Clifford algebras as twisted group algebras and the Arf invariant

Alberto Elduque

(based on joint work with Adrián Rodrigo-Escudero)

To connect

- the work of Bahturin and Zaicev on one hand, and Rodrigo-Escudero on the other, on real graded-division algebras,
- \bullet Ovsienko's work on real Clifford algebras and quadratic forms over $\mathbb{F}_2,$ and
- the results of **Albuquerque** and Majid on Clifford algebras as twisted group algebras.

1 Graded-division algebras and twisted group algebras

2 Clifford algebras as twisted group algebras

- 3 Quadratic forms over \mathbb{F}_2
- 4 From quadratic forms over \mathbb{F}_2 to real algebras

Graded-division algebras and twisted group algebras

2 Clifford algebras as twisted group algebras

3 Quadratic forms over \mathbb{F}_2

4 From quadratic forms over \mathbb{F}_2 to real algebras

Definition

Let \mathcal{A} be an algebra (over a field \mathbb{F}) and let G be an *abelian* group.

- A G-grading on \mathcal{A} is a vector space decomposition $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ such that $\mathcal{A}_g \mathcal{A}_h \subseteq \mathcal{A}_{gh}$ for any $g, h \in G$.
- The nonzero elements in \mathcal{A}_g are said to be homogeneous of degree g.
- The support of Γ is the set $\{g \in G \mid A_g \neq 0\}$.

Given and algebra with a *G*-grading Γ , (\mathcal{D}, Γ) is a graded-division algebra if the left and right multiplications by any homogeneous element are bijections.

If \mathcal{D} is associative, this is equivalent to \mathcal{D} being unital and every nonzero homogeneous element being invertible. In this case $1 \in \mathcal{D}_e$ and for $0 \neq X \in \mathcal{D}_g$, $X^{-1} \in \mathcal{D}_{g^{-1}}$. The support of Γ is then a subgroup of G.

Definition

Given a group G, a field \mathbb{F} and a map $\sigma : G \times G \to \mathbb{F}^{\times}$, the twisted group algebra $\mathbb{F}^{\sigma}G$ is the algebra over \mathbb{F} with a basis consisting of a copy of G: $\{\varepsilon_g : g \in G\}$, and with (bilinear) multiplication given by

$$\varepsilon_{g}\varepsilon_{h} := \sigma(g,h)\varepsilon_{gh}$$

for any $g, h \in G$.

 $\mathbb{F}^{\sigma}G$ is a graded-division algebra.

Remark

Any *G*-graded-division algebra (not necessarily associative), with homogeneous components of dimension 1, is a twisted group algebra, isomorphic to $\mathbb{F}^{\sigma}T$, for a suitable σ , where *T* is the support of the grading.

With $\mathbb{F} = \mathbb{R}$, **Albuquerque** and Majid considered the classical algebras of complex numbers, quaternions and octonions as the twisted group algebras $\mathbb{R}^{\sigma}T$ with:

- $T = \mathbb{Z}_2$ and $\sigma(x, y) = (-1)^{xy}$ for the complex numbers.
- $T = \mathbb{Z}_2^2$ and $\sigma((x_1, x_2), (y_1, y_2)) = (-1)^{x_1y_1 + (x_1 + x_2)y_2}$ for the real associative division algebra \mathbb{H} of quaternions.
- $T = \mathbb{Z}_2^3$ and

 $\sigma((x_1, x_2, x_3), (y_1, y_2, y_3)) = (-1)^{y_1 x_2 x_3 + x_1 y_2 x_3 + x_1 x_2 y_3 + \sum_{1 \le i \le j \le 3} x_i y_j}$

for the real non-associative division algebra $\mathbb O$ of octonions.

The twisted group algebra $\mathbb{F}^{\sigma}G$ is associative if, and only if, σ is a 2-cocycle:

$$\sigma(g,h)\sigma(gh,k) = \sigma(h,k)\sigma(g,hk), \quad \forall g,h,k \in G,$$

with values in \mathbb{F}^{\times} .

