2x, xe2 = e1x.

Also, x = 1x = e1x+e2x, and e2(e1x) = (1−e1)(e1x) = ((1−e1)e1)x = 0 = e1(e2x).
Therefore,

K⊥ = U ⊕ V
with

U = {x ∈ C : e1x = x = xe2, e2x = 0 = xe1},
V = {x ∈ C : e2x = x = xe1, e1x = 0 = xe2}.

For any u ∈ U , q(u) = q(e1u) = q(e1)q(u) = 0, and hence U and V are isotropic
subspaces of C. Since q is nondegenerate, U and V are paired by q and dimU =
dimV = 3.

And for any u1, u2 ∈ U and v ∈ V :

q(u1u2,K) ⊆ q(u1,Ku2) ⊆ q(U,U) = 0,

q(u1u2, v) = q(u1u2, e2v) = −q(e2u2, u1v) + q(u1, e2)q(u2, v) = 0.

Hence U2 is orthogonal to K and V , so it must be contained in V . Also V 2 ⊆ U .
Besides,

q(U,UV ) ⊆ q(U2, V ) ⊆ q(V, V ) = 0,

q(UV, V ) ⊆ q(U, V 2) ⊆ q(U,U) = 0,

so UV + V U ⊆ K. Moreover, q(UV, e1) ⊆ q(U, e1V ) = 0, so that UV ⊆ Fe1 and
V U ⊆ Fe2. More precisely, for u ∈ U and v ∈ V , q(uv, e2) = −q(u, e2v) = −q(u, v),
so that uv = −q(u, v)e1, and vu = −q(u, v)e2.

Therefore the decomposition C = K ⊕ U ⊕ V is a Z3-grading of C .

For linearly independent elements u1, u2 ∈ U , let v ∈ V with q(u1, v) 6= 0 =
q(u2, v), then (u1u2)v = −(u1v)u2 = q(u1, v)u2 6= 0, so U2 6= 0.

Moreover, the trilinear map

U × U × U −→ F
(x, y, z) 7→ q(xy, z),

is alternating (for any x ∈ U , q(x) = 0 = q(x, 1), so x2 = 0 and hence q(x2, z) = 0;
but q(xy, y) = −q(x, y2) = 0 too).
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Take a basis {u1, u2, u3} of U with q(u1u2, u3) = 1 (this is always possible
because q(U2, U) 6= 0 since q is nondegenerate). Then {v1 = u2u3, v2 = u3u1, v3 =
u1u2} is the dual basis in V (relative to q) and the multiplication table is:

e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0

e2 0 e2 0 0 0 v1 v2 v3

u1 0 u1 0 v3 −v2 −e1 0 0

u2 0 u2 −v3 0 v1 0 −e1 0

u3 0 u3 v2 −v1 0 0 0 −e1

v1 v1 0 −e2 0 0 0 u3 −u2

v2 v2 0 0 −e2 0 −u3 0 u1

v3 v3 0 0 0 −e2 u2 −u1 0

(For instance, q(u1, v1) = q(u1, u2u3) = 1, so u1v1 = −e1, v1u1 = −e2; q(u1, v2) =
q(u1, u3u1) = 0, so u1v2 = 0 = v2u1; v1v2 = v1(u3u1) = −u3(v1u1) = u3e2 = u3,
...)

Notation: The split Cayley algebra above is denoted by C(F) and the basis con-
sidered above is called a canonical basis of C(F).

Theorem 1.6. Let n = 2, 4 or 8. Then there is, up to isomorphism, a unique
Hurwitz algebra with isotropic norm of dimension n:

(i) Fe1 + Fe2 in dimension 2, which is just the cartesian product of two copies
of F.

(ii) Fe1 + Fe2 + Fu1 + Fv1 in dimension 4, which is isomorphic to Mat2(F),
with the norm given by the determinant.

(iii) C(F) in dimension 8.

What about real Hurwitz algebras?

If Q is a real Hurwitz algebra which is not split (q does not represent 0) then q
is positive definite, the norm of CD(Q,α) is positive definite if and only if α < 0,
and in this case (change u to 1√

−αu) CD(Q,α) = CD(Q,−1). Thus the list of real

Hurwitz algebras is:

• the split ones: R⊕ R, Mat2(R), C(R),
• the “division” ones: R, C = CD(R,−1), H = CD(C,−1), and O =
CD(H,−1).

There are many good references that cover the material in this section. Let us
mention, for instance, [KMRT98, Chapter VIII] or [ZSSS82, Chapter 2].
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2. Symmetric composition algebras. Triality.

Definition 2.1. A composition algebra (S, ∗, q) is said to be a symmetric compo-
sition algebra if l∗x = rx for any x ∈ S (that is, q(x ∗ y, z) = q(x, y ∗ z) for any
x, y, z ∈ S).

Theorem 2.2. Let (S, ∗, q) be a composition algebra. The following conditions are
equivalent:

(a) (S, ∗, q) is symmetric.
(b) For any x, y ∈ S, (x ∗ y) ∗ x = x ∗ (y ∗ x) = q(x)y.

Proof. If (S, ∗, q) is symmetric, then for any x, y, z ∈ S,

q
(
(x ∗ y) ∗ x, z

)
= q(x ∗ y, x ∗ z) = q(x)q(y, z) = q

(
q(x)y, z)

whence (b), since q is nondegenerate. Conversely, take x, y, z ∈ S with q(y) 6= 0, so
that ly and ry are bijective, and hence there is an element z′ ∈ S with z = z′ ∗ y.
Then:

q(x ∗ y, z) = q(x ∗ y, z′ ∗ y) = q(x, z′)q(y) = q
(
x, y ∗ (z′ ∗ y)

)
= q(x, y ∗ z).

This proves (a) assuming q(y) 6= 0, but any isotropic element is the sum of two non
isotropic elements, so (a) follows. �

Remark 2.3.

• Condition (b) above implies that ((x ∗ y) ∗ x) ∗ (x ∗ y) = q(x ∗ y)x, but also
((x ∗ y) ∗ x) ∗ (x ∗ y) = q(x)y ∗ (x ∗ y) = q(x)q(y)x, so that condition (b)
already forces the quadratic form q to be multiplicative.

• Let (S, ∗, q) be a symmetric composition algebra. Take an element a ∈ S
with q(a) 6= 0 and define a new multiplication and nondegenerate quadratic
form on S by means of

x • y = (a ∗ x) ∗ (y ∗ a), q̃(x) = q(x)q(a)2.

Then (S, •, q̃) is again a composition algebra. Consider the element e =
1

q(a)2 a ∗ a. Then

e • x = (a ∗ e) ∗ (x ∗ a) =
1

q(a)2
(a ∗ (a ∗ a)) ∗ (x ∗ a) =

1

q(a)
a ∗ (x ∗ a) = x,

and x • e = x too for any x ∈ S. Hence (S, •, q̃) is a Hurwitz algebra.
Therefore the dimension of any symmetric composition algebra is restricted
to 1, 2, 4 or 8. (And note the the only symmetric composition algebra of
dimension 1 is, up to isomorphism, the ground field.)

Examples 2.4. (Okubo 1978 [Oku78])

• Para-Hurwitz algebras: Let C be a Hurwitz algebra with norm q and
consider the composition algebra (C, •, q) with the new product given by

x • y = x̄ȳ.

Then q(x • y, z) = q(x̄ȳ, z) = q(x̄, zy) = q(x, zy) = q(x, y • z), for any
x, y, z, so that (C, •, q) is a symmetric composition algebra. (Note that
1 • x = x • 1 = x̄ = q(x, 1)1− x ∀x: 1 is the para-unit of (C, •, q).)
• Okubo algebras: Assume charF 6= 3 (the case of charF = 3 requires a

different definition), and let ω ∈ F be a primitive cubic root of 1. Let A
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be a central simple associative algebra of degree 3 with trace tr, and let
S = A0 = {x ∈ A : tr(x) = 0} with multiplication and norm given by:

x ∗ y = ωxy − ω2yx− ω − ω2

3
tr(xy)1,

q(x) = −1

2
tr(x2), (it is valid in characteristic 2!)

Then, for any x, y ∈ S:

(x ∗ y) ∗ x = ω(x ∗ y)x− ω2x(x ∗ y)− ω − ω2

3
tr
(
(x ∗ y)x

)
1

= ω2xyx− yx2 − ω2 − 1

3
tr(xy)x− x2y + ωxyx+

1− ω
3

tr(xy)x

− ω − ω2

3
tr
(

(ω − ω2)x2y
)

1 (tr(x) = 0)

= −
(
x2y + yx2 + xyx

)
+ tr(xy)x+ tr(x2y)1 ((ω − ω2)2 = −3).

But if tr(x) = 0, then x3 − 1
2 tr(x2)x− det(x)1 = 0, so

x2y + yx2 + xyx−
(
tr(xy)x+

1

2
tr(x2)y

)
∈ F1.

Since (x ∗ y) ∗ x ∈ A0, we have (x ∗ y) ∗ x = − 1
2 tr(x2)y = x ∗ (y ∗ x).

