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Gradings on Lie algebras have been extensively used since the
beginning of Lie theory:

I the Cartan grading on a complex semisimple Lie algebra is the
Zr -grading (r being the rank) whose homogeneous
components are the root spaces relative to a Cartan
subalgebra (which is the zero component),

I symmetric spaces are related to Z2-gradings,

I Kac–Moody Lie algebras to gradings by a finite cyclic group,

I the theory of Jordan algebras and pairs to 3-gradings on Lie
algebras, etc.



In 1989, a systematic study of gradings on Lie algebras was started
by Patera and Zassenhaus.

Fine gradings on the classical simple complex Lie algebras, other
than D4, by arbitrary abelian groups were considered by Havĺıcek,
Patera, and Pelantova in 1998.

The arguments there are computational and the problem of
classification of fine gradings is not completely settled. The
complete classification, up to equivalence, of fine gradings on all
classical simple Lie algebras (including D4) over algebraically closed
fields of characteristic zero has been obtained quite recently.



For any abelian group G , the classification of all G -gradings, up to
isomorphism, on the classical simple Lie algebras other than D4

over algebraically closed fields of characteristic different from two
has been achieved in 2010 by Bahturin and Kochetov, using
methods developed in the last years by a number of authors.

The gradings on the octonions and on the Albert algebra are
instrumental in obtaining the gradings on the exceptional simple
Lie algebras.
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Composition algebras

Definition

A composition algebra over a field F is a triple (C , ·, n) where

I C is a vector space over F,

I x · y is a bilinear multiplication C × C → C ,
I n : C → F is a multiplicative nondegenerate quadratic form:

I its polar n(x , y) = n(x + y)− n(x)− n(y) is nondegenerate,
I n(x · y) = n(x)n(y) ∀x , y ∈ C .

The unital composition algebras will be called Hurwitz algebras.
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Hurwitz algebras

Hurwitz algebras form a class of degree two algebras:

x ·2 − n(x , 1)x + n(x)1 = 0

for any x .
They are endowed with an antiautomorphism, the standard
conjugation:

x̄ = n(x , 1)1− x ,

satisfying

¯̄x = x , x + x̄ = n(x , 1)1, x · x̄ = x̄ · x = n(x)1.



Cayley-Dickson doubling process

Let (B, ·, n) be an associative Hurwitz algebra, and let λ be a
nonzero scalar in the ground field F. Consider the direct sum of
two copies of B:

C = B ⊕ Bu,

with the following multiplication and nondegenerate quadratic form
that extend those on B:

(a + bu) · (c + du) = (a · c + λd̄ · b) + (d · a + b · c̄)u,

n(a + bu) = n(a)− λn(b).

Then (C , ·, n) is again a Hurwitz algebra, which is denoted by
CD(B, λ)

Notation: CD(A, µ, λ) := CD
(
CD(A, µ), λ

)
.
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Generalized Hurwitz Theorem

Theorem

Every Hurwitz algebra over a field F is isomorphic to one of the
following:

(i) The ground field F if its characteristic is 6= 2.

(ii) A quadratic commutative and associative separable algebra
K (µ) = F1 + Fv, with v 2 = v + µ and 4µ+ 1 6= 0. The
norm is given by its generic norm.

(iii) A quaternion algebra Q(µ, β) = CD(K (µ), β). (These four
dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra C (µ, β, γ) = CD(K (µ), β, γ). (These eight
dimensional algebras are alternative, but not associative.)



Symmetric composition algebras

Definition

A composition algebra (S , ∗, n) is said to be symmetric if the polar
form of its norm is associative:

n(x ∗ y , z) = n(x , y ∗ z),

for any x , y , z ∈ S .

This is equivalent to the condition:

(x ∗ y) ∗ x = n(x)y = x ∗ (y ∗ x),

for any x , y ∈ S .



Examples

I Para-Hurwitz algebras: Given a Hurwitz algebra (C , ·, n),
its para-Hurwitz counterpart is the composition algebra
(C , •, n), where

x • y = x̄ · ȳ .

This algebra will be denoted by C̄ for short.

I Okubo algebras: Assume charF 6= 3 and ∃ω 6= 1 = ω3 in
F. Consider the algebra A0 of zero trace elements in a central
simple degree 3 associative algebra with multiplication

x ∗ y = ωxy − ω2yx − ω − ω2

3
tr(xy)1,

and norm n(x) = −1
2 tr(x2).

(There is a more general definition valid over arbitrary fields.)
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Classification

Theorem (E.-Myung 93, E. 97)

Any symmetric composition algebra is either:

I a para-Hurwitz algebra,

I a form of a two-dimensional para-Hurwitz algebra without
idempotent elements (with a precise description),

I an Okubo algebra.



Composition algebras

Freudenthal’s Magic Square

Gradings

Gradings on Octonions



Triality Lie algebra

Assume from now on that charF 6= 2.

Let (S , ∗, n) be any symmetric composition algebra and consider
the corresponding orthogonal Lie algebra:

o(S , n) = {d ∈ EndF(S) : n
(
d(x), y

)
+ n
(
x , d(y)

)
= 0 ∀x , y ∈ S},

and the subalgebra of o(S , n)3 (with componentwise
multiplication):

tri(S , ∗, n) =
{(d1, d2, d3) ∈ o(S , n)3 : d3(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) ∀x , y}

This is the triality Lie algebra.

The map: θ : tri(S , ∗, n)→ tri(S , ∗, n), (d1, d2, d3) 7→ (d3, d1, d2)
is an automorphism of order 3, (triality automorphism).
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Principle of Local Triality

Theorem (Principle of Local Triality)

Let (S , ∗, n) be an eight dimensional symmetric composition
algebra. Then the projection

π1 : tri(S , ∗, n) −→ o(S , n)

(d1, d2, d3) 7→ d1,

is an isomorphism of Lie algebras.



