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1. Nomizu’s Theorem.

HOIHOQ:GHGOLIS Spaces.

e G Lie group
e M differentiable manifold

e GXM — M, (a,m) — a.m = Tgm, a smooth and

transitive action.

M is a homogeneous space

Fix p € M, then K = {a € G : a.p = p} is a closed
subgroup of G and M ~ G/K.

M is said to be reductive if 3m subspace of g =
Lie(G) such that:

(g=tPm (¢t = Lie(K))

N\

(AdK)(m) Cm (= [t,m]Cm

<= if K is connected)

X & (exp tX)
—_ — ex .
ai|,_, (EPtX)p
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Affine connections:

M ~ G/K, x(M) = {smooth vector fields on M}

Vi:x(M) x x(M) — x(M)
(X,Y) = Vx(Y)

is said to be an affine connection if:

(i) V is C°°(M)-linear in the first component and R-

linear in the second.

(i) Vx(fY) = (X)Y + fVxY.

If

(iii) dr,(VxY) = Vg, xdr,Y

then V is said to be G-tnvariant.

1. Nomizu’s Theorem.



Theorem (Nomizu, 1954)

There is a bijection

( . )

Invariant a:imxm—m
affine — $ o 1s bilinear 3
connections | and Ad K-invariant |

Sketch of proof:

d
Xem +—— Xﬂ,; = - (exptX).m
t=0

Given an invariant V, consider the Nomizu opera-

tor

LX"‘ = VX"‘ — adX.|_

and

aimxm—m  a(X,Y)=(Ly+YT) €TpM~m
p
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Purely algebraic problem:

Given a reductive decomposition g =€t P m

(¢ is a subalgebra of g, and m a subspace with [¢, m] C m)

determine the nonassociative algebras defined on m

with a fixed Lie subalgebra of derivations: ads.

Hom(m ® m,m) ?

Geometric properties are expressed in algebraic

terms:

Torsion: T(X,Y)=a(X,Y) —a(Y,X) — [X,Y]n

Curvature: R(X,Y)Z = ao(X,a(Y,Z))—a(Y,a(X, Z))

—a([X,Y]m, Z) — [[X;Y]e, Z]

There appear naturally two distinguished connec-

tions:

Canonical a(X,Y)=0

Natural a(X,Y) = %[X, Y] (symmetric)

1. Nomizu’s Theorem.



2. Examples.

(i) Symmetric spaces:

g=¢t@dm is a Zs-grading

In the irreducible case, g is simple and

Theorem (Laquer, Benito-Draper-E.)

Let g = £t @& m be a Zs-graded central simple Lie
algebra over a field of characteristic 0. Then Hom;(m

m, m) = 0 unless either:

(a) ¢ is simple of type # A and m = ¢ as ¢-modules. In
this case Hom;(m @ m, m) = Hom, (¢t ® ¢, £), which is
spanned by the Lie bracket.

(b) There exists a central simple Jordan algebra of de-
gree n > 3 such that, up to isomorphism, ¢ =
DerJ, m = Jg = {x € J : tr(x) = 0}. In this case,
depending on J, dim Hom¢(m ® m,m) = 1 or 2.

In the real compact case, case (a) corresponds to
the the compact Lie groups other that SU,, and case
(b) to the symmetric spaces SU, /SOy, SU2,/SPay,
Eg/F4 and the compact groups SU,.
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(ii) Spheres and octonions

Borel (1949): the only spheres that appear as homo-

geneous spaces in nonclassical ways are:

S% = G,/SU(3), S7 = Spin7/Ga, S'° = Sping/Spinr.