Therefore (S, ∗, q) is a symmetric composition algebra.
In case ω 6∈ F, take K = F[ω] and a central simple associative algebra A

of degree 3 over K endowed with a K/F-involution of second kind J . Then
take S = K(A, J)0 = {x ∈ A0 : J(x) = −x} (this is a F-subspace) and use
the same formulae above to define the multiplication and the norm.

For instance, for F = R, take A = Mat3(C), S = su3 = {x ∈ Mat3(C) :

tr(x) = 0, xT = −x}

Remark 2.5. Given an Okubo algebra, note that for any x, y ∈ S,

x ∗ y = ωxy − ω2yx− ω − ω2

3
tr(xy)1,

y ∗ x = ωyx− ω2xy − ω − ω2

3
tr(xy)1,

so that

ωx ∗ y + ω2y ∗ x = (ω2 − ω)xy − (ω + ω2)
ω − ω2

3
tr(xy)1,

and

xy =
ω

ω2 − ω
x ∗ y +

ω2

ω2 − ω
y ∗ x+

1

3
q(x, y)1,

and the product in A is determined by the product in the Okubo algebra.

Classification (charF 6= 3):
We can go in the reverse direction of Okubo’s construction. Given a symmetric

composition algebra (S, ∗, q) over a field containing ω, define the algebra A = F1⊕S
with multiplication determined by the formula

xy =
ω

ω2 − ω
x ∗ y +

ω2

ω2 − ω
y ∗ x+

1

3
q(x, y)1,

for any x, y ∈ S. Then A is a separable alternative algebra of degree 3.
In case ω 6∈ F, then we must consider A = F[ω]1 ⊕

(
F[ω] ⊗ S

)
, with the same

formula for the product. In F[ω] we have the Galois automorphism ωτ = ω2. Then
the conditions J(1) = 1 and J(s) = −s for any s ∈ S induce a F[ω]/F-involution of
the second kind in A.



COMPOSITION ALGEBRAS AND THEIR GRADINGS 7

Theorem 2.6. (charF 6= 3)

ω ∈ F : The symmetric composition algebras of dimension ≥ 2 are, up to
isomorphism, the algebras (A0, ∗, q) for A a separable alternative algebra of
degree 3.

Two such symmetric composition algebras are isomorphic if and only if
so are the corresponding alternative algebras.

ω 6∈ F : The symmetric composition algebras of dimension ≥ 2 are, up to

isomorphism, the algebras
(
K(A; J)0, ∗, q

)
for A a separable alternative al-

gebra of degree 3 over K = F[ω], and J a K/F-involution of the second
kind.

Two such symmetric composition algebras are isomorphic if and only if
so are the corresponding alternative algebras, as algebras with involution.

Possibilities for such algebras A: Let K = F[ω], so that K = F if ω ∈ F.

• A = K × C, with degC = 2 (⇒ C is a Hurwitz algebra!), then (A0, ∗, q)
is isomorphic to the para-Hurwitz algebra attached to C if K = F, and(
K(A, J)0, ∗, q

)
to the one attached to Ĉ = {x ∈ C : J(x) = x̄} if K 6= F.

• A is a central simple associative algebra of degree 3, and hence (A0, ∗, q) or(
K(A, J)0, ∗, q

)
is an Okubo algebra.

• A = K ⊗F L, for a cubic field extension L of F (if ω 6∈ F L = {x ∈ A :
J(x) = x}) and dimF S = 2.

Remark 2.7. The classification in characteristic 3 follows a different path to arrive
at a similar result: any symmetric composition algebra is either para-Hurwitz or
“Okubo”, with a few exceptions in dimension 2.

Remark 2.8. Assume that (S, ∗, q) is a two-dimensional symmetric composition
algebra (in any characteristic).

If there is an element a ∈ S such that q(a) 6= 0 and a ∗ a ∈ Fa, then we may
scale a and get an element e ∈ S such that e ∗ e = e (so that q(e) = 1). Then S is
the para-Hurwitz algebra attached to the Hurwitz algebra defined over S with the
multiplication

x · y = (e ∗ x) ∗ (y ∗ e),
with unity 1 = e.

Otherwise, take a ∈ S with q(a) = 1 (this is always possible). Then a ∗ a 6∈ Fa,
so that S = Fa⊕ F(a ∗ a), and the multiplication is completely determined by the
scalar α = q(a, a ∗ a):

a ∗ (a ∗ a) = (a ∗ a) ∗ a = q(a)a = a,

(a ∗ a) ∗ (a ∗ a) = −((a ∗ a) ∗ a) ∗ a+ q(a, a ∗ a)a = a ∗ a− αa.

Triality:
Assume charF 6= 2, and let (S, ∗, q) be a symmetric composition algebra. Con-

sider the associated orthogonal Lie algebra

so(S, q) = {d ∈ EndF(S) : q
(
d(x), y

)
+ q
(
x, d(y)

)
= 0 ∀x, y ∈ S}.

The triality Lie algebra of (S, ∗, q) is defined as the following Lie subalgebra of
so(S, q)3 (with componentwise bracket):

tri(S, ∗, q) = {(d0, d1, d2) ∈ so(S, q)3 : d0(x ∗ y) = d1(x) ∗ y+ x ∗ d2(y) ∀x, y, z ∈ S}.
Note that the condition d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) for any x, y ∈ S is

equivalent to the condition

q
(
x ∗ y, d0(z)

)
+ q
(
d1(x) ∗ y, z

)
+ q
(
x ∗ d2(y), z

)
= 0,
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for any x, y, z ∈ S. But q(x ∗ y, z) = q(y ∗ z, x) = q(z ∗ x, y). Therefore, the linear
map:

θ : tri(S, ∗, q) −→ tri(S, ∗, q)
(d0, d1, d2) 7→ (d2, d0, d1),

is an automorphism of the Lie algebra tri(S, ∗, q).

Theorem 2.9. Let (S, ∗, q) be an eight-dimensional symmetric composition algebra
over a field of characteristic 6= 2. Then:

(i) Principle of Local Triality: The projection map:

π0 : tri(S, ∗, q) −→ so(S, q)

(d0, d1, d2) 7→ d0

is an isomorphism of Lie algebras.

(ii) For any x, y ∈ S, the triple

tx,y =
(
σx,y = q(x, .)y − q(y, .)x, 1

2
q(x, y)id− rxly,

1

2
q(x, y)id− lxry

)
belongs to tri(S, ∗, q), and tri(S, ∗, q) is spanned by these elements. More-
over, for any a, b, x, y ∈ S:

[ta,b, tx,y] = tσa,b(x),y + tx,σa,b(y).

Proof. Let us first check that tx,y ∈ tri(S, ∗, q):

σx,y(u ∗ v) = q(x, u ∗ v)y − q(y, u ∗ v)x

rxly(u) ∗ v =
(
(y ∗ u) ∗ x

)
∗ v = −(v ∗ x) ∗ (y ∗ u) + q(y ∗ u, v)x,

u ∗ lxry(v) = u ∗
(
x ∗ (v ∗ y)

)
= −u ∗

(
y ∗ (v ∗ x)

)
+ q(x, y)u ∗ v

= (v ∗ x) ∗ (y ∗ u) + q(u, v ∗ x)y + q(x, y)u ∗ v,

and hence

σx,y(u ∗ v)−
(1

2
q(x, y)id− rxly

)
(u) ∗ v − u ∗

(1

2
q(x, y)id− lxry

)
(v) = 0.

Also σx,y ∈ so(S, q) and
(

1
2q(x, y)id−rxly

)∗
= 1

2q(x, y)id−rylx (adjoint relative to

the norm q), but rxlx = q(x)id, so rxly + rylx = q(x, y)id and hence
(

1
2q(x, y)id−

rxly

)∗
= −

(
1
2q(x, y)id−rxly

)
, so that 1

2q(x, y)id−rxly ∈ so(S, q), and 1
2q(x, y)id−

lxry ∈ so(S, q) too. Therefore, tx,y ∈ tri(S, ∗, q).
Since the Lie algebra so(S, q) is spanned by the σx,y’s, it is clear that the projec-

tion π0 is surjective (and hence so are π1 and π2). Consider an element (d0, d1, d2)
in kerπ0. Hence d0 = 0 and d1(x) ∗ y + x ∗ d2(y) = 0 for any x, y ∈ S. But since
π1 is onto, the subspace {d1 ∈ so(S, q) : ∃d2 ∈ so(S, q) (0, d1, d2) ∈ tri(S, ∗, q)}
is an ideal of the simple Lie algebra so(S, q). Hence either kerπ0 = 0 or for any
d ∈ so(S, q) there is another element d′ ∈ so(S, q) such that d(x) ∗ y+ x ∗ d′(y) = 0
for any x, y ∈ S. This is impossible: take d = σa,b for linearly independent elements
a, b ∈ S and take x orthogonal to a, b and not isotropic. Then d(x) = 0, so we would
get x ∗ d′(y) = 0 for any y ∈ S. This forces d′ = 0 since lx is a bijection, and we
get a contradiction. Therefore, π0 is an isomorphism.

Finally the formula [ta,b, tx,y] = tσa,b(x),y + tx,σa,b(y) follows from the “same”
formula for the σ’s and the fact that π0 is an isomorphism. �
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For the results in this section one may consult [EM93] or [KMRT98, Chapter
VIII].