Two twisted group algebras $\mathbb{F}^{\sigma}G$ and $\mathbb{F}^{\sigma'}G$ are isomorphic as *G*-graded algebras if, and only if, σ and σ' are cohomologous:

$$\exists \mu: G \to \mathbb{F}^{\times} \text{ s.t. } \mu(gh)\sigma(g,h) = \mu(g)\mu(h)\sigma'(g,h), \ \forall g,h \in G.$$

Given a 2-cocycle $\sigma \in Z^2(G, \mathbb{F}^{\times})$, consider the map

$$eta: {\sf G} imes {\sf G} o {\mathbb F}^ imes \ (g,h) \mapsto \sigma(g,h) \sigma(h,g)^{-1}.$$

In other words, β is determined by the *commutativity condition*:

$$\varepsilon_{g}\varepsilon_{h} = \beta(g,h)\varepsilon_{h}\varepsilon_{g}$$

for any $g, h \in G$, in the twisted group algebra $\mathbb{F}^{\sigma}G$.

 β is an alternating bicharacter:

•
$$eta(g,g)=1$$
 for any $g\in G$.

• β is multiplicative on each slot.

Twisted group algebras

Another way of looking at them

Theorem

Let G be a finitely generated abelian group, and let $\beta: G \times G \to \mathbb{F}^{\times}$ be an alternating bicharacter on G, then there exists a 2-cocycle $\sigma \in Z^2(G, \mathbb{F}^{\times})$ such that $\beta(g, h) = \sigma(g, h)\sigma(h, g)^{-1}$. Moreover, if $G = \langle g_1 \rangle \times \cdots \times \langle g_N \rangle$, for a finite number of elements g_1, \ldots, g_N , with g_i of order $m_i \in \mathbb{N}_{\geq 2}$ for $i = 1, \ldots, r$, and g_i of infinite order for $i = r + 1, \ldots, N$; and if $\mu_1, \ldots, \mu_r \in \mathbb{F}^{\times}$ are chosen arbitrarily, then the 2-cocycle σ above can be taken so that $\mathbb{F}^{\sigma}G$ is isomorphic, as a G-graded algebra, to the algebra:

 \mathbb{P}° G is isomorphic, as a G-graded algebra, to the algebra:

$$\mathcal{A}_{\mathbb{F}}(N,\underline{m},\underline{\mu},\beta) := \mathsf{alg} \langle x_1, \dots, x_N \mid x_i^{m_i} = \mu_i, i = 1, \dots, r; \\ x_i x_j = \beta(g_i,g_j) x_j x_i, i, j = 1, \dots, N \rangle,$$

which is a G-graded-division algebra $(\deg(x_i) = g_i \ \forall i = 1).$

1 Graded-division algebras and twisted group algebras

2 Clifford algebras as twisted group algebras

4 From quadratic forms over \mathbb{F}_2 to real algebras

Definition

Let V be an \mathbb{F} -vector space of finite dimension N, and let $Q: V \to \mathbb{F}$ be a quadratic form on V.

The Clifford algebra Cl(V(, Q)) is the quotient of the tensor algebra T(V) by the ideal I(Q) generated by the elements $v \otimes v - Q(v)1$, $v \in V$.

If the characteristic of the ground field \mathbb{F} is not 2, Q is nondegenerate, and $\{v_1, \ldots, v_N\}$ is an orthogonal basis of V, then

$$Cl(V, Q) \cong alg \langle x_1, \dots, x_N \mid x_i^2 = \mu_i, i = 1, \dots, N;$$
$$x_i x_j = -x_j x_i, i \neq j \rangle = \mathcal{A}_{\mathbb{F}}(N, \underline{2}, \underline{\mu}, \beta)$$

where

•
$$\underline{2} = (2, 2, ..., 2)$$
 (*N* components),
• $\underline{\mu} = (Q(v_1), Q(v_2), ..., Q(v_N))$,

• β is the alternating bicharacter on the cartesian product $G = C_2^N$ ($G = \langle g_1 \rangle \times \cdots \times \langle g_N \rangle$ with g_i or order 2 for any $i = 1, \dots, N$), with $\beta(g_i, g_j) = -1$ for any $i \neq j$.

