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Composition algebras

Definition

A composition algebra over a field k is a triple (C, -, n) where
» C is a vector space over k,
> x -y is a bilinear multiplication C x C — C,
» n: C — k is a multiplicative regular quadratic form:

> n(x-y) = n(x)n(y) vx,y € C,

» its polar n(x,y) = n(x + y) — n(x) — n(y) is nondegenerate
(if char k = 2 we also allow the radical of the polar form to be
non isotropic and of dimension 1).
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Definition

A composition algebra over a field k is a triple (C, -, n) where
» C is a vector space over k,
> x -y is a bilinear multiplication C x C — C,
» n: C — k is a multiplicative regular quadratic form:

> n(x-y) = n(x)n(y) vx,y € C,

» its polar n(x,y) = n(x + y) — n(x) — n(y) is nondegenerate
(if char k = 2 we also allow the radical of the polar form to be
non isotropic and of dimension 1).

The unital composition algebras are termed Hurwitz algebras.
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Hurwitz algebras form a class of degree two algebras:
x* = n(x,1)x + n(x)1 =0

for any x.
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Hurwitz algebras

Hurwitz algebras form a class of degree two algebras:
x* = n(x,1)x + n(x)1 =0
for any x.

They are endowed with an antiautomorphism, the standard
conjugation:
x =n(x,1)1 — x,

satisfying
x=x, x+x=n(x,1)1, x-Xx=x-x=n(x)1.

Moreover,
n(xy,z) = n(y,xz) = n(x, zy),

for any x,y,z. (The adjoint of the left (right) multiplication by x
is the left (right) multiplication by X.)



Cayley-Dickson doubling process

Let B be an associative Hurwitz algebra with norm n such that the
polar form is nondegenerate, and let A be a nonzero scalar in the
ground field k. Consider the direct sum of two copies of B:

C = B® Bu,

with the following multiplication and regular quadratic form that
extend those on B:

(a+ bu)(c + du) = (ac + Adb) + (da + bT)u,
n(a+ bu) = n(a) — An(b).

Then C is again a Hurwitz algebra, which is denoted by CD(B, \) J




Cayley-Dickson doubling process

Let B be an associative Hurwitz algebra with norm n such that the
polar form is nondegenerate, and let A be a nonzero scalar in the
ground field k. Consider the direct sum of two copies of B:

C =B ® Bu,

with the following multiplication and regular quadratic form that
extend those on B:

(a+ bu)(c + du) = (ac + Adb) + (da + bT)u,
n(a+ bu) = n(a) — An(b).

Then C is again a Hurwitz algebra, which is denoted by CD(B, \) J

Notation: CD(A, 1, X) := CD(CD(A, 1), \).



Generalized Hurwitz Theorem

Theorem
Every Hurwitz algebra over a field k is isomorphic to one of the

following:

(i) The ground field k.

(i) A quadratic commutative and associative separable algebra
K(p) = k14 kv, with v?> = v+ i and 4y +1 # 0. The norm
is given by its generic norm.

(iii) A quaternion algebra Q(u, 3) = CD(K(u), 3). (These four
dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra C(u,3,v) = CD(K(w),,v). (These eight
dimensional algebras are alternative, but not associative.)




Generalized Hurwitz Theorem

Theorem
Every Hurwitz algebra over a field k is isomorphic to one of the

following:

(i) The ground field k.

(i) A quadratic commutative and associative separable algebra
K(p) = k14 kv, with v?> = v+ i and 4y +1 # 0. The norm
is given by its generic norm.

(iii) A quaternion algebra Q(u, 3) = CD(K(u), 3). (These four
dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra C(u,3,v) = CD(K(w),,v). (These eight
dimensional algebras are alternative, but not associative.)

In particular, any Hurwitz algebra is finite-dimensional.




General composition algebras

Corollary

The dimension of any finite-dimensional composition algebra is
restricted to 1, 2, 4 or 8.




General composition algebras

Corollary

The dimension of any finite-dimensional composition algebra is
restricted to 1, 2, 4 or 8.

Proof.

» Take any element a of C with n(a) # 0. Then the norm of

e = n(la)a2 is 1.

» Consider the new multiplication on C (Kaplansky's trick):

x-y = (R7x)(L1y).

» Then (C,-, n) is a Hurwitz algebra with unity 1 = €.




