Exceptional simple classical Lie superalgebras

- 1. Extended Freudenthal-Tits magic square.
- 2. Vector cross products and exceptional simple classical Lie superalgebras.
- 3. Forms of the exceptional simple classical Lie superalgebras.

1. Extended Freudenthal-Tits magic square.

(joint work with G. Benkart)

Throughout F will denote a field of characteristic \neq 2, 3.

Tits construction:

• C a unital composition algebra over F:

$$a^2 - \operatorname{tr}(a)a - \mathfrak{n}(a)1 = 0,$$
 $\mathfrak{n}(ab) = \mathfrak{n}(a)\mathfrak{n}(b),$ $D_{a,b} = [L_a, L_b] + [L_a, R_b] + [R_a, R_b] \in \operatorname{Der}(C).$

• J a unital Jordan algebra over F with a normalized trace:

$$egin{aligned} t(1) &= 1, & tig((J,J,J)ig) = 0, \ & xy &= t(xy)1 + x * y, \ & d_{x,y} &= [l_x,l_y] \in \mathrm{Der}(J). \end{aligned}$$

$$\mathcal{T}(C,J) := D_{C,C} \oplus (C^0 \otimes J^0) \oplus d_{J,J}$$

with the anticommutative product [,] specified by

• $D_{C,C}$ and $d_{J,J}$ are Lie subalgebras,

•
$$[D_{C,C}, d_{J,J}] = 0,$$

- $[D, a \otimes x] = D(a) \otimes x,$ $[d, a \otimes x] = a \otimes d(x),$
- $[a\otimes x,b\otimes y]=t(xy)D_{a,b}+[a,b]\otimes x*y$

$$+2\mathfrak{tr}(ab)d_{x,y}.$$

 $\mathcal{T}(C,J)$ is a Lie algebra if and only if

$$\begin{array}{ll} \text{(i)} & 0 = \sum_{\text{cyclic}} \operatorname{tr}([a_1, a_2]a_3) d_{(x_1 \ast x_2), x_3}, \\ \text{(ii)} & 0 = \sum_{\text{cyclic}} t((x_1 \ast x_2) x_3) D_{[a_1, a_2], a_3} \\ \text{(iii)} & 0 = \sum_{\text{cyclic}} (D_{a_1, a_2}(a_3) \otimes t(x_1 x_2) x_3 \\ & +[[a_1, a_2], a_3] \otimes (x_1 \ast x_2) \ast x_3 \\ & +2 \operatorname{tr}(a_1 a_2) a_3 \otimes d_{x_1, x_2}(x_3)) \end{array}$$

In particular, this happens if J satisfies the Cayley-Hamilton equation $ch_3(x) = 0$, where

$$ch_3(x) = x^3 - 3t(x)x^2 + \left(\frac{9}{2}t(x)^2 - \frac{3}{2}t(x^2)\right)x \ - \left(t(x^3) - \frac{9}{2}t(x^2)t(x) + \frac{9}{2}t(x)^3\right)1$$

Replace Jordan algebra by Jordan superalgebra above.

Here, a normalized trace satisfies

 $t(1) = 1, \qquad t(J_{ar{1}}) = 0, \qquad tig((J,J,J)ig) = 0.$

The only finite-dimensional simple unital Jordan superalgebras J with $J_{\bar{1}} \neq 0$, over a field of characteristic $\neq 2, 3$, whose Grassmann envelope G(J) satisfies the trace identity $ch_3(x) = 0$, relative a normalized trace on J are:

- i) the Jordan superalgebra $J(V) = F1 \oplus V$ of a supersymmetric bilinear form such that $V = V_{\overline{1}}$ and dim V = 2, and
- i) $D_2 = (Fe \oplus Ff) \oplus (Fx \oplus Fy)$, with multiplication given by

$$e^2=e, \qquad f^2=f, \qquad ef=0$$

 $ex=rac{1}{2}x=fx, \quad ey=rac{1}{2}y=fy,$
 $xy=e+2f=-yx.$

Therefore, $\mathcal{T}(C, J(V))$ and $\mathcal{T}(C, D_2)$ are Lie superalgebras.