- $\mathcal{A}_{\mathbb{F}}(N, \underline{2}, \underline{\mu}, \beta)$ is graded-isomorphic to a twisted group algebra $\mathbb{F}^{\sigma}G$ and, in particular, its dimension is 2^{N} .
- Therefore $\operatorname{Cl}(V, Q)$ is a *G*-graded-division algebra, with $\operatorname{deg}(v_i) = g_i$ for $i = 1, \ldots, N$ (here we identify $v_i \in V$ with the class of v_i modulo I(Q) in $\operatorname{Cl}(V, Q)$).
- This is the grading by the group C₂^N ≃ Z₂^N that Albuquerque and Majid considered in 2002.

1 Graded-division algebras and twisted group algebras

2 Clifford algebras as twisted group algebras

3 Quadratic forms over \mathbb{F}_2

4 From quadratic forms over \mathbb{F}_2 to real algebras

Here we will consider quadratic forms $\mathbf{q}: W \to \mathbb{F}_2$ defined on a finite dimensional vector space W over the field \mathbb{F}_2 of two elements.

Let $b_{\mathbf{q}}: W \times W \to \mathbb{F}_2$ be the associated bilinear form. As 2 = 0 in \mathbb{F}_2 , $b_{\mathbf{q}}$ is alternating: $b_{\mathbf{q}}(w, w) = 0$ for any $w \in W$.

Two quadratic forms $\mathbf{q}: W \to \mathbb{F}_2$ and $\mathbf{q}': W' \to \mathbb{F}_2$ are equivalent if there is a linear isomorphism $\varphi: W \to W'$ such that $\mathbf{q}'(\varphi(w)) = \mathbf{q}(w)$ for any $w \in W$.

The orthogonal sum $\mathbf{q} \perp \mathbf{q}'$ is the quadratic form on $W \times W'$ given by

$$(\mathbf{q}\perp\mathbf{q}')(w,w')=\mathbf{q}(w)+\mathbf{q}'(w')$$

for any $w \in W$ and $w' \in W'$.

Quadratic forms over \mathbb{F}_2

Classification (Dickson 1901)

Theorem

Any regular quadratic form $\mathbf{q} : \mathbb{F}_2^N \to \mathbb{F}_2$ is equivalent to one of the following:

N even (N = 2n)• $\mathbf{q}_0^N(x_1,\ldots,x_{2n}) = x_1x_2 + x_3x_4 + \cdots + x_{2n-1}x_{2n}$ • $\mathbf{q}_1^N(x_1, \ldots, x_{2n}) =$ $x_1x_2 + x_3x_4 + \cdots + x_{2n-1}x_{2n} + x_1 + x_2$ **N** odd (N = 2n + 1)• $\mathbf{q}_0^N(x_1,\ldots,x_{2n+1}) = x_1x_2 + x_3x_4 + \cdots + x_{2n-1}x_{2n}$ • $\mathbf{q}_1^N(x_1,\ldots,x_{2n+1}) =$ $x_1x_2 + x_3x_4 + \cdots + x_{2n-1}x_{2n} + x_1 + x_2$ • $\mathbf{q}_{2}^{N}(x_{1},\ldots,x_{2n+1}) =$ $x_1x_2 + x_3x_4 + \cdots + x_{2n-1}x_{2n} + x_{2n+1}$

The Arf invariant of a quadratic form $\mathbf{q}: W \to \mathbb{F}_2$ on a finite dimensional vector space W over \mathbb{F}_2 is the *democratic invariant* defined by:

$$\operatorname{Arf}(\mathbf{q}) := \begin{cases} 1 & \text{if } |\{w \in W \mid \mathbf{q}(w) = 0\}| > |\{w \in W \mid \mathbf{q}(w) = 1\}|, \\ 0 & \text{if } |\{w \in W \mid \mathbf{q}(w) = 0\}| = |\{w \in W \mid \mathbf{q}(w) = 1\}|, \\ -1 & \text{if } |\{w \in W \mid \mathbf{q}(w) = 0\}| < |\{w \in W \mid \mathbf{q}(w) = 1\}|. \end{cases}$$

$$\operatorname{Arf}(\mathbf{q}_0^N) = 1, \qquad \operatorname{Arf}(\mathbf{q}_1^N) = -1, \qquad \operatorname{Arf}(\mathbf{q}_2^N) = 0 \ (N \text{ odd}),$$

so regular quadratic forms are determined, up to equivalence, by their Arf invariant.