3. Gradings on composition algebras.

3.1. Generalities on gradings.

Let A be an algebra (not necessarily associative) over our ground field F, a
grading on A is a decomposition

Γ : A = ⊕s∈SAs
of A into a direct sum of subspaces such that for any s1, s2 ∈ S there exists a s3 ∈ S
with As1As2 ⊆ As3 .

Then:

• The type of a grading Γ on a finite dimensional algebra A is the sequence
of numbers (n1, n2, . . . , nr) where ni denotes the number of homogeneous
spaces of dimension i, i = 1, . . . , r, nr 6= 0. (Thus dimA =

∑r
i=1 ini.)

• Two gradings Γ : A = ⊕s∈SAs and Γ′ : A′ = ⊕s′∈S′A′s′ are said to be
equivalent if there is an isomorphism ψ : A → A′ such that for any s ∈ S
there is a s′ ∈ S′ with ψ(As) = A′s′ .

• Let Γ and Γ′ be two gradings on A. The grading Γ is said to be a refinement
of Γ′ (or Γ′ a coarsening of Γ) if for any s ∈ S there is an index s′ ∈ S′ such
that As ⊆ As′ . In other words, any homogeneous space in Γ′ is a (direct)
sum of some homogeneous spaces in Γ. A grading is called fine if it admits
no proper refinement.

• The grading Γ is said to be a group grading if there is a group G containing
S such that As1As2 ⊆ As1s2 (multiplication of indices in the group G) for
any s1, s2 ∈ S. Then we can write

Γ : A = ⊕g∈GAg.
The subset {g ∈ G : Ag 6= 0} is called the support of the grading and
denoted by Supp Γ (or SuppA if the context is clear). If the group G is
abelian the grading is said to be an abelian group grading.
A group grading (respectively abelian group grading) is said to be fine if
it admits no proper refinement in the class of group gradings (respectively
abelian group gradings).

• Given a grading Γ : A = ⊕s∈SAs, one may consider the abelian group G
generated by {s ∈ S : As 6= 0} subject only to the relations s1 + s2 = s3 if
0 6= As1As2 ⊆ As3 . Then A is graded over G (or G-graded): A = ⊕g∈GAg,
where Ag is the sum of the homogeneous components As such that the class
of s in G is g. (Note that if Γ is already an abelian group grading there is
at most one such homogeneous component.)
This group G has the following property: given any group grading A =
⊕h∈HAh for an abelian group H which is a coarsening of Γ, then there exists
a unique homomorphism of groups f : G→ H such that Ah = ⊕g∈f−1(h)Ag.
The group G is called the universal grading group of Γ. The universal
grading groups of two equivalent gradings are isomorphic.

• Two abelian group gradings Γ : A = ⊕g∈GAg, and Γ′ : A′ = ⊕g′∈G′A′h are
said to be isomorphic if there is a group isomorphism ϕ : G → G′ and an
algebra isomorphism ψ : A → A′ such that for any g ∈ G, ψ(Ag) = A′ϕ(g).

It is clear that isomorphic gradings are equivalent, but the converse does



10 ALBERTO ELDUQUE

not hold. However, two equivalent abelian group gradings are isomorphic
when considered as gradings over their universal grading groups.

We will restrict ourselves most of the time to abelian group gradings, and hence
additive notation will be used quite often.

3.2. Gradings on Hurwitz algebras.

Let C = ⊕g∈GCg be a group grading of a Hurwitz algebra C, and assume,
without loss of generality, that SuppC generates G. For any x ∈ C, x2− q(x, 1)x+
q(x)1 = 0. Always 1 ∈ Ce, and hence if x ∈ Cg, with g 6= e:

• q(x, 1) = 0 so that C̄h = Ch for any h ∈ G,
• q(x) = 0 unless g2 = e.

Take now x ∈ Cg, y ∈ Ch, then q(x, y) = q(xȳ, 1) = 0 unless gh = e. But then for
g 6= h−1, 0 = q(xȳ, 1)1 = xȳ + yx̄, so that either CgCh = 0 = ChCg, or gh = hg.

Thus, if g, h ∈ G, with g 6= h and Cg 6= 0 6= Ch, q(Cg + Cg−1) 6= 0 (q is
nondegenerate), so that (Cg + Cg−1)Ch 6= 0, and hence either

• CgCh 6= 0, and then gh = hg, or
• Cg−1Ch 6= 0, and then g−1h = hg−1, so gh = hg too.

We conclude that G is abelian. In what follows, additive notation for G will be
used.

Examples 3.1.

(1) Gradings induced by the Cayley-Dickson doubling process:
• If C = CD(Q,α) = Q⊕Qu, this is a Z2-grading: C0̄ = Q, C1̄ = Qu.
• If, moreover, Q = CD(K,β) = K ⊕Kv, then C = K ⊕Kv ⊕Ku ⊕

(Kv)u is a Z2
2-grading.

• Finally, if K = CD(F, γ) = F1⊕ Fw, then C is Z3
2-graded.

(2) Cartan grading: Take a canonical basis {e1, e2, u1, u2, u3, v1, v2, v3} of
the split Cayley algebra. Then C is Z2-graded with

C(0,0) = Fe1 ⊕ Fe2,

C(1,0) = Fu1, C(−1,0) = Fv1,

C(0,1) = Fu2, C(0,−1) = Fv2,

C(1,1) = Fv3, C(−1,−1) = Fu3.

The groups Zr2 (r = 1, 2, 3) in the gradings induced by the Cayley-Dickson doubling
process, and Z2 in the Cartan grading, are the universal grading groups.

Remark 3.2. The Cartan grading is fine as a group grading, but it is not so
as a general grading, because the decomposition C = Fe1 ⊕ Fe2 ⊕ Fu1 ⊕ Fu2 ⊕
Fu3 ⊕ Fv1 ⊕ Fv2 ⊕ Fv3 is a proper refinement. This refinement is not even a
semigroup grading (because (u1u2)u3) = −e2 and u1(u2u3) = −e1 are in different
homogeneous subspaces).

Theorem 3.3. Any proper (abelian group) grading of a Cayley algebra is, up to
equivalence, either a grading induced by the Cayley-Dickson doubling process or it
is a coarsening of the Cartan grading of the split Cayley algebra.

Proof. Let C = ⊕g∈GCg be a grading of the Cayley algebra C and assume that
SuppC generates G. Then C0 is a composition subalgebra of C.

First case: Assume that G is 2-elementary. Then take 0 6= g1 ∈ G with Cg1
6= 0.

The restriction q|Cg1
is nondegenerate so we may take an element u ∈ Cg1 with

q(u) 6= 0, so that Cg1 = C0u and C0⊕Cg1 = C0⊕C0u = CD(C0, α) with α = −q(u).
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This is a composition subalgebra of C, and hence either C = C0⊕Cg1
and G = Z2,

or there is another element g2 ∈ G \ {0, g1} with Cg2
6= 0. Again take v ∈ Cg2

with q(v) 6= 0 and we get C0 ⊕ Cg1 ⊕ Cg2 ⊕ Cg1+g2 = (C0 ⊕ Cg1)⊕ (C0 ⊕ Cg1)v =
CD(C0 ⊕ Cg1

, β) = CD(C0, α, β), which is a Z2
2-graded composition subalgebra of

C. Again, either this is the whole C or we can repeat once more the process to get
C = CD(C0, α, β, γ) Z3

2-graded (and dimC0 = 1).

Second case: Assume that G is not 2-elementary, so there exists g ∈ G with
Cg 6= 0 and the order of g is > 2. Then q(Cg) = 0, so q is isotropic and hence C
is the split Cayley algebra. Take elements x ∈ Cg, y ∈ C−g with q(x, y) = −1 (q is
nondegenerate). That is, q(xy, 1) = q(x, ȳ) = −q(x, y) = 1.

Our considerations on isotropic Hurwitz algebras show that e1 = xy satisfies e2
1 =

e1, q(e1) = 0, ē1 = 1− e1 =: e2. Therefore Fe1⊕Fe2 is a composition subalgebra of
C0 and hence the subspaces U = {x ∈ C : e1x = x = xe2} and V = {x ∈ C : e2x =
x = xe1} are graded subspaces of C and we may choose a basis {u1, u2, u3} of U
consisting of homogeneous elements and such that q(u1u2, u3) = 1. With v1 = u2u3,
v2 = u3u1 and v3 = u1u2 we get a canonical basis {e1, e2, u1, u2, u3, v1, v2, v3} of
C formed by homogeneous elements and such that deg(e1) = deg(e2) = 0. Let
gi = deg(ui), i = 1, 2, 3. From uivi = −e1 we conclude that deg(vi) = −gi, and
from v1 = u2u3 we conclude that g1 + g2 + g3 = 0. The grading is a coarsening of
the Cartan grading. �

Remark 3.4. The number of non-equivalent gradings induced by the Cayley-
Dickson doubling process depends on the ground field. Actually, the number of
non equivalent Z2-gradings coincides with the number of isomorphism classes of
quaternion subalgebras Q of the Cayley algebra.

For an algebraically closed ground field F this is one. Over R there are two
non isomorphic Cayley algebras, the classical division algebra of the octonions
O = C(−1,−1,−1) and the split Cayley algebra Os = C(1, 1, 1). Any quaternion
subalgebra of O is isomorphic to H = Q(−1,−1), while Os contains quaternion
subalgebras isomorphic to either H and Mat2(F).