However, consider $\mu \neq 0$ and D_{μ} the simple Jordan superalgebra $D_{\mu} = (Fe \oplus Ff) \oplus (Fx \oplus Fy)$, with multiplication given by

$$e^2=e, \qquad f^2=f, \qquad ef=0$$

 $ex=rac{1}{2}x=fx, \qquad ey=rac{1}{2}y=fy$
 $xy=e+\mu f=-yx.$

Then

 $C ext{ associative } \Longrightarrow \quad \mathcal{T}(C,D_{\mu}) ext{ is a Lie superalgebra} \ orall \mu
eq 0,-1.$

$igcap_{C\setminus J}$	F	$H_3(F)$	$H_3(K)$	$H_3(Q)$	$H_3(C)$
F	0	A_1	A_2	C_3	$\mathbf{F_4}$
K	0	A_2	$A_2 \oplus A_2$	A_5	$\mathbf{E_6}$
Q	A_1	C_3	A_5	D_6	$\mathbf{E_{7}}$
C	G_2	${ m F_4}$	${ m E_6}$	$\mathbf{E_{7}}$	${ m E_8}$

Freudenthal-Tits Magic Square

$C \setminus J$	J(V)	$D_{\mu}~(\mu{ eq}0,{-1})$
$oldsymbol{F}$	$\mathbf{A_1}$	$\mathrm{B}(0,1)$
K	$\mathrm{B}(0,1)$	$\mathbf{A}(1,0)$
Q	$\mathrm{B}(1,1)$	$\mathrm{D}(2,1;\mu)$
C	${ m G}(3)$	F(4) (μ =2,1/2)

2. Vector cross products and exceptional simple classical Lie superalgebras.

(based on joint work with N. Kamiya and S. Okubo) Vector cross product: $(V, \langle | \rangle)$

$$egin{aligned} X:V imes\stackrel{r}{\cdots} imes V&\longrightarrow V\ &(v_1,\ldots,v_r)\mapsto X(v_1,\ldots,v_r) \end{aligned}$$

such that

- $\langle X(v_1,\ldots,v_r) \mid v_{r+1} \rangle$ is skew-symmetric,
- $\langle X(v_1,\ldots,v_r) \mid X(v_1,\ldots,v_r)
 angle = \det(\langle v_i \mid v_j
 angle).$

Possibilities:

$$\left\{egin{array}{l} n \,\, {
m even}, \quad r=1, \ n \,\, {
m arbitrary}, \quad r=n-1, \ n=3,7, \quad r=2, \ n=4,8, \quad r=3. \end{array}
ight.$$

n = 4, r = 3:

 $\Phi: V \times V \times V \times V \longrightarrow F$, nonzero, skew-symmetric multilinear map.

$$\langle X(v_1,v_2,v_3)\mid v_4
angle=\Phi(v_1,v_2,v_3,v_4)$$

then

$$\langle X(v_1,v_2,v_3) \mid X(w_1,w_2,w_3)
angle = \mu \detig(ig\langle v_i \mid w_j ig
angleig)$$

for some $0 \neq \mu \in F$.

Consider the operators

$$d_{u,v} = X(u,v,-) + \sigma_{u,v}$$

where $\sigma_{u,v}(w) = \langle u \mid w \rangle \, v - \langle v \mid w \rangle \, u.$

$d_{V,V}$ is a Lie algebra

(isomorphic to $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$ in the 'split' case)

$$n=8,\,\,r=3$$
:

X a 3-fold vector cross product on
$$(V, \langle \, | \, \rangle)$$
. Then:

$$egin{aligned} &\langle X(a_1,a_2,a_3) \mid X(b_1,b_2,b_3)
angle \ &= \det ig(ig\langle a_i \mid b_j ig
angle ig) \ &+ \epsilon \sum_{\sigma \ even} \sum_{\tau \ even} ig\langle a_{\sigma(1)} \mid b_{ au(1)} ig
angle ig\langle a_{\sigma(2)} \mid X(a_{\sigma(3)},b_{ au(2)},b_{ au(3)}) ig
angle \end{aligned}$$

where $\epsilon = \pm 1$.

Consider the operators

$$d_{u,v} = rac{\epsilon}{3} X(u,v,-) + \sigma_{u,v}$$

 $d_{V,V}$ is a Lie algebra

(isomorphic to o_7 in the 'split' case)

$$n = 7, \ r = 2$$
:

u imes v a (2-fold) vector cross product on $ig(V, \langle \, | \,
angleig).$ Then:

$$(u imes v) imes v=\sigma_{u,v}(v)$$

Consider the operators

$$d_{u,v}(w) = rac{1}{2} igl(-(u imes v) imes w + 3 \sigma_{u,v}(w) igr)$$

 $d_{V,V}$ is a Lie algebra of type G₂

Let (U, φ) be a two dimensional vector space Uendowed with a nonzero skew-symmetric bilinear form φ . For any $a, b \in U$, let $\varphi_{a,b} = \varphi(a, -)b + \varphi(b, -)a$.