General composition algebras

Theorem (E.—Pérez-lzquierdo 97)

There are infinite-dimensional composition algebras of arbitrary
infinite dimension, even with a one-sided unity!




The split Hurwitz algebras

There are, up to isomorphism, four ‘split’ (i.e., either dim C =1 or
dx s.t. n(x) = 0) Hurwitz algebras:

k. kxk,  Mat(k), C(k).




The split Cayley algebra

Canonical basis of the split Cayley algebra
C(k) = CD(Maty(k), —1):

B = {617 €2, Uy, U2, U3z, V1, V2, V3}



The split Cayley algebra

Canonical basis of the split Cayley algebra
C(k) = CD(Maty(k), —1):

B = {617 €2, Uy, U2, U3z, V1, V2, V3}

n(e1, e) = n(uj,v;) =1, (otherwise 0)

2 2
e]_ :e]_, 62 :e2,

elu; = ujex = uj, eV = Ve =V, (i = 1,2,3)

ujvi = —€q, Vilj = —€o, (i = 1,2,3)

Uillj41 = —Uj41Uj = Vit2, ViVit1 = —Vj+1Vi = U2, (indices modulo 3)
otherwise 0.
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Okubo, 1978

Assume the ground field k contains a cubic primitive root w of 1
(in particular, char k # 3).

On the vector space S = sl3(k) of zero trace 3 x 3 matrices over
k, consider the ‘new’ multiplication:

5 w— w?
X*y =wXy —wyx —

tr(xy)l.



Okubo, 1978

Assume the ground field k contains a cubic primitive root w of 1
(in particular, char k # 3).

On the vector space S = sl3(k) of zero trace 3 x 3 matrices over
k, consider the ‘new’ multiplication:

w—w2

X %y = wxy — wlyx — tr(xy)1.

(S, *,n) is a composition algebra, with n(x) = —2 tr(x?)

2
(valid in characteristic 2!)




Okubo, 1978

This composition algebra is not unital, but satisfies a nice property:

n(x*y,z) =n(x,y * z) J

for any x, y, z.
(Associativity of the norm: the adjoint of the left multiplication by
x is the right multiplication by x.)



Symmetric composition algebras

Definition
A composition algebra (S, %, n) is said to be symmetric if the polar
form of its norm is associative:
n(x*y,z) = n(x,y * z),
for any x,y,z € S.
This is equivalent to the condition:
(x*y)*x =n(x)y = x*(y *x),

for any x,y € S.




Examples

Let C be a Hurwitz algebra with norm n.

» Para-Hurwitz algebras (Okubo-Myung 1980): Consider
the new multiplication on C:

Xey=Xx-Yy.

Then (C,e,n) is a composition algebra, which will be denoted
by C for short.



Examples

Let C be a Hurwitz algebra with norm n.

» Para-Hurwitz algebras (Okubo-Myung 1980): Consider
the new multiplication on C:

Xey=Xx-Yy.

Then (C,e,n) is a composition algebra, which will be denoted
by C for short.

The unity of C becomes a para-unit in C, that is, an element
e such that e @ x = x e e = n(e, x)e — x. If the dimension is
at least 4, the para-unit is unique, and it is the unique
idempotent that spans the commutative center of the
para-Hurwitz algebra.



Examples

> Petersson algebras (1969): Let 7 be an automorphism of
C with 73 = 1, and consider the new multiplication defined on

C by means of:

xxy =1(X)-72(¥).
The algebra (C,#,n) is a symmetric composition algebra,
which will be denoted by C; for short.



Okubo algebras

Let B = {e1, e, u1, U2, U3, v1, v2, v3} be a canonical basis of C(k).
Then the linear map 75 : C(k) — C(k) determined by the
conditions:

Tst(e)) = €, i =1,2; 7s(u;) = vjy1, Tst(vi) = viy1 (indices modulo 3),
is clearly an order 3 automorphism of C(k).

Definition
The associated Petersson algebra Pg(k) = C(k)__ is called the

Tst

pseudo-octonion algebra over the field k. It is isomorphic to the
algebra originally defined by Okubo.

The forms of Pg(k) are called Okubo algebras [E.-Myung 1990].




Classification

Theorem (Okubo-Osborn 81, E.-Myung 91,93,
E.—Pérez-Izquierdo 96, E. 97)

Any symmetric composition algebra is either:

> a para-Hurwitz algebra,

> a form of a two-dimensional para-Hurwitz algebra without
idempotent elements (with a precise description),

» an Okubo algebra.