On the other hand, for p, q prime numbers congruent to 3 modulo 4, it is easy to
check that the quaternion subalgebras Qp = CD

(
Q(i), p

)
and Qq = CD

(
Q(i), q

)
are not isomorphic. Consider the division algebra Q = CD

(
Q(i),−1

)
. The split

Cayley algebra over Q is isomorphic to C = CD(Q, 1), and by the classical Four
Squares Theorem, Q⊥ contains elements whose norm is −p for any prime number
p. Therefore C contains a quaternion subalgebra isomorphic to Qp for any prime
number p, and hence the split Cayley algebra over Q is endowed with infinitely
many non-equivalent Z2-gradings.

Over an algebraically closed field there is a unique Zr2-grading, up to equivalence,
for any r = 1, 2, 3. Over R, O is endowed with a unique Zr2-grading (r = 1, 2, 3) up
to equivalence, while Os is endowed with two non equivalent Z2 and Z2

2-gradings,
but a unique Z3

2-grading. �

Up to symmetry, any coarsening of the Cartan grading is obtained as follows
(recall gi = deg(ui), i = 1, 2, 3):

g1 = 0 : Then we obtain a “3-grading” over Z: C = C−1 ⊕ C0 ⊕ C1, with

C0 = 〈e1, e2, u1, v1〉, C1 = 〈u2, v3〉, C−1 = 〈u3, v2〉. Its proper coarsenings
are all “2-elementary”.

g1 = g2 : Here we obtain a “5-grading” over Z, with C−2 = Fu3, C−1 =

〈v1, v2〉, C0 = 〈e1, e2〉, C1 = 〈u1, u2〉 and C2 = Fv3, which has two proper
coarsenings which are not 2-elementary:
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g1 = g2 = g3 : This gives a Z3-grading: C0̄ = 〈e1, e2〉, C1̄ = U , C2̄ = V .

g3 = −g3 : This gives a Z4-grading.

g1 = −g1 : Here we get a Z× Z2-grading

C = C(0,0̄) ⊕ C(1,0̄) ⊕ C(−1,0̄) ⊕ C(0,1̄) ⊕ C(−1,1̄) ⊕ C(1,1̄)

q q q q q q
〈e1, e2〉 Fu2 Fv2 〈u1, v1〉 Fu3 Fv3

Any of its coarsenings is a coarsening of the previous gradings.
g1 = −g2 : In this case g3 = 0, and this is equivalent to the grading obtained

with g1 = 0.

Theorem 3.5. Up to equivalence, the (abelian group) gradings of the split Cayley
algebra are:

(i) The Zr2-gradings induced by the Cayley-Dickson doubling process.

(ii) The Cartan grading over Z2.

(iii) The 3-grading: C0 = span {e1, e2, u3, v3}, C1 = span {u1, v2}, C−1 =
span {u2, v1}.

(iv) The 5-grading: C0 = span {e1, e2}, C1 = span {u1, u2}, C2 = span {v3},
C−1 = span {v1, v2}, C−2 = span {u3}.

(v) The Z3-grading: C0̄ = span {e1, e2}, C1̄ = U , C2̄ = V .

(vi) The Z4-grading: C0̄ = span {e1, e2}, C1̄ = span {u1, u2}, C2̄ = span {u3, v3},
C3̄ = span {v1, v2}.

(vii) The Z× Z2-grading.

Remark 3.6. The gradings on quaternion algebras are obtained in a similar but
simpler way. Any (abelian group) grading is either induced by the Cayley-Dickson
doubling process (Zr2-grading for 0 ≤ r ≤ 2) or it is the Cartan grading of Mat2(F).

3.3. Gradings on symmetric composition algebras.

Let S = ⊕g∈GSg be a group grading of the symmetric composition algebra
(S, ∗, q) and assume that SuppS generates G. Take nonzero homogeneous elements
x ∈ Sa, y ∈ Sb and z ∈ Sc. Then

(x ∗ y) ∗ z + (z ∗ y) ∗ x = q(x, z)y,

so q(Sa, Sc) = 0 unless abc = b or cba = b. With b = a we get q(Sa, Sc) = 0
unless c = a−1. With c = a−1, since q is nondegenerate we may take x and z with
q(x, z) = 1, and hence either aba−1 = b or a−1ba = b. In any case ab = ba. Hence
again the grading group must be abelian and additive notation will be used.

Proposition 3.7. Let (S, ∗, q) be a para-Hurwitz algebra of dimension 4 or 8, so
that x ∗ y = x̄ · ȳ for a Hurwitz product. Then the group gradings on (S, ∗, q) and
on the Hurwitz algebra (S, ·, q) coincide.

Proof. We know that given any grading S = ⊕g∈GSg of the Hurwitz algebra (S, ·, q),
S̄g = Sg for any g, and hence this is a grading too of (S, ∗, q). Conversely, let
S = ⊕g∈GSg be a grading of (S, ∗, q). Then

K = {x ∈ S : x ∗ y = y ∗ x ∀y ∈ S}
= {x ∈ S : x̄ · y = y · x̄ ∀y ∈ S} = F1,
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because the dimension is at least 4. Thus F1 is a graded subspace of (S, ∗, q) and
as 1 ∗ 1 = 1, it follows that 1 ∈ S0. But then it is clear that S̄g = Sg for any g ∈ G
(because q(Sg, 1) = 0 unless g = 0) and the grading is a grading of the Hurwitz
algebra. �

Therefore it is enough to study the gradings of the Okubo algebras. (And of
the two-dimensional symmetric composition algebras, but this is quite easy: one
gets either the trivial grading or a Z2-grading of a para-Hurwitz algebra or some
Z3-gradings.)

To do this, let us first check what the possible gradings on the central simple
associative algebras of degree 3 look like.

For R = Mat3(F), there is the Cartan grading over Z2, with deg(E21) = (1, 0) =
−deg(E12), deg(E32) = (0, 1) = −deg(E23). This is a fine grading and induces the
Cartan grading on the Lie algebra sl3(F).

If charF 6= 3 and F contains the cubic roots of 1, then given any central simple
degree three associative algebra R there are nonzero scalars α, β such that

R = alg
〈
x, y : x3 = α, y3 = β, yx = ωxy

〉
.

Think for example in R = Mat3(F), and x and y given by:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 1 0
0 0 1
1 0 0

 .

Then R is naturally Z2
3-graded with deg(x) = (1̄, 0̄), deg(y) = (0̄, 1̄). This is a

fine grading too and it is called a division grading, as R becomes a graded division
algebra (any nonzero homogeneous element is invertible).

Proposition 3.8. Any proper (abelian group) grading of a central simple associa-
tive algebra of degree 3 is, up to equivalence, either a coarsening of the Cartan grad-
ing of Mat3(F) or a division grading over Z3 or Z2

3. (In the latter case charF 6= 3
and F contains the cubic roots of 1.)

Proof. Let R = ⊕g∈GRg be such a grading, and let I be a minimal graded left ideal
of R. I2 is not 0 since R is simple, so there is an homogeneous element 0 6= x ∈ I
such that Ix 6= 0 and, by minimality of I, we have I = Ix. Hence there is an
element e ∈ I0 such that x = ex. Again by minimality, I ∩ {r ∈ R : rx = 0} = 0
holds, so e2 − e = 0 and I = Re.

By the natural graded version of Schur’s Lemma, the minimality of I forces
the endomorphism ring D = EndR(I) to be a G-graded division algebra. (The
action of the elements of D on I will be considered on the right.) Moreover, the
map D = EndR(I) → eRe, ϕ 7→ eϕ = e2ϕ = e(eϕ) ∈ eI = eRe is a G-graded
isomorphism.

Now the map R → EndeRe(I): r 7→ ϕr(: x 7→ rx), is an isomorphism, as the
image ϕR equals ϕIR = ϕIϕR, which is a left ideal of EndeRe(I) containing the
identity element 1 = ϕ1, and hence it is the whole EndeRe(I). Also, D ' eRe is a
central simple algebra and R is a free right D-module, so by dimension count we
get that either D = F1 or D = R.

In the first case (D = F1) take an homogeneous basis {e, x, y} of I, x ∈ Ig1 ,
y ∈ Ig2 . Then the grading on R = EndD(I) = EndF(I) is induced by the grading
on I. By means of the chosen basis of I, R can be identified to Mat3(F) and its
grading is a coarsening of the Cartan grading.

In the second case (R a graded division algebra), R0 is a finite dimensional
division algebra over F contained strictly in R. By dimension count either R0 = F1,
and then for any g ∈ G with Rg 6= 0, dimRg = 1, or R0 = L is a cubic field extension
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of F. If R0 = F1 we obtain easily that SuppR is a subgroup of G of order 9, which
is not cyclic as R is not generated by a single element since it is not commutative.
Hence SuppR = Z2

3 and this is the universal grading group. Take nonzero elements
x ∈ R(1̄,0̄), y ∈ R(0̄,1̄). Then 0 6= x3, y3 ∈ R0 = F1, so there are nonzero scalars α, β

with x3 = α, y3 = β. Besides, yxy−1 ∈ R(1̄,0̄) = Fx, x and y do not commute, and
the inner automorphism induced by y has order 3. It follows that F contains the
cubic roots of 1 and (permuting x and y if necessary) yxy−1 = ωy, thus getting a
division grading as above.