Arf invariant

Example

Take $p, q \in \mathbb{Z}_{\geq 0}$ such that p + q = N, and consider the regular quadratic form $\mathbf{q}_{p,q} : \mathbb{F}_2^N \to \mathbb{F}_2$ defined by:

$$\mathbf{q}_{p,q}(x_1,\ldots,x_N)=x_{p+1}+\cdots+x_N+\sum_{1\leq i< j\leq N}x_ix_j.$$

Theorem

$$\operatorname{Arf}(\mathbf{q}_{p,q}) = \operatorname{sign}\left(\cos\frac{(p-q)\pi}{4} + \sin\frac{(p-q)\pi}{4}\right)$$
$$= \begin{cases} 1 & \text{if } p - q + 1 \equiv 1, 2, 3 \pmod{8}, \\ 0 & \text{if } p - q + 1 \equiv 0, 4 \pmod{8}, \\ -1 & \text{if } p - q + 1 \equiv 5, 6, 7 \pmod{8}. \end{cases}$$

Multiplicative notation

Given a quadratic form $\mathbf{q}: \mathbb{F}_2^N \to \mathbb{F}_2$, its multiplicative version is the map $\boldsymbol{\mu}: C_2^N \to C_2$ given by

$$\mu\left((-1)^{x_1},\ldots,(-1)^{x_N}
ight)=(-1)^{{\sf q}(x_1,\ldots,x_N)}$$

for $x_1, \ldots, x_N \in \mathbb{F}_2 = \{0, 1\}$. Its *polar form* is given by

$$\beta_{\mu}(r,s) = \mu(rs)\mu(r)\mu(s)$$

which is an alternating bicharacter. Identifying C_2 with $\{1, -1\} \leq \mathbb{R}^{\times}$, we may thing of β_{μ} as an alternating bicharacter with values in \mathbb{R}^{\times} .

The Arf invariant of μ is, by definition, the Arf invariant of **q**. The multiplicative versions of the quadratic forms \mathbf{q}_i^N will be denoted by μ_i^N , and the multiplicative version of $\mathbf{q}_{p,q}$ by $\mu_{p,q}$.

1 Graded-division algebras and twisted group algebras

2 Clifford algebras as twisted group algebras

3 Quadratic forms over \mathbb{F}_2

4 From quadratic forms over \mathbb{F}_2 to real algebras

Proposition

Given a multiplicative quadratic form $\boldsymbol{\mu} : C_2^N \to C_2$, the C_2^N -graded algebra $\mathcal{A}_{\mathbb{R}}(N, \underline{2}, \underline{\mu}, \beta_{\mu})$ ($\underline{\mu} := (\boldsymbol{\mu}(\mathbf{e}_1), \dots, \boldsymbol{\mu}(\mathbf{e}_N))$, where $\mathbf{e}_i = (1, \dots, 1, -1, 1, \dots, 1)$) is graded isomorphic to the twisted group algebra $\mathbb{R}^{\sigma} C_2^N$, where the 2-cocycle σ is given by

$$\sigma(q,q) = \mu(q) \; orall q \in C_2^N;$$

and

$$\sigma(\mathbf{e}_i, \mathbf{e}_j) = \begin{cases} 1 & \text{if } i < j, \\ \beta_{\mu}(\mathbf{e}_i, \mathbf{e}_j) & \text{if } i > j. \end{cases}$$

 $\mathcal{A}_{\mathbb{R}}(N,\underline{2},\underline{\mu},\beta_{\mu})$ depends only on the quadratic form μ : $\mathcal{A}_{\mathbb{R}}(\mu)$.