Freudenthal’s Magic Square

Let (S , ∗, n) and (S ′, ?, n′) be two symmetric composition algebras.
One can construct a Lie algebra as follows:

g = g(S , S ′) =
(
tri(S)⊕ tri(S ′)

)
⊕
(
⊕3

i=1ιi (S ⊗ S ′)
)
,

with bracket given by:

I the Lie bracket in tri(S)⊕ tri(S ′), which thus becomes a Lie
subalgebra of g,

I [(d1, d2, d3), ιi (x ⊗ x ′)] = ιi
(
di (x)⊗ x ′

)
,

I [(d ′1, d
′
2, d
′
3), ιi (x ⊗ x ′)] = ιi

(
x ⊗ d ′i (x ′)

)
,

I [ιi (x ⊗ x ′), ιi+1(y ⊗ y ′)] = ιi+2

(
(x ∗ y)⊗ (x ′ ? y ′)

)
(indices

modulo 3),

I [ιi (x ⊗ x ′), ιi (y ⊗ y ′)] = n′(x ′, y ′)θi (tx ,y ) + n(x , y)θ′i (t ′x ′,y ′),
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Freudenthal’s Magic Square

dim S ′

g(S ,S ′) 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6
dim S

4 C3 A5 D6 E7

8 F4 E6 E7 E8



Composition algebras

Freudenthal’s Magic Square

Gradings

Gradings on Octonions



Definition

G abelian group, A algebra over a field F.

G -grading on A:
A = ⊕g∈GAg ,

AgAh ⊆ Agh ∀g , h ∈ G .



Example: Pauli matrices

A = Matn(F)

X =


1 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε2 . . . 0
...

...
...

. . .
...

0 0 0 . . . εn−1

 Y =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


(ε a primitive nth root of 1)

X n = 1 = Y n, YX = εXY

A = ⊕(ı̄,̄)∈Zn×Zn
A(ı̄,̄), A(ı̄,̄) = FX iY j .

A becomes a graded division algebra.
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Basic definitions (Patera-Zassenhaus)

Let Γ : A = ⊕g∈GAg be a grading on A (dimFA <∞, F = F̄,
charF 6= 2):

I The support of Γ is Supp Γ = {g ∈ G : Ag 6= 0}.
I The universal grading group of Γ is the group U(Γ) generated

by Supp Γ subject to the relations g1g2 = g3 if
0 6= Ag1Ag2 ⊆ Ag3 .

The grading Γ is then a grading too by U(Γ).
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Basic definitions (Patera-Zassenhaus)

There appear several groups attached to Γ:

I The automorphism group

Aut(Γ) = {ϕ ∈ AutA :

∃α ∈ Sym(Supp Γ) s.t. ϕ(Ag ) ⊆ Aα(g) ∀g}.

I The stabilizer group

Stab(Γ) = {ϕ ∈ Aut(Γ) : ϕ(Ag ) ⊆ Ag ∀g}.

I The diagonal group

Diag(Γ) = {ϕ ∈ Aut(Γ) :

∀g ∈ Supp Γ∃λg ∈ F× s.t. ϕ|Ag = λg id}.

I The quotient W (Γ) = Aut(Γ)/Stab(Γ) is the Weyl group of Γ.



Basic definitions (Patera-Zassenhaus)

There appear several groups attached to Γ:

I The automorphism group

Aut(Γ) = {ϕ ∈ AutA :

∃α ∈ Sym(Supp Γ) s.t. ϕ(Ag ) ⊆ Aα(g) ∀g}.

I The stabilizer group

Stab(Γ) = {ϕ ∈ Aut(Γ) : ϕ(Ag ) ⊆ Ag ∀g}.

I The diagonal group

Diag(Γ) = {ϕ ∈ Aut(Γ) :

∀g ∈ Supp Γ∃λg ∈ F× s.t. ϕ|Ag = λg id}.

I The quotient W (Γ) = Aut(Γ)/Stab(Γ) is the Weyl group of Γ.



Basic definitions (Patera-Zassenhaus)

There appear several groups attached to Γ:

I The automorphism group

Aut(Γ) = {ϕ ∈ AutA :

∃α ∈ Sym(Supp Γ) s.t. ϕ(Ag ) ⊆ Aα(g) ∀g}.

I The stabilizer group

Stab(Γ) = {ϕ ∈ Aut(Γ) : ϕ(Ag ) ⊆ Ag ∀g}.

I The diagonal group

Diag(Γ) = {ϕ ∈ Aut(Γ) :

∀g ∈ Supp Γ∃λg ∈ F× s.t. ϕ|Ag = λg id}.

I The quotient W (Γ) = Aut(Γ)/Stab(Γ) is the Weyl group of Γ.



Basic definitions (Patera-Zassenhaus)

There appear several groups attached to Γ:

I The automorphism group

Aut(Γ) = {ϕ ∈ AutA :

∃α ∈ Sym(Supp Γ) s.t. ϕ(Ag ) ⊆ Aα(g) ∀g}.

I The stabilizer group

Stab(Γ) = {ϕ ∈ Aut(Γ) : ϕ(Ag ) ⊆ Ag ∀g}.

I The diagonal group

Diag(Γ) = {ϕ ∈ Aut(Γ) :

∀g ∈ Supp Γ∃λg ∈ F× s.t. ϕ|Ag = λg id}.

I The quotient W (Γ) = Aut(Γ)/Stab(Γ) is the Weyl group of Γ.



Basic definitions (Patera-Zassenhaus)

There appear several groups attached to Γ:

I The automorphism group

Aut(Γ) = {ϕ ∈ AutA :

∃α ∈ Sym(Supp Γ) s.t. ϕ(Ag ) ⊆ Aα(g) ∀g}.

I The stabilizer group

Stab(Γ) = {ϕ ∈ Aut(Γ) : ϕ(Ag ) ⊆ Ag ∀g}.

I The diagonal group

Diag(Γ) = {ϕ ∈ Aut(Γ) :

∀g ∈ Supp Γ∃λg ∈ F× s.t. ϕ|Ag = λg id}.