Classification

Moreover:

» If chark # 3 and Jw # 1 = w? in k, then any Okubo algebra
is, up to isomorphism, the algebra Ag of zero trace elements
in a central simple degree 3 associative algebra with

multiplication
2

3

X %y = wXxy — wlyx — tr(xy)1,

and norm n(x) = —3 tr(x?).



Classification

» If chark # 3 and Aw # 1 = w3 in k, then any Okubo algebra
is, up to isomorphism, the algebra
S(A,j)o = {x € Ao : j(x) = —x}, where (A,j) is a central
simple degree three associative algebra over k[w] and j is a
k[w]/k-involution of second kind, with multiplication and
norm as above.



Classification

» If chark # 3 and Aw # 1 = w3 in k, then any Okubo algebra
is, up to isomorphism, the algebra
S(A,j)o = {x € Ao : j(x) = —x}, where (A,j) is a central
simple degree three associative algebra over k[w] and j is a
k[w]/k-involution of second kind, with multiplication and
norm as above.

Example

C = R[W], Ssu3 = {X (= Mat3((C) : tr(x) — 0’ 3t — —X}.
The corresponding Okubo algebra is a division algebra.
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If char k # 3 and k contains the cubic roots of 1, for 0 # «, 8 € k,
A=alg(x,y: x> =a, y> = 8, xy = wyx) is a central simple
degree 3 associative algebra.
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Classification

If char k # 3 and k contains the cubic roots of 1, for 0 # «, 8 € k,
A=alg(x,y: x> =a, y> = 8, xy = wyx) is a central simple
degree 3 associative algebra.

wY

i x'yd . so that

Take the elements x;; =

AO = span {XIJ —1< Ia./ < 17 (Ia./) 7é (070)}

The multiplication table of the corresponding Okubo algebra is the
following:



Classification

* X1,0 X—-1,0 X0,1 X0,—1 X1,1 X—-1,-1 X-1,1 X1,—1
X1,0 |—GX-1,0 0 0 X1,—-1 0 X0,—1 0 axX—1,-1
0 —at 0 0 -1 0
X-1,0 Q X100 X-1,1 X0,1 a X11
Xo,1 X1,1 0 —Bx0,—1 O Bx1,-1 0 0 X1.0
—1 1
xo,-1| 0 xo1,-1 0 -8 "0, 0 B 7 x-1. X-1,0 0
X1,1 | aX—1,1 0 0 x1,0 |—afBx-1,-1 O Bx0,—1 0
0 -t 0 0 — -1 0 -1
X_1,-1 a 'x 1| xo10 (aB) "xua B~ X0,
-1 -1
X-1,1| Xo,1 0 Bx-1,-1 O 0 a “xi0 |—a  Bxi,—1 0
—1 1
X1,—-1 0 X0,—1 0 ﬁ X1,1 axX—-1,0 0 0 70[[‘3 X—1,1




Classification

This multiplication table is valid in characteristic 3(!!), and the
Okubo algebras with this multiplication table exhaust:

» The Okubo algebras over fields of characteristic 3.

» The Okubo algebras with isotropic norm over arbitrary fields.



Triality



Triality

The simple Lie algebra of type D4 contains outer automorphisms of
order 3.



Symmetric composition algebras and triality

Let (S, *, n) be an eight-dimensional symmetric composition
algebra. Write

h(y) = xxy = ry(x).
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Symmetric composition algebras and triality

Let (S, *, n) be an eight-dimensional symmetric composition
algebra. Write
I(y) = x*y = ry(x).

0 k)’
lere = n(x)id = rely = < 8) = n(x)id

rx

Therefore, the map x (O e

> extends to an isomorphism of
re O

algebras with involution

b - (6[(5, n),T) — (End(S ) S),J,,L,,)




Spin group

Consider the spin group:

Spin(S, n) = {u € €S, n); u-x-uteS ur(u)=1,Vxe S}J
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Spin group

Consider the spin group:

Spin(S, n) = {u € €S, n); u-x-uteS ur(u)=1,Vxe S}J

For any u € Spin(S, n),

for some p- € O(S, n) such that

Xulx *y) = p(x) * py (y)

for any x,y € S, where x,(x) = u-x-u™L.



