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1. Extended Freudenthal-Tits magic
square.

(joint work with G. Benkart)

Throughout F will denote a field of characteristic 6=
2, 3.

Tits construction:

• C a unital composition algebra over F :

a2 − tr(a)a − n(a)1 = 0,

n(ab) = n(a)n(b),

Da,b = [La, Lb] + [La, Rb] + [Ra, Rb] ∈ Der(C).

• J a unital Jordan algebra over F with a normalized

trace:

t(1) = 1, t
(
(J, J, J)

)
= 0,

xy = t(xy)1 + x ∗ y,

dx,y = [lx, ly] ∈ Der(J).

1. Extended Freudenthal-Tits magic square.
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T (C, J) := DC,C ⊕ (C0 ⊗ J0) ⊕ dJ,J

with the anticommutative product [ , ] specified by

• DC,C and dJ,J are Lie subalgebras,

• [DC,C , dJ,J ] = 0,

• [D, a ⊗ x] = D(a) ⊗ x, [d, a ⊗ x] = a ⊗ d(x),

• [a ⊗ x, b ⊗ y] = t(xy)Da,b + [a, b] ⊗ x ∗ y

+ 2tr(ab)dx,y.

1. Extended Freudenthal-Tits magic square.
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T (C, J) is a Lie algebra if and only if

(i) 0 =
∑

cyclic

tr
(
[a1, a2]a3

)
d(x1∗x2),x3

,

(ii) 0 =
∑

cyclic

t
(
(x1 ∗ x2)x3

)
D[a1,a2],a3

(iii) 0 =
∑

cyclic

(
Da1,a2(a3) ⊗ t

(
x1x2

)
x3

+[[a1, a2], a3] ⊗ (x1 ∗ x2) ∗ x3

+2tr
(
a1a2

)
a3 ⊗ dx1,x2(x3)

)
In particular, this happens if J satisfies the Cayley-

Hamilton equation ch3(x) = 0, where

ch3(x) = x3 − 3t(x)x2 +
(9
2t(x)2 − 3

2t(x2)
)
x

−
(
t(x3) − 9

2t(x2)t(x) + 9
2t(x)3

)
1

1. Extended Freudenthal-Tits magic square.
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Replace Jordan algebra by Jordan superalgebra

above.

Here, a normalized trace satisfies

t(1) = 1, t(J1̄) = 0, t
(
(J, J, J)

)
= 0.

The only finite-dimensional simple unital Jordan

superalgebras J with J1̄ 6= 0, over a field of character-

istic 6= 2, 3, whose Grassmann envelope G(J) satisfies

the trace identity ch3(x) = 0, relative a normalized

trace on J are:

i) the Jordan superalgebra J(V ) = F1 ⊕ V of a su-

persymmetric bilinear form such that V = V1̄ and

dim V = 2, and

i) D2 = (Fe ⊕ Ff) ⊕ (Fx ⊕ Fy), with multiplication

given by

e2 = e, f2 = f, ef = 0

ex = 1
2x = fx, ey = 1

2y = fy,

xy = e + 2f = −yx.

Therefore, T (C, J(V )) and T (C, D2) are Lie su-

peralgebras.

1. Extended Freudenthal-Tits magic square.
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However, consider µ 6= 0 and Dµ the simple Jor-

dan superalgebra Dµ = (Fe ⊕ Ff) ⊕ (Fx ⊕ Fy), with

multiplication given by

e2 = e, f2 = f, ef = 0

ex = 1
2x = fx, ey = 1

2y = fy

xy = e + µf = −yx.

Then

C associative =⇒ T (C, Dµ) is a Lie superalgebra

∀µ 6= 0, −1.

1. Extended Freudenthal-Tits magic square.
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Freudenthal-Tits Magic Square

C \ J F H3(F ) H3(K) H3(Q) H3(C)

F 0 A1 A2 C3 F4

K 0 A2 A2⊕A2 A5 E6

Q A1 C3 A5 D6 E7

C G2 F4 E6 E7 E8

C \ J J(V ) Dµ (µ6=0,−1)

F A1 B(0, 1)

K B(0, 1) A(1, 0)

Q B(1, 1) D(2, 1; µ)

C G(3) F(4) (µ=2,1/2)

1. Extended Freudenthal-Tits magic square.
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2. Vector cross products and excep-
tional simple classical Lie superal-
gebras.

(based on joint work with N. Kamiya and S. Okubo)

Vector cross product:
(
V, 〈 | 〉

)
X : V × r· · · ×V −→ V

(v1, . . . , vr) 7→ X(v1, . . . , vr)

such that

• 〈X(v1, . . . , vr) | vr+1〉 is skew-symmetric,

• 〈X(v1, . . . , vr) | X(v1, . . . , vr)〉 = det
(〈

vi | vj
〉)

.

Possibilities: 

n even, r = 1,

n arbitrary, r = n − 1,

n = 3, 7, r = 2,

n = 4, 8, r = 3.

2. Cross products and exceptional simple classical Lie superalgebras.



9

n = 4, r = 3:

Φ : V ×V ×V ×V −→ F , nonzero, skew-symmetric

multilinear map.

〈X(v1, v2, v3) | v4〉 = Φ(v1, v2, v3, v4)

then

〈X(v1, v2, v3) | X(w1, w2, w3)〉 = µ det
(〈

vi | wj
〉)

for some 0 6= µ ∈ F .