Theorem (Ovsienko 2016)

• $M_{2^n}(\mathbb{R})\cong \mathcal{A}_{\mathbb{R}}(\mu_0^{2n})$,

•
$$M_{2^{n-1}}(\mathbb{H})\cong \mathcal{A}_{\mathbb{R}}(\mu_1^{2n}),$$

•
$$M_{2^n}(\mathbb{R}) imes M_{2^n}(\mathbb{R}) \cong \mathcal{A}_{\mathbb{R}}(\mu_0^{2n+1})$$

•
$$M_{2^{n-1}}(\mathbb{H}) imes M_{2^{n-1}}(\mathbb{H}) \cong \mathcal{A}_{\mathbb{R}}(\mu_1^{2n+1})$$
,

•
$$M_{2^n}(\mathbb{C}) \cong \mathcal{A}_{\mathbb{R}}(\mu_2^{2n+1}).$$

This result can be rephrased as follows:

Corollary

Let $\mu : C_2^N \to C_2$ be a regular multiplicative quadratic form.

• if N is even, N = 2n, and $\operatorname{Arf}(\mu) = 1$, then $\mathcal{A}_{\mathbb{R}}(\mu) \cong M_{2^n}(\mathbb{R})$,

• if N is even,
$$N = 2n$$
, and $Arf(\mu) = -1$, then $\mathcal{A}_{\mathbb{R}}(\mu) \cong M_{2^{n-1}}(\mathbb{H})$,

- if N is odd, N = 2n + 1, and $Arf(\mu) = 1$, then $\mathcal{A}_{\mathbb{R}}(\mu) \cong \mathcal{M}_{2^n}(\mathbb{R}) \times \mathcal{M}_{2^n}(\mathbb{R})$,
- if N is odd, N = 2n + 1, and $\operatorname{Arf}(\mu) = -1$, then $\mathcal{A}_{\mathbb{R}}(\mu) \cong \mathcal{M}_{2^{n-1}}(\mathbb{H}) \times \mathcal{M}_{2^{n-1}}(\mathbb{H})$,
- if N is odd, N = 2n + 1, and $Arf(\mu) = 0$, then $\mathcal{A}_{\mathbb{R}}(\mu) \cong M_{2^n}(\mathbb{C})$.

 $\mathrm{Cl}_{p,q}(\mathbb{R})=\mathcal{A}_{\mathbb{R}}(\mu_{p,q})$ and we have computed $\mathrm{Arf}(\mu_{p,q})$, so:

Corollary

Let $p,q\in\mathbb{Z}_{\geq0}$ and N=p+q. Then,

- $\operatorname{Cl}_{p,q}(\mathbb{R}) \cong M_{2^{N/2}}(\mathbb{R})$ if $p q + 1 \equiv 1, 3 \pmod{8}$.
- $\operatorname{Cl}_{p,q}(\mathbb{R}) \cong M_{2^{(N-2)/2}}(\mathbb{H})$ if $p-q+1 \equiv 5,7 \pmod{8}$.
- $\operatorname{Cl}_{p,q}(\mathbb{R}) \cong M_{2^{(N-1)/2}}(\mathbb{R}) \times M_{2^{(N-1)/2}}(\mathbb{R})$ if $p-q+1 \equiv 2 \pmod{8}$.
- $\operatorname{Cl}_{p,q}(\mathbb{R}) \cong M_{2^{(N-1)/2}}(\mathbb{C}) \text{ if } p-q+1 \equiv 0,4 \pmod{8}.$
- $\operatorname{Cl}_{p,q}(\mathbb{R}) \cong M_{2^{(N-3)/2}}(\mathbb{H}) \times M_{2^{(N-3)/2}}(\mathbb{H})$ if $p-q+1 \equiv 6 \pmod{8}$.

Corollary

Let $p, q \in \mathbb{Z}_{\geq 0}$, then the following periodicity results hold:

1.
$$\operatorname{Cl}_{p+1,q+1}(\mathbb{R}) \cong \operatorname{Cl}_{p,q}(\mathbb{R}) \otimes_{\mathbb{R}} M_2(\mathbb{R}).$$

2.
$$\operatorname{Cl}_{p+2,q}(\mathbb{R}) \cong \operatorname{Cl}_{q,p}(\mathbb{R}) \otimes_{\mathbb{R}} M_2(\mathbb{R}).$$

3.
$$\operatorname{Cl}_{p,q+2}(\mathbb{R}) \cong \operatorname{Cl}_{q,p}(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{H}.$$

4.
$$\operatorname{Cl}_{p+4,q}(\mathbb{R}) \cong \operatorname{Cl}_{p,q+4}(\mathbb{R}).$$

Happy birthday!