For any of the three classes of vector cross products above consider the superalgebra $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$, where

- $\mathfrak{g}_{\overline{0}} = \mathfrak{sp}(U, \varphi) \oplus d_{V,V},$
- $\mathfrak{g}_{\overline{1}} = U \otimes V$,

with multiplication given by

- * the usual Lie bracket on $\mathfrak{g}_{\overline{0}}$,
- * the natural action of $\mathfrak{g}_{\overline{0}}$ on $\mathfrak{g}_{\overline{1}}$,

$$* \; \left[a \otimes x, b \otimes y
ight] = \left\langle u \mid v
ight
angle arphi_{a,b} + arphi(a,b) d_{u,v}.$$

 \mathfrak{g} is then a Lie superalgebra and

- $\mathfrak{g}(V_4, \Phi)$ is a form of $D(2, 1; \mu)$,
- $\mathfrak{g}(V_8, X)$ is a form of F(4),
- $\mathfrak{g}(V_7, \times)$ is a form of G(3).

3. Forms of the exceptional simple classical Lie superalgebras.

- G(3): Both the $\mathcal{T}(C, J(V))$'s and the $\mathfrak{g}(V_7, \times)$'s exhaust the forms of G(3).
- F(4): Both the $\mathcal{T}(C, D_2)$'s and the $\mathfrak{g}(V_8, X)$'s exhaust the forms of F(4) whose even part contains an ideal isomorphic to \mathfrak{sl}_2 .

There is another family of forms of F(4) with

 $\mathfrak{g}_{ar{0}} = [Q,Q] \oplus \mathfrak{o}(W,q), \quad \dim W = 7 ext{ and}$ Clifford invariant of (W,q) = [Q],

 $\mathfrak{g}_{\overline{1}}$ is the irreducible module for the Clifford algebra of (W, q).

3. Forms of the exceptional simple classical Lie superalgebras.

The forms $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ of the Lie superalgebras $D(2,1;\mu)$ satisfy:

- $\mathfrak{g}_{\overline{0}} = Q^0$, where Q is a quaternion algebra over a cubic étale extension L/F, with trivial corestriction $N_{L/F}(Q)$ (isomorphic to $\operatorname{Mat}_8(F)$).
- $\mathfrak{g}_{\overline{1}}$ is the irreducible module for $N_{L/F}(Q)$.

The $\mathcal{T}(Q, D_{\mu})$'s correspond to the case where $L = F \times F \times F$ (so $Q = Q_1 \times Q_2 \times Q_3$) and (say) $Q_1 \cong Mat_2(F)$.

The $\mathfrak{g}(V_4, \Phi)$'s correspond to the case where $L = F \times K, K/F$ a quadratic étale extension (so $Q = Q_1 \times Q_2$) and $Q_1 \cong \operatorname{Mat}_2(F)$).

3. Forms of the exceptional simple classical Lie superalgebras.

For real forms:

- a) G(3) has, up to isomorphism, two real forms.
- b) F(4) has, up to isomorphism, four real forms.
- c) If $\alpha \in \mathbb{C} \setminus \left(\mathbb{R} \cup \{ z \in \mathbb{C} : |z| = 1 \} \cup \{ z \in \mathbb{C} : |z+1| = 1 \} \cup \{ z \in \mathbb{C} : z + \overline{z} = -1 \} \right)$, then $D(2, 1; \alpha)$ has no real form.
- d) If $\alpha \in \mathbb{R} \setminus \{0, -1, 1, -2, -1/2\}$, then $D(2, 1; \alpha)$ has four nonisomorphic real forms.
- e) If $\alpha = 1, -2$ or -1/2, then $D(2, 1; \alpha) = osp(4, 2)$ has four nonisomorphic real forms.
- f) If $\alpha \in \{z \in \mathbb{C} : |z| = 1\} \cup \{z \in \mathbb{C} : |z+1| = 1\} \cup \{z \in \mathbb{C} : z + \overline{z} = -1\}$, then $D(2, 1; \alpha)$ has exactly, up to isomorphism, one real form.
- 3. Forms of the exceptional simple classical Lie superalgebras.

Comments and summary:

- 1) The Freudenthal-Tits square can be extended to include (as the 'Jordan ingredient') the Jordan superalgebras D_{μ} and J(V). The split exceptional classical simple Lie superalgebras appear then in the 'rectangle'.
- 2) Any Lie superalgebra \mathfrak{g} with $\mathfrak{g}_{\overline{0}} = \mathfrak{sl}_2 \oplus \mathfrak{a}$ and $\mathfrak{g}_{\overline{1}} = U \otimes V$ is determined by $(V, \langle | \rangle)$ and $d: V \times V \to \operatorname{End}(V)$ $(u, v) \mapsto d_{u,v}$, satisfying certain conditions (which, with a minor modification, define the structure of (-1, -1)-balanced Freudenthal-Kantor triple system). These are satisfied in particular for the vector cross products, which induce exceptional simple classical Lie superalgebras.
- 3) Many, but not all, of the forms of the exceptional simple classical Lie superalgebras are obtained by the previous constructions.