I The quotient W (Γ) = Aut(Γ)/Stab(Γ) is the Weyl group of Γ.



W (Γ) acts by automorphisms on U(Γ)

Each ϕ ∈ Aut(Γ) determines a self-bijection α of Supp Γ that
induces an automorphism of the universal grading group U(Γ).
Then, there appears a natural group homomorphism:

Aut(Γ)→ Aut(U(Γ))

with kernel Stab(Γ).

Thus, the Weyl group embeds naturally in Aut(U(Γ)), i.e., there is
a natural action of the Weyl group on U(Γ) by automorphisms.

Remark

Diag(Γ) is isomorphic to the group of characters of U(Γ).
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Basic definitions (Patera-Zassenhaus)

Let Γ : A = ⊕g∈GAg and Γ′ : A = ⊕g ′∈G ′A′g ′ be two gradings on
A:

I Γ is a refinement of Γ′ if for any g ∈ G there is a g ′ ∈ G ′ such
that Ag ⊆ Ag ′ .
Then Γ′ is a coarsening of Γ.

For example, if α : G → H is a group homomorphism, then
A = ⊕h∈HAh, with Ah = ⊕g∈α−1(h)Ag , is a coarsening.

If G = U(Γ), any coarsening of Γ is obtained in this way.

I Γ is fine if it admits no proper refinement.

Any grading is a coarsening of a fine grading.
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Basic definitions (Patera-Zassenhaus)

I Γ and Γ′ are equivalent if there is an automorphism ϕ ∈ AutA
such that for any g ∈ G there is a g ′ ∈ G ′ with ϕ(Ag ) = A′g ′ .

I Γ and Γ′ are weakly isomorphic if there is an automorphism
ϕ ∈ AutA and an isomorphism α : G → G ′ such that for any
g ∈ G ϕ(Ag ) = A′α(g).

I For G = G ′, Γ and Γ′ are isomorphic if there is an
automorphism ϕ ∈ AutA such that ϕ(Ag ) = A′g for any
g ∈ G .
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Composition algebras

Freudenthal’s Magic Square

Gradings

Gradings on Octonions



The split octonions

Cayley-Dickson process:

K = F⊕ F i, i2 = −1,

H = K⊕K j, j2 = −1,

O = H⊕H l, l2 = −1,

O is Z3
2-graded with

deg(i) = (1̄, 0̄, 0̄), deg(j) = (0̄, 1̄, 0̄), deg(l) = (0̄, 0̄, 1̄).



Cartan grading on the Octonions
O contains canonical bases:

B = {e1, e2, u1, u2, u3, v1, v2, v3}

with

n(e1, e2) = n(ui , vi ) = 1, otherwise 0.

e2
1 = e1, e2

2 = e2,

e1ui = uie2 = ui , e2vi = vie1 = vi , (i = 1, 2, 3)

uivi = −e1, viui = −e2, (i = 1, 2, 3)

uiui+1 = −ui+1ui = vi+2, vivi+1 = −vi+1vi = ui+2, (indices modulo 3)

otherwise 0.

The Cartan grading is the Z2-grading determined by:

deg u1 = − deg v1 = (1, 0), deg u2 = − deg v2 = (0, 1).
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Fine gradings on the Octonions

Theorem (E. 1998)

Up to equivalence, the fine gradings on O are

I the Cartan grading, and

I the Z3
2-grading given by the Cayley-Dickson doubling process.



Fine gradings on the Octonions

Sketch of proof:

I The Cayley-Hamilton equation: x2 − n(x , 1)x + n(x)1 = 0,
implies that the norm has a well behavior relative to the
grading:

n(Og ) = 0 unless g 2 = e, n(Og ,Oh) = 0 unless gh = e.

I If there is a g ∈ Supp Γ with either order > 2 or dimOg ≥ 2,
there are elements x ∈ Og , y ∈ Og−1 with n(x) = 0 = n(y),
n(x , y) = 1. Then e1 = xȳ and e2 = y x̄ are orthogonal
primitive idempotents in Oe , and one uses the corresponding
Peirce decomposition to check that, up to equivalence, our
grading is the Cartan grading.

I Otherwise dimOg = 1 and g 2 = e for any g ∈ Supp Γ. We
get the Z3

2-grading.
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Z3
2-grading: Octonions as a twisted group algebra

Theorem (Albuquerque-Majid 1999)

The octonion algebra is the twisted group algebra

O = Fσ[Z3
2],

where
eαeβ = σ(α, β)eα+β

for α, β ∈ Z3
2, with

σ(α, β) = (−1)ψ(α,β),

ψ(α, β) = β1α2α3 + α1β2α3 + α1α2β3 +
∑
i≤j

αiβj .

This allows to consider the algebra of octonions as an “associative
algebra in a suitable category”.
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Cartan grading: Weyl group

Let S be the vector subspace spanned by (1, 1, 1) in R3 and
consider the two-dimensional real vector space E = R3/S . Take
the elements

ε1 = (1, 0, 0) + S , ε2 = (0, 1, 0) + S , ε3 = (0, 0, 1) + S .

The subgroup G = Zε1 + Zε2 + Zε3 is isomorphic to Z2, and we
may think of the Cartan grading Γ on the octonions O as the
grading in which

deg(e1) = 0 = deg(e2),

deg(ui ) = εi = − deg(vi ), i = 1, 2, 3.



Cartan grading: Weyl group

Then Supp Γ = {0} ∪ {±εi | i = 1, 2, 3} and G is the universal
group.
The set

Φ :=
(
Supp Γ ∪ {α + β | α, β ∈ Supp Γ, α 6= ±β}

)
\ {0}

is the root system of type G2.