0=CaqC3 (algebra of octonions)

(a+u)(B+v) = (af — o(u,v)) + (av + Bu + u * v)

(0 :C3 x C3 — C wusual hermitian form

o(u,v * w) = det(u, v, w)

oao+u=oa—u

t(x)=x4+ZER, n(x)=2x%=|af®+|ul|? ER
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S ~{xcO:t(x) =0,n(x) =1}
g =DerQ, t={d € Der0:d(C) =0}

ST ~{xec0:n(z) =1}
g = Der(O, (zy)z), ¢t =DerO = {d € g: d(1) = 0}

S~ {(x,y) €0 x 0:n(x) + n(y) =1}

2 for S©
dim Homi(m @ m,m) =< 1 for S7
3 for S1°

vector color algebra for S°

(m, [, Jm)is a {

simple non-Lie Malcev algebra for S7

2. Examples.



3. Lie-Yamaguti algebras.

The key information is located in two multiplica-
tions on m:

binary: z-y = [, Y]n

ternary: [z, y, 2] = [, yle, 2]

Definition (Kinyon-Weinstein 2001)

A Lie- Yamaguti algebra (m,-, [, , ]) is a vector space
m equipped with a bilinear operation - : m X m — m and
a trilinear operation [, , ] : m X m X m — m such that,

for all x,y, z, u, v, w € m:
(LY1) z-z =0,
(LY2) [z,,9] =0,
(LY3) ¥(ayny (229,21 + (@) - 2) =0,
(LY4) > (zy,2)T y,2,t] =0,
(LY5) [2,y,u-v] = [z,9,u] -0 + u- [2,y,9],

(LYG) [w7y7 [ua'va'w]] — [[w,y,u],v,w]+[u, [w,y,v],w]
+[u, v, [z, y, w]].

Previously named General Lie Triple Systems (Ya-

maguti 1958) or Lie triple algebras (Kikkawa 1975).

3. Lie-Yamaguti algebras.
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(m,+, [, ,]) Lie-Yamaguti algebra:

Vax,y € m, the operator
D(xz,y) :m —>m
z — [z,y, 2]
is a derivation of both the binary and the ternary prod-

ucts, and

[D(w,y),D(z,t)] — D([:I:,y,z],t) + D(Z7 [mayat])

so that D(m,m) is a Lie subalgebra of gl(m).

Then
L(m) = D(m,m) & m

is a Lie algebra with
e D(m,m) is a Lie subalgebra,
e [D(z,y),2] = [z,y, 2],
o [x,y] =D(z,y) + -y,

called the standard enveloping Lie algebra of m.

Therefore
Lie-Yamaguti algebra = component m of

a reductive decomposition g =t P m

3. Lie-Yamaguti algebras.
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4. Classification results.

Simple Lie-Yamaguti algebras?

Out of reach, by now, because of the generality of

the concept.

A Lie-Yamaguti algebra is said to be irreducible if

m is an irreducible module for D(m,m).

Irreducible — simple.

Real irreducible LY algebras correspond to the isotropy

irreducible homogeneous spaces studied by Wolf (1968).

Irreducible Lie-Yamaguti algebras?

Purpose: To classify the irreducible Lie-Yamaguti

algebras, while showing their connections to other

nonassociative algebraic systems.

4. Classification results.
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In what follows:
k algebraically closed field of characteristic O,
(m,+,[,,]) irreducible LY algebra over k,

0 = D(mym), g = L(m) (the standard enveloping
Lie algebra),

Theorem

(i) 0 is a maximal subalgebra of g,
(ii) 0 is semisimple,

(iii) Either g is simple and m = 9 (orthogonal relative
to the Killing form), or 0 is simple and m is, up to

isomorphism, the adjoint module for 0.

Therefore, the classification splits into:
® adjoint case: m is the adjoint module for 0,
e nonsimple case: 0 is not simple,

® generic case: both g and 0 are simple.

4. Classification results.
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Adjoint case:

m = 0, 0 is a simple Lie algebra,
Hom, (? A 0,0) is spanned by the Lie bracket,

so the bilinear maps - :mXm —>mand D: m X m — 0

are given by

LY = a[w,y],

D(z,y) = ad[a:,y] .

Theorem

In the adjoint case, m has the structure of a simple

Lie algebra and either:

e the LY algebra m is the Lie triple system associated

to this simple Lie algebra (a« =0, 3 = 1), or

e a=1and 3 # 0.