Spin group

This last condition is equivalent to:
<XU(X),,OZ_(y),p;(Z)> = <Xa.ya Z>
for any x,y,z € S, where
(x,y,z) = n(x,y * z),

and this has cyclic symmetry!!

<Xv)/7z> = <y,Z,X>.



Spin group

Theorem

Let (S, *,n) be an eight-dimensional symmetric composition
algebra. Then:
Spin(S, n) ~ {(fy, f1, f2) € SO(S, n) :
fo(x * y) = fi(x) * f2(y) Vx,y € S}.

Moreover, the set of related triples (the set on the right hand side)
has cyclic symmetry.

v



Spin group

Theorem
Let (S, *,n) be an eight-dimensional symmetric composition

algebra. Then:
Spin(S, n) ~ {(fy, f1, f2) € SO(S, n)* :
fo(x * y) = fi(x) * f2(y) Vx,y € S}.

Moreover, the set of related triples (the set on the right hand side)
has cyclic symmetry.

The cyclic symmetry on the right hand side induces an outer
automorphism of order 3 (triality automorphism) of Spin(S, n).




The Principle of Triality

Theorem

Let (S, *,n) be an eight-dimensional symmetric composition
algebra. Then, for any fy € SO(S, n), there are elements

fi, fo € SO(S, n), unique up to scalar multiplication of both by —1,
such that (fo, fi, f2) is a related triple.




The Principle of Triality

Theorem

Let (S, *, n) be an eight-dimensional symmetric composition
algebra. Then, for any fy € SO(S, n), there are elements

fi,f» € SO(S, n), unique up to scalar multiplication of both by —1,
such that (fo, fi, f2) is a related triple.

Remark

Any of the projections 7; : Spin(S, n) — SO(S, n), (fo, fi, ) — f;
gives a double cover of SO(S, n).




Local version: Principle of Local Triality

Theorem

Let (S, *,n) be an eight-dimensional symmetric composition
algebra. Then, for any dy € s0(S, n), there are unique elements
di, dy € s0(S, n) such that

do(x *y) = di(x) xy + x x da(y),

for any x,y € S.




Triality Lie algebra

Definition
For any symmetric composition algebra (S, *, n), the Lie algebra

tei(S, %, n) = {(do, d1, d») € s0(S, n)> :
do(x xy) = di(x) xy + x x da(y) Vx,y € S}

is called the triality Lie algebra of (S, x*, n).




Triality Lie algebra

Proposition
» The map 0 : ti(S, *, n) — tri(S, x.n),
(do, d1, d2) — (d1, da, do), is a Lie algebra automorphism.
» Ifdim S = 8, any of the projections tti(S, *, n) — so(S, n),
(do, d1, d2) — dj, is an isomorphism of Lie algebras.
> [f chark =£ 2, for any x,y € S, consider the triple:

1 . 1 .
ey = (UXJ, EI‘I(X,_)/)Id — el En(x,y)ld — Ixry),

where oy, : z — n(x,z)y — n(y,z)x. Then

2

tei(S, %, n) = Z 0'(ts.s),

i=0

[tayb’ thy] = tUa,b(X)vy + tx70—a,b(y)'




Freudenthal-Tits Magic Square



A construction of Lie algebras from symmetric composition
algebras

Let (S, *,n) and (S’, %, n’) be two symmetric composition algebras
over a field k of characteristic # 2. One can construct a Lie
algebra as follows:

g=29(5,9) = (&i(S) @ i(5")) & (@,?ZOL,-(S ® 5’)), J

with bracket given by:



A construction of Lie algebras from symmetric composition
algebras

» the Lie bracket in tti(S) @ tri(S’), which thus becomes a Lie
subalgebra of g,

> [(do, dl, dz), L,'(X X X/)] = L,'(d,'(X) X X/),

> [(dg, df, d3), ti(x @ x')] = vi(x @ dj(x)),

> Li(x @ x), tiz1(y @ y')] = tiga ((x x y) @ (X' x y")) (indices
modulo 3),

> [i(x @ x),uly ® )] = n'(x',y' )0 (tey) + n(x, )0 (£ 1),



Freudenthal-Tits Magic Square

dim S’
9(5,9) | 1 2 4 8
1 A1 A> G Fa
2 A A DA As Ee
dimS
G As D¢ E;
8 | F4 Es E7 Es
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