Cartan grading: Weyl group

Identifying the Weyl group W (Γ) with a subgroup of Aut(G ), and
this with a subgroup of GL(E ), we have:

W (Γ) ⊂ {µ ∈ Aut(G ) | µ(Supp Γ) = Supp Γ}
⊂ {µ ∈ GL(E ) | µ(Φ) = Φ} =: Aut Φ.

The latter group is the automorphism group of the root system Φ,
which coincides with its Weyl group.

Theorem

Let Γ be the Cartan grading on the octonions. Identify
Supp Γ \ {0} with the short roots in the root system Φ of type G2.
Then W (Γ) = Aut Φ.
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Z3
2-grading: Weyl group

Theorem

Let Γ be the Z3
2-grading on the octonions induced by the

Cayley-Dickson doubling process. Then
W (Γ) = Aut(Z3

2) ∼= GL3(2).

Remark

As any ϕ ∈ Stab(Γ) multiplies each of the elements i, j, l by either
1 or −1, we see that Stab(Γ) = Diag(Γ) is isomorphic to Z3

2.
Therefore, the group Aut(Γ) is a (non-split) extension of Z3

2 by
W (Γ) ∼= GL3(2).
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Gradings on para-Hurwitz algebras

Theorem

Gradings on para-Hurwitz algebras of dimension 4 or 8

l

Gradings on their Hurwitz counterparts.

Therefore, any para-Cayley algebra is endowed with a Z3
2-grading.
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Gradings on Okubo algebras

Assuming F is a field of characteristic 6= 3 containing a primitive
third root ω of 1, then the matrix algebra Mat3(F) is generated by
the order 3 matrices:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 0 1
1 0 0
0 1 0

 ,

and the assignment

deg(x) = (1̄, 0̄), deg(y) = (0̄, 1̄),

gives a Z2
3-grading of Mat3(F), which is inherited by the Okubo

algebra
(
sl3(F), ∗, n

)
.

Over algebraically closed fields, any grading on an Okubo algebra
is a coarsening of either the natural Z2-grading (Cartan grading) or
this Z2

3-grading.
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Z2
3-grading

Consider the order three automorphism τ of O:

τ(ei ) = ei , i = 1, 2, τ(uj) = uj+1, τ(vj) = vj+1, j = 1, 2, 3,

and define a new multiplication on O:

x ∗ y = τ(x̄)τ2(ȳ).

It turns out that this is too the (split) Okubo algebra, defined in a
characteristic free way, and the Z2

3-grading is now given by setting

deg e1 = (1̄, 0̄) and deg u1 = (0̄, 1̄).
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Z2
3-grading

e1 e2 u1 v1 u2 v2 u3 v3

e1 e2 0 0 −v3 0 −v1 0 −v2

e2 0 e1 −u3 0 −u1 0 −u2 0
u1 −u2 0 v1 0 −v3 0 0 −e1

v1 0 −v2 0 u1 0 −u3 −e2 0
u2 −u3 0 0 −e1 v2 0 −v1 0
v2 0 −v3 −e2 0 0 u2 0 −u1

u3 −u1 0 −v2 0 0 −e1 v3 0
v3 0 −v1 0 −u2 −e2 0 0 u3

Multiplication table of the (split) Okubo algebra



The Albert algebra

G2 and F4

Jordan gradings on exceptional simple Lie algebras



Albert algebra

A = H3(O) =


α1 ā3 a2

a3 α2 ā1

ā2 a1 α3

 | α1, α2, α3 ∈ F, a1, a2, a3 ∈ O


= FE1 ⊕ FE2 ⊕ FE3 ⊕ ι1(O)⊕ ι2(O)⊕ ι3(O),

where

E1 =

1 0 0
0 0 0
0 0 0

 , E2 =

0 0 0
0 1 0
0 0 0

 , E3 =

0 0 0
0 0 0
0 0 1

 ,

ι1(a) = 2

0 0 0
0 0 ā
0 a 0

 , ι2(a) = 2

0 0 a
0 0 0
ā 0 0

 , ι3(a) = 2

0 ā 0
a 0 0
0 0 0

 .



Albert algebra

The multiplication in A is given by X ◦ Y = 1
2 (XY + YX )

(charF 6= 2, F = F̄).

Then Ei are orthogonal idempotents with E1 + E2 + E3 = 1. The
rest of the products are as follows:

Ei ◦ ιi (a) = 0, Ei+1 ◦ ιi (a) =
1

2
ιi (a) = Ei+2 ◦ ιi (a),

ιi (a) ◦ ιi+1(b) = ιi+2(a • b), ιi (a) ◦ ιi (b) = 2n(a, b)(Ei+1 + Ei+2),

for any a, b ∈ O, with i = 1, 2, 3 taken modulo 3, where a • b = āb̄
is the para-Hurwitz multiplication.



Cartan grading
Consider the following elements in Z4 = Z2 × Z2:

a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (−1,−1, 0, 0),

g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1), g3 = (0, 0,−1,−1).

Then a1 + a2 + a3 = 0 = g1 + g2 + g3.

Take a canonical basis of the octonions. The assignment

deg e1 = deg e2 = 0, deg ui = gi = − deg vi

gives the Cartan grading on O.

Now, the Cartan grading on A is given by:

deg Ei = 0, deg ιi (e1) = ai = − deg ιi (e2),

deg ιi (ui ) = gi = − deg ιi (vi ),

deg ιi (ui+1) = ai+2 + gi+1 = − deg ιi (vi+1),

deg ιi (ui+2) = −ai+1 + gi+2 = − deg ιi (vi+2).
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Cartan grading: Weyl group

The universal group of the Cartan grading is Z4, which is
contained in E = R4. Consider the following elements of Z4:

ε0 = deg ι1(e1) = a1 = (1, 0, 0, 0),

ε1 = deg ι1(u1) = g1 = (0, 0, 1, 0),

ε2 = deg ι1(u2) = a3 + g2 = (−1,−1, 0, 1),

ε3 = deg ι1(u3) = −a2 + g3 = (0,−1,−1,−1).

