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Composition algebras

Definition

A composition algebra over a field k is a triple (C , ·, n) where

I C is a vector space over k,

I x · y is a bilinear multiplication C × C → C ,
I n : C → k is a multiplicative regular quadratic form:

I n(x · y) = n(x)n(y) ∀x , y ∈ C ,
I its polar n(x , y) = n(x + y)− n(x)− n(y) is nondegenerate

(if char k = 2 we also allow the radical of the polar form to be
non isotropic and of dimension 1).

The unital composition algebras are termed Hurwitz algebras.
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Hurwitz algebras

Hurwitz algebras form a class of degree two algebras:

x2 − n(x , 1)x + n(x)1 = 0

for any x .

They are endowed with an antiautomorphism, the standard
conjugation:

x̄ = n(x , 1)1− x ,

satisfying

¯̄x = x , x + x̄ = n(x , 1)1, x · x̄ = x̄ · x = n(x)1.

Moreover,
n(xy , z) = n(y , x̄z) = n(x , zȳ),

for any x , y , z . (The adjoint of the left (right) multiplication by x
is the left (right) multiplication by x̄ .)



Hurwitz algebras

Hurwitz algebras form a class of degree two algebras:

x2 − n(x , 1)x + n(x)1 = 0

for any x .

They are endowed with an antiautomorphism, the standard
conjugation:

x̄ = n(x , 1)1− x ,

satisfying

¯̄x = x , x + x̄ = n(x , 1)1, x · x̄ = x̄ · x = n(x)1.

Moreover,
n(xy , z) = n(y , x̄z) = n(x , zȳ),
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Cayley-Dickson doubling process

Let B be an associative Hurwitz algebra with norm n such that the
polar form is nondegenerate, and let λ be a nonzero scalar in the
ground field k . Consider the direct sum of two copies of B:

C = B ⊕ Bu,

with the following multiplication and regular quadratic form that
extend those on B:

(a + bu)(c + du) = (ac + λd̄b) + (da + bc̄)u,

n(a + bu) = n(a)− λn(b).

Then C is again a Hurwitz algebra, which is denoted by CD(B, λ)

Notation: CD(A, µ, λ) := CD
(
CD(A, µ), λ

)
.
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Generalized Hurwitz Theorem

Theorem

Every Hurwitz algebra over a field k is isomorphic to one of the
following:

(i) The ground field k.

(ii) A quadratic commutative and associative separable algebra
K (µ) = k1 + kv, with v 2 = v + µ and 4µ+ 1 6= 0. The norm
is given by its generic norm.

(iii) A quaternion algebra Q(µ, β) = CD(K (µ), β). (These four
dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra C (µ, β, γ) = CD(K (µ), β, γ). (These eight
dimensional algebras are alternative, but not associative.)

In particular, any Hurwitz algebra is finite-dimensional.



Generalized Hurwitz Theorem

Theorem

Every Hurwitz algebra over a field k is isomorphic to one of the
following:

(i) The ground field k.

(ii) A quadratic commutative and associative separable algebra
K (µ) = k1 + kv, with v 2 = v + µ and 4µ+ 1 6= 0. The norm
is given by its generic norm.

(iii) A quaternion algebra Q(µ, β) = CD(K (µ), β). (These four
dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra C (µ, β, γ) = CD(K (µ), β, γ). (These eight
dimensional algebras are alternative, but not associative.)

In particular, any Hurwitz algebra is finite-dimensional.



General composition algebras

Corollary

The dimension of any finite-dimensional composition algebra is
restricted to 1, 2, 4 or 8.

Proof.
I Take any element a of C with n(a) 6= 0. Then the norm of

e = 1
n(a) a2 is 1.

I Consider the new multiplication on C (Kaplansky’s trick):

x · y = (R−1
e x)(L−1

e y).

I Then (C , ·, n) is a Hurwitz algebra with unity 1 = e2.



General composition algebras

Corollary

The dimension of any finite-dimensional composition algebra is
restricted to 1, 2, 4 or 8.

Proof.
I Take any element a of C with n(a) 6= 0. Then the norm of

e = 1
n(a) a2 is 1.

I Consider the new multiplication on C (Kaplansky’s trick):

x · y = (R−1
e x)(L−1

e y).