112

Also, either £L(m) =2 m @ m (as Lie algebra) or L£(m)
k[t]/(t?) ®; m (this is the only case in which L£(m) is

not semisimple).

4. Classification results.
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Nonsimple case:

Some examples:

(1) m = sl(V1) ® sl(V2) (dimV; > 2, i=1,2),

g =sl(V31 ® Vo) and 0 = sl(V7) @ sl(V2).

(1 ® x2) - (Y1 @ y2) = %([wlayl] ® (T2 * y2)
+ (1 * y1) ® [T2,y2])

2t Y
I:(mzyz)Id>
dim V;

(wi * Yi = T;Y; + Yixq —

[t1 ® x2,y1 D yY2,21 Q 22] =

tr(z2y2) z2>

(yla 21, ZD1) X ( dim V2

n (tl‘(ib‘lyl)

dim V- 21) ® (y2, z2, x2)

((:L',y,z):(moy)oz—mo(yoz))

(woy:wy+yw)

4. Classification results.
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(2) m = Skew(U, ¢) ® Skew(V,~)

dim U = 2, ¢ nondegenerate skew-symmetric form,

dim V > 3, v nondegenerate (skew-)symmetric form,

g=Skew(UQV,p®7),

0 = Skew (U, ¢) @ Skew(V,~).

1
(1 @ x2) - (y1 @ y2) = 5[w1,y1] ® T2 * Y2

[T1 ® T2,y1 ® Y2, 21 ® 22] as in (1).

4. Classification results.
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(3) Related to the Tits construction of the exceptional

simple Lie algebras

A\J | Hs(k) H3(K) Hs3(Q) H3(C)

m=Qo® H3(C)O or Co ®H3(B)O (B =k, K,Q or C)

0=A1 X Fgq or G2 X L with L = A1,A5,C3 or Fjy4.

g is given in the table.

4. Classification results.
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(4) m = V1 ® Va2, where V7 and V2 are vector spaces
endowed with nondegenerate bilinear forms ~; (2 =
1,2), both symmetric or skew-symmetric, dim V; >
3 (resp. dimV; > 2) if v, is symmetric (resp. skew-

symmetric),

g = Skew (V7 @ Vo,v1 L v2),

0 = Skew(V1,71) @ Skew(V2,v2)

(r1 ®x2) - (y1 @ y2) =0

[T1 Q@ x2,Y1 Q@ Y2, 21 Q 22] =
Ya1,y1 (21) @ v2(x2,Y2)22 + 71 (21, Y1) 21 @ Yaa,y, (22)
(%i,yi(zi) = vi(xi, 2;)yi — vi(24, yi)wz‘)

4. Classification results.
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(5) The Lie triple systems corresponding to the sym-

metric pairs

(G27A1 X Al)a (F49A1 X C3)9 (E69A1 X A5)7

(E7,A1 X Dg), (FEs,A1 X E7)

Theorem

The list above exhausts all the possibilities in the

‘nonsimple case’.

4. Classification results.
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Remarks:

e Examples (4) and (5) are Lie triple systems. The
ones in (5) are related to Freudenthal triple sys-

tems.

e In example (1) consider J = Matyy4(k), with p =
dim V7 and g = dim Va. J is a Jordan triple system
(J =ZVi® V2)

instr(J) = sly, @ sly Bk,
instro(J) = [instr(J), instr(J)] = sl, @ slg,

The pair (g,0) is (sl(J), instro(J)).

e In example (2):

If ~ is skew-symmetric, T' = U Q V is a simple Lie
triple system and (g,9) = (sp(T), Der(T)). More-
over, V is a (1,1) balanced Freudenthal Kantor

triple system of symplectic type.

If v is symmetric, T = U @ V is a simple Lie triple
system and (g,0) = (so(T),Der(T)). Moreover, V
is a (—1,—1) balanced Freudenthal Kantor triple
system of orthogonal type.

4. Classification results.