Note that the εi ’s, 0 ≤ i ≤ 3, are linearly independent, but do not
form a basis of Z4. For instance,

deg ι2(e1) = a2 =
1

2
(−ε0 − ε1 − ε2 − ε3),

deg ι3(e1) = a3 =
1

2
(−ε0 + ε1 + ε2 + ε3).



Cartan grading: Weyl group

The supports of the Cartan grading Γ on each of the subspaces
ιi (O) are:

Supp ι1(O) = {±εi | 0 ≤ i ≤ 3},

Supp ι2(O) = Supp ι1(O)(ι3(e1) + ι3(e2))

=
{1

2
(±ε0 ± ε1 ± ε2 ± ε3) | even number of + signs

}
,

Supp ι3(O) = Supp ι1(O)(ι2(e1) + ι2(e2))

=
{1

2
(±ε0 ± ε1 ± ε2 ± ε3) | odd number of + signs

}
.



Cartan grading: Weyl group

Φ :=
(
Supp Γ ∪ {α + β | α, β ∈ Supp ι1(O), α 6= ±β}

)
\ {0}

= Supp ι1(O) ∪ Supp ι2(O) ∪ Supp ι3(O)

∪ {±εi ± εj | 0 ≤ i 6= j ≤ 3},

is the root system of type F4. (Note that the εi ’s, i = 0, 1, 2, 3,
form an orthogonal basis of E relative to the unique (up to scalar)
inner product that is invariant under the Weyl group of Φ.)

Identifying the Weyl group W (Γ) with a subgroup of Aut(Z4), and
this with a subgroup of GL(E ), we have:

Theorem

Let Γ be the Cartan grading on the Albert algebra. Identify
Supp Γ \ {0} with the short roots in the root system Φ of type F4.
Then W (Γ) = Aut Φ.
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Z5
2-grading

A is naturally Z2
2-graded with

A(0̄,0̄) = FE1 + FE2 + FE3,

A(1̄,0̄) = ι1(O), A(0̄,1̄) = ι2(O), A(1̄,1̄) = ι3(O).

This Z2
2-grading may be combined with the fine Z3

2-grading on O
to obtain a fine Z5

2-grading:

deg Ei = (0̄, 0̄, 0̄, 0̄, 0̄), i = 1, 2, 3,

deg ι1(x) = (1̄, 0̄, deg x),

deg ι2(x) = (0̄, 1̄, deg x),

deg ι3(x) = (1̄, 1̄, deg x).
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Z5
2-grading: Weyl group

Write Z5
2 = Z2a⊕ Z2b ⊕ Z2c1 ⊕ Z2c2 ⊕ Z2c3. Then the

Z5
2-grading Γ is defined by setting

deg ι1(1) = a, deg ι2(1) = b,

deg ι3(i) = a + b + c1, deg ι3(j) = a + b + c2, deg ι3(l) = a + b + c3.

Theorem

Let Γ be the Z5
2-grading on the Albert algebra. Let T = ⊕3

i=1Z2ci .
Then

W (Γ) = {µ ∈ Aut(Z5
2) : µ(T ) = T}.

Remark

Any ψ ∈ Stab(Γ) fixes Ei and multiplies
ι1(1), ι2(1), ι3(i), ι3(j), ι3(l), by either 1 or −1. Hence
Stab(Γ) = Diag(Γ) is isomorphic to Z5

2.
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Z× Z3
2-grading

Take an element i ∈ F with i2 = −1 and consider the following
elements in A:

E = E1, Ẽ = 1− E = E2 + E3,

ν(a) = iι1(a) for all a ∈ O0,

ν±(x) = ι2(x)± iι3(x̄) for all x ∈ O,

S± = E3 − E2 ±
i

2
ι1(1).

A is then 5-graded:

A = A−2 ⊕ A−1 ⊕ A0 ⊕ A1 ⊕ A2,

with A±2 = FS±, A±1 = ν±(O), and A0 = FE ⊕
(
FẼ ⊕ ν(O0)

)
.



Z× Z3
2-grading

The Z3
2-grading on O combines with this Z-grading

A = FS− ⊕ ν−(O)⊕ A0 ⊕ ν+(O)⊕ FS+

to give a fine Z× Z3
2-grading as follows:

deg S± = (±2, 0̄, 0̄, 0̄),

deg ν±(x) = (±1, deg x),

deg E = 0 = deg Ẽ ,

deg ν(a) = (0, deg a),

for homogeneous elements x ∈ O and a ∈ O0.



Z× Z3
2-grading: Weyl group

Theorem

Let Γ be the Z× Z3
2-grading on the Albert algebra. Then

W (Γ) = Aut(Z× Z3
2).

Remark

One can show that Stab(Γ) = Diag(Γ), which is isomorphic to
F× × Z3

2.
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One can show that Stab(Γ) = Diag(Γ), which is isomorphic to
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Z3
3-grading

Recall that the Okubo algebra can be defined on the octonions,
with new multiplication:

x ∗ y = τ(x̄)τ2(ȳ).

where τ is the order three automorphism of O given by:

τ(ei ) = ei , i = 1, 2, τ(uj) = uj+1, τ(vj) = vj+1, j = 1, 2, 3.



Z3
3-grading

Define ι̃i (x) = ιi (τ
i (x)) for all i = 1, 2, 3 and x ∈ O. Then the

multiplication in the Albert algebra

A = ⊕3
i=1

(
FEi ⊕ ι̃i (O)

)
becomes:

E ◦2i = Ei , Ei ◦ Ei+1 = 0,

Ei ◦ ι̃i (x) = 0, Ei+1 ◦ ι̃i (x) =
1

2
ι̃i (x) = Ei+2 ◦ ι̃i (x),

ι̃i (x) ◦ ι̃i+1(y) = ι̃i+2(x ∗ y), ι̃i (x) ◦ ι̃i (y) = 2n(x , y)(Ei+1 + Ei+2),

for i = 1, 2, 3 and x , y ∈ O.