I Then (C , ·, n) is a Hurwitz algebra with unity 1 = e2.



General composition algebras

Theorem (E.–Pérez-Izquierdo 97)

There are infinite-dimensional composition algebras of arbitrary
infinite dimension, even with a one-sided unity!



The split Hurwitz algebras

There are, up to isomorphism, four ‘split’ (i.e., either dim C = 1 or
∃x s.t. n(x) = 0) Hurwitz algebras:

k , k × k , Mat2(k), C (k).



The split Cayley algebra

Canonical basis of the split Cayley algebra
C (k) = CD

(
Mat2(k),−1

)
:

B = {e1, e2, u1, u2, u3, v1, v2, v3}

n(e1, e2) = n(ui , vi ) = 1, (otherwise 0)

e2
1 = e1, e2

2 = e2,

e1ui = uie2 = ui , e2vi = vie1 = vi , (i = 1, 2, 3)

uivi = −e1, viui = −e2, (i = 1, 2, 3)

uiui+1 = −ui+1ui = vi+2, vivi+1 = −vi+1vi = ui+2, (indices modulo 3)

otherwise 0.
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Okubo, 1978

Assume the ground field k contains a cubic primitive root ω of 1
(in particular, char k 6= 3).
On the vector space S = sl3(k) of zero trace 3× 3 matrices over
k , consider the ‘new’ multiplication:

x ∗ y = ωxy − ω2yx − ω − ω2

3
tr(xy)1.

(S , ∗, n) is a composition algebra, with n(x) = −1
2 tr(x2)

(valid in characteristic 2!)
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Okubo, 1978

This composition algebra is not unital, but satisfies a nice property:

n(x ∗ y , z) = n(x , y ∗ z)

for any x , y , z .
(Associativity of the norm: the adjoint of the left multiplication by
x is the right multiplication by x .)



Symmetric composition algebras

Definition

A composition algebra (S , ∗, n) is said to be symmetric if the polar
form of its norm is associative:

n(x ∗ y , z) = n(x , y ∗ z),

for any x , y , z ∈ S .

This is equivalent to the condition:

(x ∗ y) ∗ x = n(x)y = x ∗ (y ∗ x),

for any x , y ∈ S .



Examples

Let C be a Hurwitz algebra with norm n.

I Para-Hurwitz algebras (Okubo-Myung 1980): Consider
the new multiplication on C :

x • y = x̄ · ȳ .

Then (C , •, n) is a composition algebra, which will be denoted
by C̄ for short.

The unity of C becomes a para-unit in C̄ , that is, an element
e such that e • x = x • e = n(e, x)e − x . If the dimension is
at least 4, the para-unit is unique, and it is the unique
idempotent that spans the commutative center of the
para-Hurwitz algebra.
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Examples

I Petersson algebras (1969): Let τ be an automorphism of
C with τ3 = 1, and consider the new multiplication defined on
C by means of:

x ∗ y = τ(x̄) · τ2(ȳ).

The algebra (C , ∗, n) is a symmetric composition algebra,
which will be denoted by C̄τ for short.



Okubo algebras

Let B = {e1, e2, u1, u2, u3, v1, v2, v3} be a canonical basis of C (k).
Then the linear map τst : C (k)→ C (k) determined by the
conditions:

τst(ei ) = ei , i = 1, 2; τst(ui ) = ui+1, τst(vi ) = vi+1 (indices modulo 3),

is clearly an order 3 automorphism of C (k).

Definition

The associated Petersson algebra P8(k) = C (k)τst is called the
pseudo-octonion algebra over the field k. It is isomorphic to the
algebra originally defined by Okubo.

The forms of P8(k) are called Okubo algebras [E.-Myung 1990].



Classification

Theorem (Okubo-Osborn 81, E.–Myung 91,93,
E.–Pérez-Izquierdo 96, E. 97)

Any symmetric composition algebra is either:

I a para-Hurwitz algebra,

I a form of a two-dimensional para-Hurwitz algebra without
idempotent elements (with a precise description),

I an Okubo algebra.