If R0 = L is a cubic field extension of the ground field, then SuppR is a subgroup
isomorphic to Z3. Note that for x ∈ R1̄, 1, x, x2 are linearly independent and
0 6= x3 ∈ F1 by the Cayley-Hamilton equation.. The automorphism y 7→ xyx−1 of
R0̄ = L is nontrivial, so L is a Galois extension of F. If the characteristic of F is 6= 3
and ω ∈ F, then there is an element 0 6= y ∈ L with xyx−1 = ω2y, so yx = ωxy,
y3 ∈ F1, and this grading is a coarsening of a Z2

3-grading. �

Theorem 3.9. Let F be a field of characteristic 6= 3 containing the cubic roots of
1. Then any (abelian group) grading of an Okubo algebra over F is a coarsening of
either a Z2-grading or of a Z2

3-grading.

Proof. Let (S, ∗, q) be an Okubo algebra over F and S = ⊕g∈GSg be a grading over
the abelian group G. Let A = F1 ⊕ S be the central simple associative algebra of
degree 3 with multiplication determined by

xy =
ω

ω2 − ω
x ∗ y +

ω2

ω2 − ω
y ∗ x+

1

3
q(x, y)1,

for any x, y ∈ S. Then since q(Sg, Sh) = 0 unless g + h = 0, the grading on S
induces a grading on A, which is a coarsening of either the Cartan grading over
Z2 of Mat3(F), or a Z2

3-grading on either Mat3(F) or a central division algebra of
degree 3. �

Remark 3.10. The group gradings on Okubo algebras have been completely de-
termined over arbitrary fields, but the methods needed are different.

What do these Z2 and Z2
3-gradings look like?

Z2-grading: The type of this grading on Mat3(F) (ω ∈ F) is (6, 0, 1), so its type
on S is (6, 1), with dimS0 = 2 and dimSg ≤ 1 for g 6= 0. Take 0 6= g ∈ Z2

with Sg 6= 0 = S2g. Then S0 ⊕ Sg ⊕ S−g is a para-quaternion subalgebra S with
“para-unit” e ∈ S0. Consider the Hurwitz algebra (S, ·, q) with multiplication

x · y = (e ∗ x) ∗ (y ∗ e),

and unity e.

Lemma 3.11. The map τ : S → S, such that τ(x) = q(x, e)e− x ∗ e is an order 3
automorphism of both (S, ∗) and (S, ·).

Proof. Define x̄ = q(x, e)e− x, then τ(x) = x̄ ∗ e = x ∗ e (q(x ∗ e, e) = q(x, e ∗ e) =

q(x, e)), so that τ(x) = re(x̄) = re(x), and hence τ3(x) = r3
e(x̄). But

((x∗e)∗e)∗e = −(e∗e)∗(x∗e)+q(x∗e, e)e = −e∗(x∗e)+q(x, e)e = −x+q(e, x)e = x̄.

Therefore, τ3 = id, and τ 6= id, because otherwise e would be a “para-unit” of
(S, ∗, q) and this would force this algebra to be para-Hurwitz. Also τ2(x) = (x ∗
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e) ∗ e = q(e, x)e− x ∗ e = le(x̄) = le(x). Now,

τ(x) ∗ τ(y) = (q(e, x)e− x ∗ e) ∗ (q(e, y)e− y ∗ e)
= q(e, x)q(e, y)e− q(e, x)y − q(e, y)(x ∗ e) ∗ e+ (x ∗ e) ∗ (y ∗ e)

= q(e, x)q(e, y)e− q(e, x)y − q(e, y)
(
q(e, x)e− e ∗ x

)
+
(
q(x ∗ e, e)y − e ∗ (y ∗ (x ∗ e))

)
= q(e, y)e ∗ x− e ∗ (y ∗ (x ∗ e))
= e ∗ (e ∗ (x ∗ y)) = q(e, x ∗ y)e− (x ∗ y) ∗ e = τ(x ∗ y),

and hence τ is an automorphism of (S, ∗, q). Since τ(e) = e, it follows that τ is an
automorphism too of (S, ·, q). �

Note that the restriction of τ to the subalgebra S0 ⊕ Sg ⊕ S−g is the identity,
that all the homogeneous subspaces are invariant under τ and that for any x, y ∈ S
x ∗ y = (e ∗ (x ∗ e)) ∗ ((e ∗ y) ∗ e) = (x ∗ e) · (e ∗ y) = τ(x̄) · τ2(ȳ). That is,

x ∗ y = τ(x̄) · τ2(ȳ), (3.12)

for any x, y ∈ S.
The automorphism τ being of order 3, it induces a Z3-grading of the Cayley

algebra (S, ·, q) with dimS0̄ = 4. There is just one possibility for such a grad-
ing (which is a Z-grading too). It follows that there exists a canonical basis
{e1, e2, u1, u2, u3, v1, v2, v3} with S0̄ = span {e1, e2, u1, v1}, S1̄ = span {u2, v3} and
S2̄ = span {u3, v2} (that is, τ |S0̄

= id, τ |S1̄
= ωid and τ |S2̄

= ω2id) and such
that the Z2-grading is given by the canonical Z2-grading on the Hurwitz algebra
(S, ·, q) relative to this basis, with the product given by (3.12). The grading is thus
expressed in terms of the Cartan grading of the split Cayley algebra.

Z2
3-grading: Here the type of this grading on the central simple associative algebra

A is (9), and hence the type in S is (8) with S0 = 0 and dimSg = 1 for any g 6= 0.
As before, the associative algebra A appears as a crossed product

A = alg
〈
x, y : x3 = α, y3 = β, yx = ωxy

〉
.

In this situation S = A0 = span
{
xiyj : 0 ≤ i, j ≤ 2, (i, j) 6= (0, 0)

}
and S(ı̄,̄) =

Fxiyj for any (0̄, 0̄) 6= (̄ı, ̄) ∈ Z3
2.

The material in this section is taken from [Eld98] and [Eld09b].

4. Gradings on the central simple Lie algebras of type G2.

From now on, only abelian group gradings will be considered, and these will be
referred to just as gradings.

4.1. Gradings and affine group schemes of automorphisms.

Let H be an abelian group, and let A be a finite dimensional nonassociative
algebra over our ground field F. Then, with FH the group algebra of H, one has
equivalences:

H-grading on A ↔ ρ : A→ A⊗ FH structure of FH-comodule algebra

↔ morphism of affine group schemes ρ̂ : Hdiag → AutA
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where a grading A = ⊕h∈HAh corresponds to the comodule algebra structure given
by ρ : ah 7→ ah ⊗ h, for any ah ∈ Ah, and conversely, such a structure ρ gives
the H-grading where Ah = {x ∈ A : ρ(x) = x ⊗ h}. Besides, Hdiag denotes the
affine group scheme whose Hopf algebra is FH (so that its F-points are precisely
the group homomorphisms (characters) H → F×), and given a comodule structure
ρ as before, the attached morphism ρ̂ is given by

ρ̂R : Hdiag(R) = Homalg(FH,R) 7→ Aut(A⊗R),

ϕ 7→ ρ̂R(ϕ) : ah ⊗ r 7→ ah ⊗ ϕ(h)r.

(Note that ρ̂R(ϕ) = (I ⊗multR) ◦ (I ⊗ϕ⊗ I) ◦ (ρ⊗ I) where I denotes the identity
map. If more precision is needed, we will use IR to denote the identity map on the
algebra R.)

And conversely, given any morphism ρ̂ : Hdiag → AutA, one gets the automor-
phism ρ̂FH(I) ∈ Aut(A⊗ FH), which restricts to ρ : A ' A⊗ 1→ A⊗ FH.

Remark 4.1. The affine group scheme AutA takes any (unital commutative)
algebra R over F to the group of automorphisms Aut(A ⊗ R) (automorphisms as
an algebra over R), and any algebra homomorphism ϕ : R → S to the group
homomorphism AutA(ϕ) : Aut(A⊗R)→ Aut(A⊗ S), ψR 7→ ψS , where ψS is the
automorphism of A⊗ S such that the following diagram:

A⊗R ψR−−−−→ A⊗R

I⊗ϕ
y yI⊗ϕ

A⊗ S −−−−→
ψS

A⊗ S

is commutative. �

Let ϕ : G → H be a homomorphism of abelian groups, let Γ : A = ⊕g∈GAg
be a grading of a finite dimensional algebra A, and let Γ̄ : A = ⊕h∈HAh be the
associated coarsening: Ah = ⊕g∈ϕ−1(h)Ag for any h ∈ H. Denote by ρΓ and ρΓ̄

the associated comodule maps, and by ρ̂Γ and ρ̂Γ̄ the corresponding morphisms
Gdiag → AutA and Hdiag → AutA.

The group homomorphism ϕ induces an algebra homomorphism FG→ FH which
will be denoted by ϕ too, and this induces a morphism of affine group schemes
ϕ∗ : Hdiag → Gdiag.