Z3
3-grading

Assume now charF 6= 3. Then the Z2
3-grading on the Okubo

algebra is determined by two commuting order 3 automorphisms
ϕ1, ϕ2 ∈ Aut(O, ∗):

ϕ1(e1) = ωe1, ϕ1(u1) = u1,

ϕ2(e1) = e1, ϕ2(u1) = ωu1,

where ω is a primitive cubic root of unity in F.



Z3
3-grading

The commuting order 3 automorphisms ϕ1, ϕ2 of (O, ∗) extend to
commuting order 3 automorphisms of A:

ϕj(Ei ) = Ei , ϕj

(
ι̃i (x)

)
= ι̃i (ϕj(x)).

On the other hand, the linear map ϕ3 ∈ End(A) defined by

ϕ3(Ei ) = Ei+1, ϕ3

(
ι̃i (x)

)
= ι̃i+1(x),

is another order 3 automorphism, which commutes with ϕ1 and ϕ2.

The subgroup of Aut(A) generated by ϕ1, ϕ2, ϕ3 is isomorphic to
Z3

3 and induces a Z3
3-grading on A.

All the homogeneous components have dimension 1.
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)
= ι̃i+1(x),

is another order 3 automorphism, which commutes with ϕ1 and ϕ2.

The subgroup of Aut(A) generated by ϕ1, ϕ2, ϕ3 is isomorphic to
Z3

3 and induces a Z3
3-grading on A.

All the homogeneous components have dimension 1.



Z3
3-grading: Weyl group

The Z3
3-grading is determined by

deg
(∑3

i=1 ι̃i (e1)
)

= (1̄, 0̄, 0̄),

deg
(∑3

i=1 ι̃i (u1)
)

= (0̄, 1̄, 0̄),

deg
(∑3

i=1 ω
−iEi

)
= (0̄, 0̄, 1̄),

Theorem

Let Γ be the Z3
3-grading on the Albert algebra. Then W (Γ) is the

commutator subgroup of Aut(Z3
3), i.e.,

W (Γ) ∼= SL3(3).
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Let Γ be the Z3
3-grading on the Albert algebra. Then W (Γ) is the

commutator subgroup of Aut(Z3
3), i.e.,

W (Γ) ∼= SL3(3).



Z3
3-grading: Weyl group

Why SL3(3) and not GL3(3)?

Consider the Z3
3-grading Γ− determined by

deg
(∑3

i=1 ι̃i (e1)
)

= (0̄, 1̄, 0̄),

deg
(∑3

i=1 ι̃i (u1)
)

= (1̄, 0̄, 0̄),

deg
(∑3

i=1 ω
−iEi

)
= (0̄, 0̄, 1̄),

Then, for X1 ∈ A(1̄,0̄,0̄), X2 ∈ A(0̄,1̄,0̄), X3 ∈ A(0̄,0̄,1̄), we have:

(X1 ◦ X2) ◦ X3 =

{
ωX1 ◦ (X2 ◦ X3), for Γ,

ω−1X1 ◦ (X2 ◦ X3), for Γ−.

Hence Γ and Γ− are equivalent, but NOT isomorphic, gradings.

Besides, any fine Z3
3-grading on A is isomorphic to either Γ or Γ−,

so W (Γ) has index two in Aut(U(Γ)) ∼= GL3(3).
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Z3
3-grading and the Tits construction

Let R = Mat3(F). Then

A = R0 ⊕R1 ⊕R2,

with R0, R1, R2 copies of R.

The product in A satisfies Ri ◦ Rj ⊆ Ri+j (mod 3) and:

◦ a′0 b′1 c ′2

a0 (a ◦ a′)0 (āb′)1 (c ′ā)2

b1 (ā′b)1 (b × b′)2 (bc ′)2

c2 (cā′)2 (b′c)0 (c × c ′)1

where

I a ◦ a′ = 1
2 (aa′ + a′a),

I a× b = a ◦ b − 1
2 (tr(a)b + tr(b)a) + 1

2

(
tr(a) tr(b)− tr(ab)

)
1,

I ā = a× 1 = 1
2

(
tr(a)1− a

)
.
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Z3
3-grading and the Tits construction

Assume charF 6= 3. Take Pauli matrices in R:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 1 0
0 0 1
1 0 0

 ,

where ω, ω2 are the primitive cubic roots of 1, which satisfy

x3 = 1 = y 3, yx = ωxy .

These Pauli matrices give a grading by Z2
3 on R, with

R(α1,α2) = Fxα1yα2 .

This grading combines with the Z3-grading on A induced by Tits
construction, to give the unique, up to equivalence, fine grading by
Z3

3 of the Albert algebra.
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Z3
3-grading and the Tits construction

For α = (α1, α2, α3) ∈ Z3
3 consider the element

Zα := (xα1yα2)α3 ∈ Rα3 ⊆ A.

Then, for any α, β ∈ Z3
3:

Zα ◦ Zβ =

ω
ψ̃(α,β)Zα+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)Zα+β otherwise,

where

ψ̃(α, β) = (α2β1 − α1β2)(α3 − β3)− (α1β2 + α2β1).
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Z3
3-grading and the Tits construction

Consider now the elements (Racine 1990, unpublished)

W α := ω−α1α2Zα.

W α ◦W β = ω−α1α2−β1β2Zα ◦ Zβ

=

ω
ψ̃(α,β)−(α1α2+β1β2)Zα+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)−(α1α2+β1β2)Zα+β otherwise,

=

ω
ψ̃(α,β)+(α1β2+α2β1)W α+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)+(α1β2+α2β1)W α+β otherwise.



Z3
3-grading and the Tits construction

Consider now the elements (Racine 1990, unpublished)

W α := ω−α1α2Zα.