Classification

Moreover:

I If char k 6= 3 and ∃ω 6= 1 = ω3 in k , then any Okubo algebra
is, up to isomorphism, the algebra A0 of zero trace elements
in a central simple degree 3 associative algebra with
multiplication

x ∗ y = ωxy − ω2yx − ω − ω2

3
tr(xy)1,

and norm n(x) = −1
2 tr(x2).



Classification

I If char k 6= 3 and 6 ∃ω 6= 1 = ω3 in k, then any Okubo algebra
is, up to isomorphism, the algebra
S(A, j)0 = {x ∈ A0 : j(x) = −x}, where (A, j) is a central
simple degree three associative algebra over k[ω] and j is a
k[ω]/k-involution of second kind, with multiplication and
norm as above.

Example

C = R[ω], su3 = {x ∈ Mat3(C) : tr(x) = 0, x̄ t = −x}.
The corresponding Okubo algebra is a division algebra.
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Classification

If char k 6= 3 and k contains the cubic roots of 1, for 0 6= α, β ∈ k,
A = alg〈x , y : x3 = α, y 3 = β, xy = ωyx〉 is a central simple
degree 3 associative algebra.

Take the elements xij = ωij

ω2−ωx iy j , so that

A0 = span {xij : −1 ≤ i , j ≤ 1, (i , j) 6= (0, 0)} .

The multiplication table of the corresponding Okubo algebra is the
following:
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Classification

∗ x1,0 x−1,0 x0,1 x0,−1 x1,1 x−1,−1 x−1,1 x1,−1

x1,0 −αx−1,0 0 0 x1,−1 0 x0,−1 0 αx−1,−1

x−1,0 0 −α−1x1,0 x−1,1 0 x0,1 0 α−1x1,1 0

x0,1 x1,1 0 −βx0,−1 0 βx1,−1 0 0 x1,0

x0,−1 0 x−1,−1 0 −β−1x0,1 0 β−1x−1,1 x−1,0 0

x1,1 αx−1,1 0 0 x1,0 −αβx−1,−1 0 βx0,−1 0

x−1,−1 0 α−1x1,−1 x−1,0 0 0 −(αβ)−1x1,1 0 β−1x0,1

x−1,1 x0,1 0 βx−1,−1 0 0 α−1x1,0 −α−1βx1,−1 0

x1,−1 0 x0,−1 0 β−1x1,1 αx−1,0 0 0 −αβ−1x−1,1



Classification

This multiplication table is valid in characteristic 3(!!), and the
Okubo algebras with this multiplication table exhaust:

I The Okubo algebras over fields of characteristic 3.

I The Okubo algebras with isotropic norm over arbitrary fields.
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Triality
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The simple Lie algebra of type D4 contains outer automorphisms of
order 3.



Symmetric composition algebras and triality

Let (S , ∗, n) be an eight-dimensional symmetric composition
algebra. Write

lx(y) = x ∗ y = ry (x).

lx rx = n(x)id = rx lx =⇒
(

0 lx
rx 0

)2

= n(x)id

Therefore, the map x 7→
(

0 lx
rx 0

)
extends to an isomorphism of

algebras with involution

Φ :
(
Cl(S , n), τ

)
−→

(
End(S ⊕ S), σn⊥n

)
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Spin group

Consider the spin group:

Spin(S , n) = {u ∈ Cl(S , n)×
0̄

: u ·x ·u−1 ∈ S , u ·τ(u) = 1, ∀x ∈ S}.

For any u ∈ Spin(S , n),

Φ(u) =

(
ρ−u 0
0 ρ+

u

)
for some ρ±u ∈ O(S , n) such that

χu(x ∗ y) = ρ+
u (x) ∗ ρ−u (y)

for any x , y ∈ S , where χu(x) = u · x · u−1.
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Spin group

This last condition is equivalent to:

〈χu(x), ρ+
u (y), ρ−u (z)〉 = 〈x , y , z〉

for any x , y , z ∈ S , where

〈x , y , z〉 = n(x , y ∗ z),

and this has cyclic symmetry!!

〈x , y , z〉 = 〈y , z , x〉.



Spin group

Theorem

Let (S , ∗, n) be an eight-dimensional symmetric composition
algebra. Then:

Spin(S , n) ' {(f0, f1, f2) ∈ SO(S , n)3 :

f0(x ∗ y) = f1(x) ∗ f2(y) ∀x , y ∈ S}.