Theorem 4.2. With the hypotheses above, the equality ρ̂Γ̄ = ρ̂Γ ◦ ϕ∗ holds.

Proof. From the definition of Γ̄, the diagram

A⊗ FG (ρ̂Γ)FG(IFG)−−−−−−−−→ A⊗ FG

I⊗ϕ
y yI⊗ϕ

A⊗ FH −−−−−−−−→
(ρ̂Γ̄)FH(IFH)

A⊗ FH.

is commutative, and this amounts to the condition

(ρ̂Γ̄)FH(IFH) = AutA(ϕ)
(
(ρ̂Γ)FG(IFG)

)
.

But ρ̂Γ is a natural transformation, so we have the commutative diagram

Gdiag(FG)
(ρ̂Γ)FG−−−−→ Aut(A⊗ FG)

Gdiag(ϕ)

y yAutA(ϕ)

Gdiag(FH) −−−−→
(ρ̂Γ)FH

Aut(A⊗ FH),
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and we get(
ρ̂Γ◦ϕ∗

)
FH(IFH) = (ρ̂Γ)FH(ϕ) = (ρ̂Γ)FH◦Gdiag(ϕ)(IFG) = AutA(ϕ)

(
(ρ̂Γ)FG(IFG)

)
.

That is, (
ρ̂Γ ◦ ϕ∗

)
(IFH) = AutA(ϕ)

(
(ρ̂Γ)FG(IFG)

)
= (ρ̂Γ̄)FH(IFH),

and this shows that the comodule maps attached to ρ̂Γ ◦ ϕ∗ and ρ̂Γ̄ coincide, so
ρ̂Γ ◦ ϕ∗ = ρ̂Γ̄, as required. �

To ease the notation, given a grading Γ : A = ⊕g∈GAg as above, with comodule
map ρΓ and associated morphism ρ̂Γ : Gdiag → AutA, the algebra automorphism
(ρ̂Γ)FG(IFG) : A⊗FG→ A⊗FG (which is determined by its restriction to A ' A⊗1,
and this is nothing else but ρΓ), will be denoted too by ρΓ.

Assume now that A′ is a second finite dimensional nonassociative algebra over
F and that Φ : AutA→ AutA′ is a morphism of affine group schemes. Given any
G-grading Γ : A = ⊕g∈GAg with associated comodule map ρΓ and morphism ρ̂Γ,
we get a composite morphism

Gdiag
ρ̂Γ−−−→ AutA

Φ−−→ AutA′,

which gives a G-grading Γ′ on A′. This grading Γ′ will be said to be induced from
Γ through Φ.

Let ϕ : G → H be a group homomorphism as above, and let Γ̄ and Γ̄′ be the
associated coarsenings in A and A′.

Then the next natural result holds:

Theorem 4.3. Under the conditions above, Γ̄′ is the grading on A′ induced from
Γ̄ through Φ.

Proof. It is enough to use the previous Proposition:

ρ̂Γ̄′ = ρ̂Γ′ ◦ ϕ∗ = Φ ◦ ρ̂Γ ◦ ϕ∗ = Φ ◦ ρ̂Γ̄. �

Definition 4.4. Let Γ : A = ⊕g∈GAg and Γ̌ : B = ⊕h∈HBh be isomorphic
gradings on the finite dimensional nonassociative algebras A and B. That is, there
is an algebra isomorphism ψ : A → B and a group isomorphism ϕ : G → H such
that for any g ∈ G, ψ(Ag) = Bϕ(g). Then Γ and Γ̌ are said to be isomorphic by
means of (ψ,ϕ).

Any algebra isomorphism ψ : A→ B induces a morphism

ψ∗ : AutA→ AutB

such that for any (unital commutative) F-algebra R, the group homomorphism

ψ∗(R) : Aut(A⊗R)→ Aut(B ⊗R)

is given by
ψ∗(R)(f) = (ψ ⊗ I)f(ψ−1 ⊗ I),

for any f ∈ Aut(A⊗R).

Theorem 4.5. Let Γ : A = ⊕g∈GAg and Γ̌ : B = ⊕h∈HBh be gradings on the

finite dimensional nonassociative algebras A and B. Then Γ and Γ̌ are isomorphic
by means of (ψ,ϕ) if and only if the diagram

Gdiag
ρ̂Γ−−−−→ AutA

ϕ∗
x yψ∗

Hdiag −−−−→
ρ̂Γ̌

AutB,
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is commutative.

Proof. The gradings Γ and Γ̌ are isomorphic by means of (ψ,ϕ) if and only if the
diagram

A⊗ FG ρΓ−−−−→ A⊗ FG

ψ⊗ϕ
y yψ⊗ϕ

B ⊗ FH −−−−→
ρΓ̌

B ⊗ FH,

is commutative, and this happens if and only if

ρΓ̌ = (ψ ⊗ I)(I ⊗ ϕ)ρΓ(I ⊗ ϕ−1)(ψ−1 ⊗ I)

= ψ∗
(
(I ⊗ ϕ)ρΓ(I ⊗ ϕ−1)

)
= ψ∗

(
ρΓ̄

)
,

where Γ̄ is the ‘coarsening’ of Γ associated to ϕ (see the proof of Theorem 4.2).
That is, Γ and Γ̌ are isomorphic by means of (ψ,ϕ) if and only if (Theorem 4.2)
the equation

ρ̂Γ̌(IFH) = ψ∗ ◦ ρ̂Γ̄(IFH) = ψ∗ ◦ ρ̂Γ ◦ ϕ∗(IFH)

holds.
But any morphism Hdiag → AutB is determined by the image of IFH , hence

this last equation is equivalent to the condition ρ̂Γ̌ = ψ∗ ◦ ρ̂Γ ◦ ϕ∗, as required. �

Corollary 4.6. Let Γ : A = ⊕g∈GAg and Γ̌ : A = ⊕h∈HAh be two gradings of
the finite dimensional nonassociative algebra A which are isomorphic by means of
(ψ,ϕ). Let A′ be a second nonassociative algebra and let Φ : AutA → AutA′ be
a morphism of affine group schemes. Then the induced gradings Γ′ and Γ̌′ on A′

through Φ are isomorphic by means of (ΦF(ψ), ϕ).

Proof. Fist note that the diagram

AutA
Φ−−−−→ AutA′

ψ∗

y yΦF(ψ)∗

AutA −−−−→
Φ

AutA′

commutes because for any R, if ι : F → R denotes the inclusion map and since Φ
is a morphism of affine group schemes, the following diagram commutes:

AutA ' Aut(A⊗ F)
ΦF−−−−→ AutA′ ' Aut(A′ ⊗ F)

AutA(ι)

y yAutA′(ι)

Aut(A⊗R) −−−−→
ΦR

Aut(A′ ⊗R).

Therefore ΦF(ψ)⊗ IR = AutA′(ι) ◦ΦF(ψ) = ΦR ◦AutA(ι)(ψ) = ΦR(ψ⊗ IR), and
this immediately shows that the previous diagram commutes.

Now we compute easily:

ρ̂Γ̌′ = Φ ◦ ρ̂Γ̌

= Φ ◦ ψ∗ ◦ ρ̂Γ ◦ ϕ∗ (Theorem 4.5)

= ΦF(ψ)∗ ◦ Φ ◦ ρ̂Γ ◦ ϕ∗

= ΦF(ψ)∗ ◦ ρ̂Γ′ ◦ ϕ∗,
as required. �
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Remark 4.7. Therefore, if Φ : AutA→ AutA′ is an isomorphism, the classifica-
tion of gradings on A′ up to isomorphism reduced to the corresponding classification
on A.

Also, fine gradings on A correspond to fine gradings on A′, but only if universal
grading groups are used!!

Corollary 4.8. Let Γ : A = ⊕g∈GAg be a fine grading of the finite dimensional
nonassociative algebra A and assume that G is the universal grading group. Let A′

be a second finite dimensional nonassociative algebra and let Φ : AutA→ AutA′

be an isomorphism of affine group schemes. Then the induced grading Γ′ on A′

through Φ is also a fine group grading and G is its universal grading group.

Proof. Let Γ̌′ : A′ = ⊕u∈UA′u be a fine refinement of Γ′, with U being its universal
grading group. Then there is a group homomorphism ϕ : U → G such that for any
g ∈ G, A′g = ⊕u∈ϕ−1(g)A

′
u. Through Φ−1 we get a U -grading Γ̌ : A = ⊕u∈UAu.

By Theorem 4.3, Γ is the corresponding coarsening of Γ̌, so that for any g ∈ G we
have Ag = ⊕u∈ϕ−1(g)Au. But Γ is fine so for any g ∈ Supp Γ there exists a unique

u ∈ Supp Γ̌ such that ϕ(u) = g. Since G is the universal grading group of Γ there
is a group homomorphism ψ : G→ U such that ψ(g) = u, and hence ϕ ◦ ψ = I.

But then Γ̌ is the coarsening of Γ corresponding to ψ, so that Theorem 4.3
asserts that Γ̌′ is the corresponding coarsening of Γ′. It turns out that Γ̌′ and
Γ′ are equivalent, so that Γ′ is fine and for any u ∈ Supp Γ̌′ there is a unique
g ∈ Supp Γ′ such that u = ψ(g). Since U is generated by Supp Γ′, it follows that ψ
is onto, and hence ϕ is a group isomorphism with inverse ψ, whence the result. �

The condition on G being the universal grading group is essential, as we will
check later on with Hurwitz algebras and their derivation algebras. In particular
the relationship between gradings on A and A′ given by a morphism Φ does not in
general preserve equivalence of gradings.

