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1. Nomizu’s Theorem.

Homogeneous spaces:

• G Lie group

• M differentiable manifold

• G×M →M , (a, m) 7→ a.m = τam, a smooth and

transitive action.

M is a homogeneous space

Fix p ∈M , then K = {a ∈ G : a.p = p} is a closed

subgroup of G and M ' G/K.

M is said to be reductive if ∃m subspace of g =

Lie(G) such that:


g = k⊕ m (k = Lie(K))

(Ad K)(m) ⊆ m (=⇒ [k, m] ⊆ m

⇐= if K is connected)

m←→ Tp M

X 7→
d

d t

∣∣∣∣
t=0

(exp tX).p

1. Nomizu’s Theorem.
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Affine connections:

M ' G/K, χ(M) = {smooth vector fields on M}

∇ : χ(M)× χ(M) −→ χ(M)

(X, Y ) 7→ ∇X(Y )

is said to be an affine connection if:

(i) ∇ is C∞(M)-linear in the first component and R-

linear in the second.

(ii) ∇X(fY ) = (Xf)Y + f∇XY .

If

(iii) dτa(∇XY ) = ∇dτaXdτaY

then ∇ is said to be G-invariant.

1. Nomizu’s Theorem.
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Theorem (Nomizu, 1954)

There is a bijection


Invariant

affine

connections

 ←→


α : m× m→ m

α is bilinear

and Ad K-invariant



Sketch of proof:

X ∈ m ←→ X+
m =

d

dt

∣∣∣∣
t=0

(exp tX).m

Given an invariant ∇, consider the Nomizu opera-

tor

LX+ = ∇X+ − adX+

and

α : m×m→ m α(X, Y ) =
(
LX+Y +

)
p
∈ Tp M ' m.

1. Nomizu’s Theorem.



5

Purely algebraic problem:

Given a reductive decomposition g = k⊕ m

(k is a subalgebra of g, and m a subspace with [k, m] ⊆ m)

determine the nonassociative algebras defined on m

with a fixed Lie subalgebra of derivations: adk.

Homk(m⊗ m, m) ?

Geometric properties are expressed in algebraic

terms:

Torsion: T (X, Y ) = α(X, Y )− α(Y, X)− [X, Y ]m

Curvature: R(X, Y )Z = α(X, α(Y, Z))−α(Y, α(X, Z))

−α([X, Y ]m, Z)− [[X, Y ]k, Z]

There appear naturally two distinguished connec-

tions:

Canonical α(X, Y ) = 0

Natural α(X, Y ) = 1
2 [X, Y ]m (symmetric)

1. Nomizu’s Theorem.
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2. Examples.

(i) Symmetric spaces:

g = k⊕ m is a Z2-grading

In the irreducible case, g is simple and

Theorem (Laquer, Benito-Draper-E.)

Let g = k ⊕ m be a Z2-graded central simple Lie

algebra over a field of characteristic 0. Then Homk(m⊗
m, m) = 0 unless either:

(a) k is simple of type 6= A and m ∼= k as k-modules. In

this case Homk(m⊗m, m) ∼= Homk(k⊗ k, k), which is

spanned by the Lie bracket.

(b) There exists a central simple Jordan algebra of de-

gree n ≥ 3 such that, up to isomorphism, k =

Der J , m = J0 = {x ∈ J : tr(x) = 0}. In this case,

depending on J , dim Homk(m⊗ m, m) = 1 or 2.

In the real compact case, case (a) corresponds to

the the compact Lie groups other that SUn and case

(b) to the symmetric spaces SUn/SOn, SU2n/SP2n,

E6/F4 and the compact groups SUn.

2. Examples.
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(ii) Spheres and octonions

Borel (1949): the only spheres that appear as homo-

geneous spaces in nonclassical ways are:

S6 = G2/SU(3), S7 = Spin7/G2, S15 = Spin9/Spin7.