Moreover, the set of related triples (the set on the right hand side)
has cyclic symmetry.

The cyclic symmetry on the right hand side induces an outer
automorphism of order 3 (triality automorphism) of Spin(S , n).
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The Principle of Triality

Theorem

Let (S , ∗, n) be an eight-dimensional symmetric composition
algebra. Then, for any f0 ∈ SO(S , n), there are elements
f1, f2 ∈ SO(S , n), unique up to scalar multiplication of both by −1,
such that (f0, f1, f2) is a related triple.

Remark

Any of the projections πi : Spin(S , n)→ SO(S , n), (f0, f1, f2) 7→ fi
gives a double cover of SO(S , n).
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Local version: Principle of Local Triality

Theorem

Let (S , ∗, n) be an eight-dimensional symmetric composition
algebra. Then, for any d0 ∈ so(S , n), there are unique elements
d1, d2 ∈ so(S , n) such that

d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y),

for any x , y ∈ S.



Triality Lie algebra

Definition

For any symmetric composition algebra (S , ∗, n), the Lie algebra

tri(S , ∗, n) = {(d0, d1, d2) ∈ so(S , n)3 :

d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) ∀x , y ∈ S}

is called the triality Lie algebra of (S , ∗, n).



Triality Lie algebra

Proposition

I The map θ : tri(S , ∗, n)→ tri(S , ∗.n),
(d0, d1, d2) 7→ (d1, d2, d0), is a Lie algebra automorphism.

I If dim S = 8, any of the projections tri(S , ∗, n)→ so(S , n),
(d0, d1, d2) 7→ di , is an isomorphism of Lie algebras.

I If char k 6= 2, for any x , y ∈ S, consider the triple:

tx ,y =
(
σx ,y ,

1

2
n(x , y)id − rx ly ,

1

2
n(x , y)id − lx ry

)
,

where σx ,y : z 7→ n(x , z)y − n(y , z)x. Then

tri(S , ∗, n) =
2∑

i=0

θi (tS ,S),

[ta,b, tx ,y ] = tσa,b(x),y + tx ,σa,b(y).
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A construction of Lie algebras from symmetric composition
algebras

Let (S , ∗, n) and (S ′, ?, n′) be two symmetric composition algebras
over a field k of characteristic 6= 2. One can construct a Lie
algebra as follows:

g = g(S , S ′) =
(
tri(S)⊕ tri(S ′)

)
⊕
(
⊕2

i=0ιi (S ⊗ S ′)
)
,

with bracket given by:



A construction of Lie algebras from symmetric composition
algebras

I the Lie bracket in tri(S)⊕ tri(S ′), which thus becomes a Lie
subalgebra of g,

I [(d0, d1, d2), ιi (x ⊗ x ′)] = ιi
(
di (x)⊗ x ′

)
,

I [(d ′0, d
′
1, d
′
2), ιi (x ⊗ x ′)] = ιi

(
x ⊗ d ′i (x ′)

)
,

I [ιi (x ⊗ x ′), ιi+1(y ⊗ y ′)] = ιi+2

(
(x ∗ y)⊗ (x ′ ? y ′)

)
(indices

modulo 3),

I [ιi (x ⊗ x ′), ιi (y ⊗ y ′)] = n′(x ′, y ′)θi (tx ,y ) + n(x , y)θ′i (t ′x ′,y ′),



Freudenthal-Tits Magic Square

dim S ′

g(S , S ′) 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6

dim S
4 C3 A5 D6 E7

8 F4 E6 E7 E8



Some notes on Freudenthal-Tits Magic Square

I Freudenthal’s approach to the Magic Square was geometric.
Each row of the Magic Square corresponds to a different type
of Geometry: Elliptic, Projective, Symplectic and
‘Metasymplectic’.

I Tits construction of the Magic Square involves a Hurwitz
algebra and a simple Jordan algebra of degree 3.

I None of these constructions explain the symmetry of the
Magic Square.

I Tits construction is equivalent, in a natural way, to the above
construction using para-Hurwitz algebras.

That’s all. Thanks
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