4.2. Gradings on Lie algebras of derivations.

Given an affine group scheme G, for any (unital commutative) algebra R, G(R)
acts by conjugation on

ker
(
G(R(ε))→ G(R)

)
= Lie(G)⊗R,

where R(ε) = R⊗F(ε), with F(ε) = F1⊕Fε and ε2 = 0 (dual numbers), thus giving
a linear representation (the adjoint action):

Ad : G→ GL
(
Lie(G)

)
.

For G = AutA, we have Lie(G) = Der(A) (the Lie algebra of derivations of A) and
the image of the adjoint action is contained in the closed subgroup Aut

(
Der(A)

)
.

Remark 4.9. The differential of the morphism Ad : AutA → Aut
(
Der(A)

)
is

the adjoint map

ad : Der(A)→ Der(Der(A))

X 7→ adX : Y 7→ [X,Y ],

because, withG = AutA, for anyX,Y ∈ Der(A), (I+Xε) ∈ ker
(
G(F(ε))→ G(F)

)
and

(I +Xε)Y (I +Xε)−1 = (I +Xε)Y (I −Xε) = Y + [X,Y ]ε = (I + adX ε)Y. �
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Therefore, given an H-grading on A with attached ρ, we get a composite mor-
phism

Hdiag
ρ̂−−→ AutA

Ad−−→ Aut
(
Der(A)

)
,

which gives a H-grading on the Lie algebra Der(A).

Proposition 4.10. Given an H-grading on A: A = ⊕h∈HAh, the induced H-
grading on Der(A) is the natural one:

Der(A) = ⊕h∈H Der(A)h, Der(A)h = {d ∈ Der(A) : d(Ag) ⊆ Ahg ∀g ∈ H}.

Proof. Let ρ : A→ A⊗FH be the comodule algebra structure given by our grading,
and recall that we denote too by ρ the automorphism ρ̂FH(I) : A⊗ FH → A⊗ FH
which extends ρ.

The comodule algebra structure on Der(A) attached to the morphism Ad ◦ρ̂ is
the map ρ̃ : Der(A) 7→ Der(A)⊗ FH, given by

ρ̃(d) =
(
Ad ◦ρ̂

)
(IFH)(d⊗ 1) = ρ̂FH(IFH)(d⊗ 1)ρ̂FH(IFH)−1.

Thus for x ∈ Ag and d ∈ Der(A)h,

ρ̃(d)(x⊗ 1) = ρ̂FH(IFH)(d⊗ 1)(x⊗ g−1)

= ρ̂FH(IFH)(dx⊗ g−1)

= dx⊗ hgg−1 = dx⊗ h
= (d⊗ h)(x⊗ 1).

Hence ρ̃(d) = d⊗ h for any d ∈ Der(A)h as required. �

4.3. Gradings on G2.

Let us consider now a Cayley algebra C over our ground field F and assume
that the characteristic of F is 6= 2, 3 in what follows. Denote by Falg the algebraic
closure of F, and by Calg the Cayley algebra C ⊗ Falg.

Then we have the affine group scheme G = AutC and the adjoint morphism
Ad : G → Aut

(
Der(C)

)
. Since any derivation of Der(C) is inner, its differential

ad is an isomorphism.
The affine group scheme Galg = AutCalg contains the algebraic (smooth) matrix

group AutCalg as a closed subgroup. Its coordinate algebra is Falg[AutCalg] =
Falg[AutCalg]red (the quotient of Falg[AutCalg] by its nilradical) and its Lie algebra
is Der(Calg) = Der(C) ⊗ Falg, which coincides with the Lie algebra of AutCalg.
Hence

dim Lie(G) ≥ dimG = dimGalg ≥ dim AutCalg

= dim Lie(Galg) = dimDer(C) = dim Lie(G),

and we conclude that G = AutC is smooth.
In the same vein, since any derivation of Lie(G) = Der(C) is inner:

dim Lie(G) ≥ dim Aut(Lie(G)) ≥ dim Aut Lie(G)alg

= dim Lie(G)alg = dim Lie(G),

and Aut
(
Der(C)

)
is smooth too.

Then, since the adjoint map gives the known group isomorphism

Ad : AutC(Falg) = AutCalg → Aut(Der(C))(Falg) = Aut
(
Der(Calg)

)
,

it follows that Ad is an isomorphism of affine group schemes (see [KMRT98, (22.5)]).

The following result is then immediately drawn from this isomorphism.
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Theorem 4.11. The gradings on Der(C) are those induced by gradings on C.

Corollary 4.12. Any proper grading of Der(C) is either a Zr2-grading r = 0, 1, 2
induced by the Cayley-Dickson doubling process or C is split, so Der(C) is the split
simple Lie algebra of type G2, and the grading is a coarsening of the Cartan grading
of Der(C) (the root spaces relative to a split Cartan subalgebra).

The Theorem above allows us to get all the (abelian group) gradings on Der(C),
but one has to be careful: each grading on our list in Theorem 3.5 is obtained as a
group grading for many different groups.

Thus, for instance, consider the 3-grading of the split Cayley algebra C in Theo-
rem 3.5(iii): C0 = span {e1, e2, u3, v3}, C1 = span {u1, v2}, C−1 = span {u2, v1}. As
a Z-grading it induces a 5-grading on Der(C), with Der(C)2 = span {Du1,v2

} 6= 0,
where Da,b : c 7→ [[a, b], c] + 3

(
(ac)b − a(cb)

)
is the inner derivation defined by

a, b ∈ C (the linear span of the inner derivations fills Der(C)), so it has 5 different
nonzero homogeneous components. Its type is (2, 0, 0, 3). However, up to equiva-
lence, this grading of C is also a Z3-grading, and as such it induces a Z3-grading
on Der(C) of type (0, 0, 0, 1, 2).

As a further example, the Cartan grading of the split Cayley algebra C is ob-
tained as a grading by any abelian group G containing two elements g1, g2 and
g3 such that g1 + g2 + g3 = 0 and the elements 0, g1, g2, g3,−g1,−g2,−g3 are all
different. In particular, it can be obtained as a grading over Z2

3, with g1 = (1̄, 0̄)
and g2 = (0̄, 1̄). However, the induced Z2

3-grading on Der(C) is not equivalent to
the Cartan grading, as some of the nonzero root spaces get together in this grading,
and hence it is not fine. (See Corollary 4.8.)

Easy combinatorial arguments give all the gradings on Der(C) in terms of the
gradings on the Cayley algebra C in Theorem 3.5

Theorem 4.13. Let C be a Cayley algebra over a field of characteristic 6= 2, 3.
Up to equivalence, the proper (abelian group) gradings on Der(C) are either the
Zr2-gradings (r = 1, 2, 3) induced by the Cayley-Dickson doubling process, or one of
the following gradings in the split case:

(i) Eleven gradings induced by the Cartan grading on C with universal grading
groups: Z2,Z7, Z8, Z9, Z10, Z, Z6 × Z2, Z× Z2, Z12, Z× Z3 and Z2

3.

(ii) Three gradings induced by the 3-grading on C with universal grading groups
Z, Z3 and Z4.

(iii) Three gradings induced by the 5-grading on C with universal grading groups
Z, Z5 and Z6.

(iv) The Z3-grading induced by the Z3-grading on C.

(v) The Z4-grading induced by the Z4-grading on C.

(vi) Three gradings induced by the Z× Z2-grading on C with universal grading
groups Z× Z2, Z3 × Z2 and Z4 × Z2.

In particular, over an algebraically closed field of characteristic 6= 2, 3 there are
exactly 25 different gradings, up to equivalence, of the central simple Lie algebra
of type G2.

Much of the material in this section is new. It relies on [KMRT98, Chapter
VI]. The gradings on the simple Lie algebra of type G2 (but only over algebraically
closed fields of characteristic 0) have been considered in [DM06] and [BT09].
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5. The Magic Square of exceptional Lie algebras. Induced gradings.

Throughout this lecture the characteristic of the ground field F will always be
assumed to be 6= 2, 3.

Given two symmetric composition algebras (S, ∗, q) and (S′, ?, q′), consider the
vector space:

g = g(S, S′) =
(
tri(S)⊕ tri(S′)

)
⊕
(
⊕2
i=0ιi(S ⊗ S′)

)
,

where ιi(S ⊗ S′) is just a copy of S ⊗ S′ (i = 0, 1, 2) and we write tri(S), tri(S′)
instead of tri(S, ∗, q) and tri(S′, ?, q′) for short. Define now an anticommutative
bracket on g by means of:

• the Lie bracket in tri(S)⊕ tri(S′), which thus becomes a Lie subalgebra of
g,

• [(d0, d1, d2), ιi(x⊗ x′)] = ιi
(
di(x)⊗ x′

)
,

• [(d′0, d
′
1, d
′
2), ιi(x⊗ x′)] = ιi

(
x⊗ d′i(x′)

)
,

• [ιi(x⊗ x′), ιi+1(y ⊗ y′)] = ιi+2

(
(x ∗ y)⊗ (x′ ? y′)

)
(indices modulo 3),

• [ιi(x⊗x′), ιi(y⊗ y′)] = q′(x′, y′)θi(tx,y) + q(x, y)θ′i(t′x′,y′) ∈ tri(S)⊕ tri(S′).