O = C⊕ C3 (algebra of octonions)

(α + u)(β + v) = (αβ − σ(u, v)) + (αv + β̄u + u ∗ v)



σ : C3 × C3 → C usual hermitian form

σ(u, v ∗ w) = det(u, v, w)

α + u = ᾱ− u

t(x) = x + x̄ ∈ R, n(x) = xx̄ = |α|2 + ||u||2 ∈ R

2. Examples.
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S6 ' {x ∈ O : t(x) = 0, n(x) = 1}

g = Der O, k = {d ∈ Der O : d(C) = 0}

S7 ' {x ∈ O : n(x) = 1}

g = Der(O, (xȳ)z), k = Der O = {d ∈ g : d(1) = 0}

S15 ' {(x, y) ∈ O× O : n(x) + n(y) = 1}

dim Homk(m⊗ m, m) =


2 for S6

1 for S7

3 for S15

(m, [ , ]m) is a

{
vector color algebra for S6

simple non-Lie Malcev algebra for S7

2. Examples.
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3. Lie-Yamaguti algebras.

The key information is located in two multiplica-

tions on m: binary: x · y = [x, y]m

ternary: [x, y, z] = [[x, y]k, z]

Definition (Kinyon-Weinstein 2001)

A Lie-Yamaguti algebra (m, ·, [ , , ]) is a vector space

m equipped with a bilinear operation · : m×m→ m and

a trilinear operation [ , , ] : m × m × m → m such that,

for all x, y, z, u, v, w ∈ m:

(LY1) x · x = 0,

(LY2) [x, x, y] = 0,

(LY3)
∑

(x,y,z)

(
[x, y, z] + (x · y) · z

)
= 0,

(LY4)
∑

(x,y,z)[x · y, z, t] = 0,

(LY5) [x, y, u · v] = [x, y, u] · v + u · [x, y, v],

(LY6) [x, y, [u, v, w]] = [[x, y, u], v, w]+[u, [x, y, v], w]

+[u, v, [x, y, w]].

Previously named General Lie Triple Systems (Ya-

maguti 1958) or Lie triple algebras (Kikkawa 1975).

3. Lie-Yamaguti algebras.
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(m, ·, [ , , ]) Lie-Yamaguti algebra:

∀x, y ∈ m, the operator

D(x, y) : m→ m

z 7→ [x, y, z]

is a derivation of both the binary and the ternary prod-

ucts, and

[D(x, y), D(z, t)] = D([x, y, z], t) + D(z, [x, y, t])

so that D(m, m) is a Lie subalgebra of gl(m).

Then

L(m) = D(m, m)⊕ m

is a Lie algebra with

• D(m, m) is a Lie subalgebra,

• [D(x, y), z] = [x, y, z],

• [x, y] = D(x, y) + x · y,

called the standard enveloping Lie algebra of m.

Therefore

Lie-Yamaguti algebra ≡ component m of

a reductive decomposition g = k⊕ m

3. Lie-Yamaguti algebras.
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4. Classification results.

Simple Lie-Yamaguti algebras?

Out of reach, by now, because of the generality of

the concept.

A Lie-Yamaguti algebra is said to be irreducible if

m is an irreducible module for D(m, m).

Irreducible =⇒ simple.

Real irreducible LY algebras correspond to the isotropy

irreducible homogeneous spaces studied by Wolf (1968).

Irreducible Lie-Yamaguti algebras?

Purpose: To classify the irreducible Lie-Yamaguti

algebras, while showing their connections to other

nonassociative algebraic systems.

4. Classification results.
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In what follows:

k algebraically closed field of characteristic 0,

(m, ·, [ , , ]) irreducible LY algebra over k,

d = D(m, m), g = L(m) (the standard enveloping

Lie algebra),

Theorem

(i) d is a maximal subalgebra of g,

(ii) d is semisimple,

(iii) Either g is simple and m = d⊥ (orthogonal relative

to the Killing form), or d is simple and m is, up to

isomorphism, the adjoint module for d.

Therefore, the classification splits into:

• adjoint case: m is the adjoint module for d,

• nonsimple case: d is not simple,

• generic case: both g and d are simple.

4. Classification results.
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Adjoint case:

m ∼= d, d is a simple Lie algebra,

Homd(d ∧ d, d) is spanned by the Lie bracket,

so the bilinear maps · : m× m→ m and D : m× m→ d

are given by

x · y = α[x, y],

D(x, y) = β ad[x,y] .

Theorem

In the adjoint case, m has the structure of a simple

Lie algebra and either:

• the LY algebra m is the Lie triple system associated

to this simple Lie algebra (α = 0, β = 1), or

• α = 1 and β 6= 0.