W α ◦W β = ω−α1α2−β1β2Zα ◦ Zβ

=

ω
ψ̃(α,β)−(α1α2+β1β2)Zα+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)−(α1α2+β1β2)Zα+β otherwise,

=

ω
ψ̃(α,β)+(α1β2+α2β1)W α+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)+(α1β2+α2β1)W α+β otherwise.



The Albert algebra as a twisted group algebra

Theorem (Griess 1990)

The Albert algebra is, up to isomorphism, the twisted group algebra

A = Fσ[Z3
3],

with

σ(α, β) =

ω
ψ(α,β) if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ(α,β) otherwise,

where
ψ(α, β) = (α2β1 − α1β2)(α3 − β3).



Fine gradings on the Albert algebra

Theorem (Draper–Mart́ın-González 2009 (char = 0),
E.–Kochetov 2012)

Up to equivalence, the fine gradings of the Albert algebra are:

1. The Cartan grading (weight space decomposition relative to a
Cartan subalgebra of f4 = Der(A)).

2. The Z5
2-grading obtained by combining the natural Z2

2-grading
on 3× 3 hermitian matrices with the fine grading by Z3

2 of O.

3. The Z× Z3
2-grading obtained by combining a 5-grading and

the Z3
2-grading on O.

4. The Z3
3-grading with dimAg = 1 ∀g (charF 6= 3).

All the gradings up to isomorphism on A have been classified too
(E.–Kochetov).
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The Albert algebra

G2 and F4

Jordan gradings on exceptional simple Lie algebras



Gradings and comodule algebras

G -grading ←→ comodule algebra over the group algebra FG

Γ : A = ⊕g∈GAg ⇒ ρΓ : A −→ A⊗ FG

xg 7→ xg ⊗ g

(algebra morphism and comodule str.)

Γρ : A = ⊕g∈GAg ⇐ ρ : A → A⊗ FG

(Ag = {x ∈ A : ρ(x) = x ⊗ g})
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Gradings and comodule algebras

A comodule algebra map

ρ : A → A⊗ FG

induces a generic automorphism of FG -algebras

A⊗ FG −→ A⊗ FG

x ⊗ h 7→ ρ(x)h.

All the information on the grading Γ attached to ρ is contained in
this single automorphism!
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Gradings and affine group schemes

Γ : A = ⊕g∈GAg ⇔ ρΓ : A → A⊗ FG

(comodule algebra structure)

Now,

ρΓ : A → A⊗ FG ⇐⇒ ηΓ : GD → AutA
(comodule algebra) (morphism of affine group schemes)

For any ϕ ∈ GD(R), ηΓ(ϕ) ∈ AutR(A⊗R) is given by:

ηΓ(ϕ)(xg ⊗ r) = xg ⊗ ϕ(g)r .

and ρΓ is recovered as

ρΓ(x) = ηΓ(idFG )(x ⊗ 1)
(
ηΓ(idFG ) ∈ AutFG (A⊗ FG )

)
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Gradings and affine group schemes

Consider a homomorphism Φ : AutA −→ AutA′ of affine group
schemes.

Then any grading Γ : A = ⊕g∈GAg induces a grading
Γ′ : A′ = ⊕g∈GA′g by means of:

ηΓ′ : GD ηΓ−−→ AutA Φ−−→ AutA′.

If Γ1 : A = ⊕g∈GAg and Γ2 : A = ⊕h∈HA′h are weakly isomorphic
through the automorphisms ψ ∈ AutA and ϕ : G → H, then the
induced gradings Γ′1 and Γ′2 on A′ are weakly isomorphic too
through the automorphisms ΦF(ψ) ∈ AutA′ and ϕ : G → H.
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Gradings and affine group schemes

For G = AutA, Lie(G) = Der(A), so

Ad : AutA → Aut
(
Der(A)

)
is a homomorphism, and any grading Γ : A = ⊕g∈GAg induces a
grading

Γ′ : Der(A) = ⊕g∈G Der(A)g ,

Der(A)g = {d ∈ Der(A) : d(Ah) ⊆ Agh ∀h ∈ G}.



Gradings on G2 and F4

If AutA ∼= AutB, then the problem of the classification of fine
gradings up to equivalence, and of gradings up to isomorphism, on
A and B are equivalent.

If the characteristic of the ground field F is 6= 2, 3, then

Ad : AutO→ Aut g2

is an isomorphism, and (assuming just charF 6= 2),

Ad : AutA→ Aut f4

is an isomorphism too.
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Gradings on G2

Theorem

Up to equivalence, the fine gradings on g2 are

I the Cartan grading, and

I a Z3
2-grading with (g2)0 = 0 and where (g2)g is a Cartan

subalgebra of g2 for any 0 6= g ∈ Z3
2.



Gradings on F4

Theorem

Up to equivalence, the fine gradings on f4 are

I the Cartan grading,

I a grading by Z5
2, obtained by combining the Z2

2-grading given
by the decomposition f4 = d4⊕natural⊕ spin⊕ spin, with the
Z3

2-grading on the octonions (which is the vector space behind
the natural and spin representations of d4).

I a grading by Z× Z3
2, obtained by looking at f4 as the Kantor

Lie algebra of a structurable algebra: f4 = K(O,−), and
combining the natural 5-grading on K(O,−) and the
Z3

2-grading on O.

I a Z3
3-grading (only if charF 6= 3), with (f4)0 = 0 and where

(f4)g ⊕ (f4)−g is a Cartan subalgebra of f4 for any 0 6= g ∈ Z3
3.



The Albert algebra

G2 and F4

Jordan gradings on exceptional simple Lie algebras



Jordan subgroups

Definition (Alekseevskĭı 1974)

Given a simple Lie algebra g and a complex Lie group G with
Int(g) ≤ G ≤ Aut(g), an abelian subgroup A of G is a Jordan
subgroup if:

(i) its normalizer NG (A) is finite,

(ii) A is a minimal normal subgroup of its normalizer, and

(iii) its normalizer is maximal among the normalizers of those
abelian subgroups satisfying (i) and (ii).