Theorem 5.1. With this bracket, g(S, S′) is a Lie algebra and, if Sr and S′s denote
symmetric composition algebras of dimension r and s, then the Lie algebra g(Sr, S

′
s)

is a (semi)simple Lie algebra whose type is given by Freudenthal’s Magic Square:

S1 S2 S4 S8

S′1 A1 A2 C3 F4

S′2 A2 A2 ⊕A2 A5 E6

S′4 C3 A5 D6 E7

S′8 F4 E6 E7 E8

Proof. “Straightforward” (but lengthy). �

The Lie algebra g = g(S, S′) is naturally Z2
2-graded with

g(0̄,0̄) = tri(S)⊕ tri(S′),

g(1̄,0̄) = ι0(S ⊗ S′), g(0̄,1̄) = ι1(S ⊗ S′), g(1̄,1̄) = ι2(S ⊗ S′).

Now, this Z2
2-grading can be combined with gradings on S and S′ to obtain some

nice gradings of the exceptional simple Lie algebras.
Also, the triality automorphisms θ and θ′ induce an order 3 automorphism Θ ∈

Aut g such that{
Θ|tri(S) = θ, Θ|tri(S′) = θ′,

Θ
(
ιi(x⊗ x′)

)
= ιi+1(x⊗ x′) (indices modulo 3)

If ω ∈ F this gives a Z3-grading which can be combined too with the gradings on
S and S′.

Examples 5.2.

• The Z3
2-grading on a Cayley algebra C give a fine grading of the simple Lie

algebra g2 = Der(C), where

g2 = ⊕0 6=α∈Z3
2
(g2)α,

and
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(g2)α is a Cartan subalgebra for any 0 6= α ∈ Z3
2!

It induces too a Z3
2-grading on d4 = so(C, q) with

d4 = ⊕06=α∈Z3
2
(d4)α,

where again

(d4)α is a Cartan subalgebra for any 0 6= α ∈ Z3
2!

But this grading is not fine. It can be refined (if ω ∈ F) by means of the
triality automorphism θ of tri(C̄) ' so(C, q) to get a fine Z3

2 × Z3-grading
of type (14, 7).

• Let (O, ∗, q) be an Okubo algebra and assume that ω ∈ F. A Z2
3-grading

on O, combined with the automorphism Θ, induces a Z3
3-grading of f4 =

g(F,O). Again,

f4 = ⊕06=α∈Z3
3
(f4)α,

with dim(f4)α = 2 for any 0 6= α ∈ Z3
3, and

(f4)α ⊕ (f4)−α is a Cartan subalgebra for any 0 6= α ∈ Z3
3!

This can be extended to a Z3
3-grading on e6 = g(S2,O) with similar

properties: dim(e6)α = 3 and

(e6)α ⊕ (e6)−α is a Cartan subalgebra for any 0 6= α ∈ Z3
3!

• Consider now two Z3
2-graded para-Cayley algebras C̄ and C̄ ′. The natural

Z2
2-grading of g(C̄, C̄ ′) combined with the Z3

2-grading on C̄ ⊗ C̄ ′ induces a
Z5

2-grading:

e8 = ⊕06=α∈Z5
2
(e8)α,

such that

(e8)α is a Cartan subalgebra for any 0 6= α ∈ Z3
3!

This is a famous Dempwolff decomposition considered by Thompson [Tho76].

Jordan gradings: Alekseevskii [Al74] considered Jordan subgroups A of Aut g for
the simple complex Lie algebras. Any such group is abelian and:

(i) its normalizer is finite,

(ii) A is a minimal normal subgroup of its normalizer,

(iii) its normalizer is maximal among the normalizers of abelian subgroups sat-
isfying (i) and (ii).

He classified (1974) these groups and gave detailed models of all the possibilities
for classical simple Lie algebras. The exceptional cases are:

g A dim gα (α 6= 0)

G2 Z3
2 2

F4 Z3
3 2

E8 Z3
5 2

D4 Z3
2 4

E8 Z5
2 8

E6 Z3
3 3
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With the exception of the Z3
5-grading of E8, these are precisely the gradings

considered in the previous examples.
This exception can be obtained as follows. Let V1 and V2 be two vector spaces

over F of dimension 5, and consider the Z5-graded vector space

g = ⊕4
i=0gı̄,

where

g0̄ = sl(V1)⊕ sl(V2),

g1̄ = V1 ⊗
∧2
V2,

g2̄ =
∧2
V1 ⊗

∧4
V2,

g3̄ =
∧3
V1 ⊗ V2,

g4̄ =
∧4
V1 ⊗

∧3
V2.

This is a Z5-graded Lie algebra, with the natural action of the semisimple alge-
bra g0̄ on each of the other homogeneous components, and the brackets between
elements in different components are given by suitable scalar multiples of the only
g0̄-invariant possibilities. In this way, g is the exceptional simple Lie algebra of
type E8. The details of the Lie multiplication have been computed in [Dra05].

Fix bases for V1 and V2, let ξ be a primitive fifth root of 1 in F and consider the
endomorphisms b1 and c1 of V1 with coordinate matrices:

b1 ↔


1 0 0 0 0
0 ξ 0 0 0
0 0 ξ2 0 0
0 0 0 ξ3 0
0 0 0 0 ξ4

 , c1 ↔


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

and the endomorphisms of V2 with coordinate matrices:

b2 ↔


1 0 0 0 0
0 ξ2 0 0 0
0 0 ξ4 0 0
0 0 0 ξ 0
0 0 0 0 ξ3

 , c2 ↔


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

Then the only Z3
5-grading of g such that dim gα = 2 for any 0 6= α ∈ Z3

5 is given by
the common eigenspaces of the automorphisms σ1, σ2, σ3 such that

σ1(x) = ξix for any x ∈ gı̄ and 0 ≤ i ≤ 4,

σ2|g1̄
= b1 ⊗ ∧2b2,

σ3|g1̄
= c1 ⊗ ∧2c2.

Some other related results: Assume F algebraically closed of characteristic 0.

• Fine gradings of F4 [DM09]:
– Cartan grading (over Z4),
– The Z5

2-grading on f4 = g(k, C̄) (C a Cayley algebra) obtained by
combining the natural Z2

2-grading on g(k, C̄) and the Z3
2-grading on

C̄.
– The Z3

3-grading on f4 = g(k,O) obtained by combining the Z2
3-grading

on O with the Z3-grading induced by the automorphism Θ.
– A Z3

2 × Z-grading: the Z2
2-grading on g(k, C̄) can be “unfolded” to a

Z-grading compatible with the Z3
2-grading on C̄. (This is related to

the fact that C is a structurable algebra.)
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• Fine gradings of E6:
Many of the fine gradings here are related to the construction of e6 as either
g(K̄, C̄) or g(K̄,O), where K = F× F.

• Fine gradings of D4 ([DV08], [DMVpr], [Eldpr]):
Among the 17 fine gradings of D4, there are 3 of them which have no
counterparts for Dn, n > 4:

– A Z2 × Z3-grading obtained by combining the Z2-grading on C and
the Z3-grading given by the triality automorphism.

– A Z3
2 × Z3-grading obtained by combining the Z3

2-grading on C and
the Z3-grading given by the triality automorphism.

– A Z3
3-grading obtained by combining the Z2

3- grading on O and the
Z3-grading given by the triality automorphism.

• Fine gradings of the exceptional simple Lie superalgebras [DEMpr]:
– The two fine gradings of g(3) =

(
sp(V ) ⊕ Der(C)

)
⊕
(
V ⊗ [C,C]

)
(dimV = 2), over Z3 = Z × Z2 and Z × Z3

2, are induced by the fine
gradings of C.

– Among the 5 fine gradings of f(4) =
(
sp(V )⊕so(C)

)
⊕
(
V ⊗C

)
, two of

them are induced by the fine gradings on C, another two are induced
by the two fine gradings of the 10-dimensional Kac superalgebra (a
simple exceptional Jordan superalgebra), as f(4) is the Lie superalgebra
obtained by the Tits-Kantor-Koecher construction from K10: f(4) =
T KK(K10) =

(
[Q,Q]⊗K10

)
⊕Der(K10), combining the Z2

2 fine grading

of the quaternion algebra Q with either the Z2 or Z× Z2 fine grading
of K10. The remaining fine grading (over Z3

2 × Z4) is related to a
construction of f(4) in terms of two quaternion algebras.

– Most of the fine gradings of d(2, 1;α) are related to the fine gradings of
the 4-dimensional Jordan superalgebras Dt through the Tits-Kantor-
Koecher construction.

It is hoped that the construction g(S, S′), together with some other constructions
of the exceptional simple Lie algebras in terms of nonassociative algebra, will allow
nice descriptions of a large portion of the fine gradings on the exceptional Lie
algebras E6, E7, E8.

The results in this section are taken from [Eld04], [Eld09a] and [Eld09b].
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