Also, either L(m) ∼= m ⊕ m (as Lie algebra) or L(m) ∼=
k[t]/(t2) ⊗k m (this is the only case in which L(m) is

not semisimple).

4. Classification results.
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Nonsimple case:

Some examples:

(1) m = sl(V1)⊗ sl(V2) (dim Vi ≥ 2, i=1,2),

g = sl(V1 ⊗ V2) and d = sl(V1)⊕ sl(V2).

(x1 ⊗ x2) · (y1 ⊗ y2) =
1

2

(
[x1, y1]⊗ (x2 ? y2)

+ (x1 ? y1)⊗ [x2, y2]
)

(
xi ? yi = xiyi + yixi −

2 tr(xiyi)

dim Vi
Id

)
[x1 ⊗ x2, y1 ⊗ y2, z1 ⊗ z2] =

(y1, z1, x1)⊗
(

tr(x2y2)

dim V2
z2

)
+

(
tr(x1y1)

dim V1
z1

)
⊗ (y2, z2, x2)(

(x, y, z) = (x ◦ y) ◦ z − x ◦ (y ◦ z)
)

(
x ◦ y = xy + yx

)

4. Classification results.
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(2) m = Skew(U, ϕ)⊗ Skew(V, γ)

dim U = 2, ϕ nondegenerate skew-symmetric form,

dim V ≥ 3, γ nondegenerate (skew-)symmetric form,

g = Skew(U ⊗ V, ϕ⊗ γ),

d = Skew(U, ϕ)⊕ Skew(V, γ).

(x1 ⊗ x2) · (y1 ⊗ y2) =
1

2
[x1, y1]⊗ x2 ? y2

[x1 ⊗ x2, y1 ⊗ y2, z1 ⊗ z2] as in (1).

4. Classification results.
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(3) Related to the Tits construction of the exceptional

simple Lie algebras

A \ J H3(k) H3(K) H3(Q) H3(C)

Q E7

C F4 E6 E7 E8

m = Q0 ⊗H3(C)0 or C0 ⊗H3(B)0 (B = k, K, Q or C)

d = A1 × F4 or G2 × L with L = A1, A2, C3 or F4.

g is given in the table.

4. Classification results.
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(4) m = V1 ⊗ V2, where V1 and V2 are vector spaces

endowed with nondegenerate bilinear forms γi (i =

1, 2), both symmetric or skew-symmetric, dim Vi ≥
3 (resp. dim Vi ≥ 2) if γi is symmetric (resp. skew-

symmetric),

g = Skew(V1 ⊕ V2, γ1 ⊥ γ2),

d = Skew(V1, γ1)⊕ Skew(V2, γ2)

(x1 ⊗ x2) · (y1 ⊗ y2) = 0

[x1 ⊗ x2, y1 ⊗ y2, z1 ⊗ z2] =

γx1,y1(z1)⊗ γ2(x2, y2)z2 + γ1(x1, y1)z1 ⊗ γx2,y2(z2)(
γxi,yi(zi) = γi(xi, zi)yi − γi(zi, yi)xi

)

4. Classification results.



18

(5) The Lie triple systems corresponding to the sym-

metric pairs

(G2, A1 ×A1), (F4, A1 × C3), (E6, A1 ×A5),

(E7, A1 ×D6), (E8, A1 × E7)

Theorem

The list above exhausts all the possibilities in the

‘nonsimple case’.

4. Classification results.
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Remarks:

• Examples (4) and (5) are Lie triple systems. The

ones in (5) are related to Freudenthal triple sys-

tems.

• In example (1) consider J = Matp×q(k), with p =

dim V1 and q = dim V2. J is a Jordan triple system

(J ∼= V1 ⊗ V2)

instr(J) ∼= slp⊕ slq ⊕k,

instr0(J) = [instr(J), instr(J)] ∼= slp⊕ slq,

The pair (g, d) is (sl(J), instr0(J)).

• In example (2):

If γ is skew-symmetric, T = U ⊗ V is a simple Lie

triple system and (g, d) = (sp(T ), Der(T )). More-

over, V is a (1, 1) balanced Freudenthal Kantor

triple system of symplectic type.

If γ is symmetric, T = U ⊗ V is a simple Lie triple

system and (g, d) = (so(T ), Der(T )). Moreover, V

is a (−1,−1) balanced Freudenthal Kantor triple

system of orthogonal type.

4. Classification results.