Jordan gradings

The Jordan subgroups are elementary (Zp × · · · × Zp for some
prime number p), and they induce gradings, called Jordan
gradings, in the Lie algebra g.

The classification of Jordan subgroups by Alekseevskĭı splits in two
types: classical and exceptional.
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prime number p), and they induce gradings, called Jordan
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Jordan subgroups: classical cases

g A

Apn−1 Z2n
p

Bn (n ≥ 3) Z2n
2

C2n−1 (n ≥ 2) Z2n
2

Dn+1 (n ≥ 3) Z2n
2

D2n−1 (n ≥ 3) Z2n
2

The dimension of all nonzero homogeneous spaces is always 1 in
these classical cases, which are well-known.
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Jordan subgroups: exceptional cases

g A dim gα (α 6= 0)

G2 Z3
2 2

F4 Z3
3 2

E8 Z3
5 2

D4 Z3
2 4

E8 Z5
2 8

E6 Z3
3 3

Models of these gradings?



Jordan subgroups: exceptional cases

g A dim gα (α 6= 0)

G2 Z3
2 2

F4 Z3
3 2

E8 Z3
5 2

D4 Z3
2 4

E8 Z5
2 8

E6 Z3
3 3

Models of these gradings?



Gradings on Freudenthal’s Magic Square

Given two symmetric composition algebras, the Lie algebra g(S , S ′)
is naturally Z2 × Z2-graded with

g(0̄,0̄) = tri(S)⊕ tri(S ′),

g(1̄,0̄) = ι1(S ⊗ S ′), g(0̄,1̄) = ι2(S ⊗ S ′), g(1̄,1̄) = ι3(S ⊗ S ′).

Also, the triality automorphisms θ and θ′ extend to an order 3
automorphism Θ of g(S ,S ′). The eigenspaces of Θ constitute a
Z3-grading of g(S ,S ′).
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Induced gradings
(From now on, assume that our ground field F is algebraically
closed of characteristic 0.)

The previous Z2
2 and Z3-gradings on the Lie algebras g(S ,S ′) can

be complemented with gradings on the symmetric composition
algebras S and S ′ in several ways.

I The Z2
3-grading on the Okubo algebra O induces a Z3

3-grading
on both the simple Lie algebra g(F,O) of type F4 (our fine
Z3

3-grading!!) and the simple Lie algebra g(S ,O) (for the
two-dimensional para-Hurwitz algebra S) of type E6.
In both cases g0 = 0 and gα ⊕ g−α is a Cartan subalgebra of g
for any 0 6= α ∈ Z3

3.

I The Z3
2-grading on a para-Cayley algebra C̄ induces a

Z5
2-grading on the simple Lie algebra g(C̄ , C̄ ) of type E8.

Moreover, g0 = 0 and gα is a Cartan subalgebra of g for any
0 6= α ∈ Z5

2.
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Exceptional Jordan gradings

Theorem

The gradings:

1. a Z3
2-grading on the simple Lie algebra of type G2 induced by

the Z3
2-grading of the Cayley algebra,

2. a Z3
2-grading on the simple Lie algebra of type D4 induced by

the Z3
2-grading of the Cayley algebra,

3. a Z3
3-grading on the simple Lie algebra of type F4 induced by

the Z2
3-grading of the Okubo algebra,

4. a Z3
3-grading on the simple Lie algebra of type E6 induced by

the Z2
3-grading of the Okubo algebra,

5. a Z5
2-grading on the simple Lie algebra of type E8 induced by

the Z3
2-grading of the Cayley algebra,

are exceptional Jordan gradings.



The missing exceptional Jordan grading
Only one exceptional Jordan grading does not fit in the Theorem
above: the Z3

5-grading on E8.

Let V1 and V2 be two vector spaces over F of dimension 5, and
consider the Z5-graded vector space

g = ⊕4
i=0gı̄,

where

g0̄ = sl(V1)⊕ sl(V2),

g1̄ = V1 ⊗
∧2V2,

g2̄ =
∧2V1 ⊗

∧4V2,

g3̄ =
∧3V1 ⊗ V2,

g4̄ =
∧4V1 ⊗

∧3V2.

This is a Z5-graded Lie algebra in a unique way: the exceptional
simple Lie algebra of type E8.
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The missing exceptional Jordan grading

Up to conjugation in Aut g, there is a unique order 5
automorphism of the simple Lie algebra g of type E8 such that the
dimension of the subalgebra of fixed elements is 48.

b b b b b b b br b
1 2 3 4 5 6 4 2

3

The uniqueness shows us that, up to conjugation, this is the
automorphism of g such that its restriction to gı̄ is ξi times the
identity, where ξ is a fixed primitive fifth root of unity.
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The missing exceptional Jordan grading

Consider the following automorphisms σ1, σ2, σ3 of g:

σ1(x) = ξix for any x ∈ gı̄ and 0 ≤ i ≤ 4,

σ2|g1̄
= b1 ⊗ ∧2b2,

σ3|g1̄
= c1 ⊗ ∧2c2,

where on fixed bases of V1 and V2, the coordinate matrices of

b1, c1, b2, c2 are:

b1 ↔

1 0 0 0 0
0 ξ 0 0 0

0 0 ξ2 0 0

0 0 0 ξ3 0

0 0 0 0 ξ4

, c1 ↔

(
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
,

b2 ↔

1 0 0 0 0

0 ξ2 0 0 0

0 0 ξ4 0 0
0 0 0 ξ 0

0 0 0 0 ξ3

, c2 ↔

(
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
.
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The missing exceptional Jordan grading

Theorem

The grading of E8 induced by the order 5 commuting
automorphisms σ1, σ2, σ3 is the Jordan grading by Z3

5.

∀0 6= α ∈ Z3
5, ⊕4

i=1giα is a Cartan subalgebra of g.

There are models of the Jordan gradings of F4 and E6 by Z3
3

constructed along the same lines.
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That’s all.
Thanks
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