Consider the operators

du,v = X(u, v, −) + σu,v

where σu,v(w) = 〈u | w〉 v − 〈v | w〉 u.

dV,V is a Lie algebra

(isomorphic to sl2 ⊕ sl2 in the ‘split’ case)

2. Cross products and exceptional simple classical Lie superalgebras.
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n = 8, r = 3:

X a 3-fold vector cross product on
(
V, 〈 | 〉

)
. Then:

〈X(a1, a2, a3) | X(b1, b2, b3)〉

= det
(〈

ai | bj
〉)

+ ε
∑

σ
even

∑
τ

even

〈
aσ(1) | bτ(1)

〉 〈
aσ(2) | X(aσ(3), bτ(2), bτ(3))

〉

where ε = ±1.

Consider the operators

du,v =
ε

3
X(u, v, −) + σu,v

dV,V is a Lie algebra

(isomorphic to o7 in the ‘split’ case)

2. Cross products and exceptional simple classical Lie superalgebras.
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n = 7, r = 2:

u × v a (2-fold) vector cross product on
(
V, 〈 | 〉

)
.

Then:

(u × v) × v = σu,v(v)

Consider the operators

du,v(w) =
1

2

(
−(u × v) × w + 3σu,v(w)

)

dV,V is a Lie algebra of type G2

2. Cross products and exceptional simple classical Lie superalgebras.
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Let (U, ϕ) be a two dimensional vector space U

endowed with a nonzero skew-symmetric bilinear form

ϕ. For any a, b ∈ U , let ϕa,b = ϕ(a, −)b + ϕ(b, −)a.

For any of the three classes of vector cross products

above consider the superalgebra g = g0̄ ⊕ g1̄, where

• g0̄ = sp(U, ϕ) ⊕ dV,V ,

• g1̄ = U ⊗ V ,

with multiplication given by

∗ the usual Lie bracket on g0̄,

∗ the natural action of g0̄ on g1̄,

∗ [a ⊗ x, b ⊗ y] = 〈u | v〉 ϕa,b + ϕ(a, b)du,v.

g is then a Lie superalgebra and

• g(V4, Φ) is a form of D(2, 1; µ),

• g(V8, X) is a form of F (4),

• g(V7, ×) is a form of G(3).

2. Cross products and exceptional simple classical Lie superalgebras.
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3. Forms of the exceptional simple
classical Lie superalgebras.

G(3): Both the T
(
C, J(V )

)
’s and the g(V7, ×)’s ex-

haust the forms of G(3).

F (4): Both the T
(
C, D2

)
’s and the g(V8, X)’s exhaust

the forms of F (4) whose even part contains an

ideal isomorphic to sl2.

There is another family of forms of F (4) with

g0̄ = [Q, Q] ⊕ o(W, q), dim W = 7 and

Clifford invariant of (W, q) = [Q],

g1̄ is the irreducible module for the

Clifford algebra of (W, q).

3. Forms of the exceptional simple classical Lie superalgebras.
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The forms g = g0̄ ⊕ g1̄ of the Lie superalgebras

D(2, 1; µ) satisfy:

• g0̄ = Q0, where Q is a quaternion algebra over a

cubic étale extension L/F , with trivial corestric-

tion NL/F (Q) (isomorphic to Mat8(F )).

• g1̄ is the irreducible module for NL/F (Q).

The T (Q, Dµ)’s correspond to the case where L =

F × F × F (so Q = Q1 × Q2 × Q3) and (say) Q1
∼=

Mat2(F ).

The g(V4, Φ)’s correspond to the case where L =

F × K, K/F a quadratic étale extension (so Q = Q1 ×
Q2) and Q1

∼= Mat2(F )).

3. Forms of the exceptional simple classical Lie superalgebras.



15

For real forms:

a) G(3) has, up to isomorphism, two real forms.

b) F (4) has, up to isomorphism, four real forms.

c) If α ∈ C \
(
R ∪ {z ∈ C : |z| = 1} ∪ {z ∈ C : |z +1| =

1} ∪ {z ∈ C : z + z̄ = −1}
)
, then D(2, 1; α) has no

real form.

d) If α ∈ R \ {0, −1, 1, −2, −1/2}, then D(2, 1; α) has

four nonisomorphic real forms.

e) If α = 1, −2 or −1/2, then D(2, 1; α) = osp(4, 2)

has four nonisomorphic real forms.

f) If α ∈ {z ∈ C : |z| = 1}∪{z ∈ C : |z+1| = 1}∪{z ∈
C : z + z̄ = −1}, then D(2, 1; α) has exactly, up to

isomorphism, one real form.

3. Forms of the exceptional simple classical Lie superalgebras.
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Comments and summary:

1) The Freudenthal-Tits square can be extended to

include (as the ‘Jordan ingredient’) the Jordan su-

peralgebras Dµ and J(V ). The split exceptional

classical simple Lie superalgebras appear then in

the ‘rectangle’.

2) Any Lie superalgebra g with g0̄ = sl2 ⊕a and g1̄ =

U ⊗ V is determined by
(
V, 〈 | 〉

)
and d : V × V →

End(V ) (u, v) 7→ du,v, satisfying certain condi-

tions (which, with a minor modification, define

the structure of (−1, −1)–balanced Freudenthal-

Kantor triple system). These are satisfied in par-

ticular for the vector cross products, which induce

exceptional simple classical Lie superalgebras.

3) Many, but not all, of the forms of the exceptional

simple classical Lie superalgebras are obtained by

the previous constructions.


