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Schur-Weyl duality. General linear group

F: algebraically closed field, charF = 0.
V finite-dimensional vector space over F.

GL(V) y V⊗n x Sn

EndGL(V)

(
V⊗n

)
= alg〈action of Sn〉,

EndSn

(
V⊗n

)
= alg〈action of GL(V)〉.
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Orthogonal group

Assume that now V is endowed with a nondegenerate quadratic
form. Then:

EndO(V)

(
V⊗n

)
= alg〈action of Sn and of the cij ’s〉,

where the contractions are given by

cij(v1 ⊗ · · · ⊗ vn) =
(
vi | vj

) r∑
l=1

v1 ⊗ · · · ⊗ el ⊗ · · · ⊗ fl ⊗ · · · ⊗ vn,

where
{

el
}

and
{

fl
}

are dual bases.
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Brauer algebra

Br(x) is the algebra with basis consisting of diagrams of the form:

α =

with multiplication given by bordism, and by multiplying by the
parameter x each time we get a circle:

β =

α ◦ β = x
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Orthogonal and symplectic groups

Orthogonal group: O(V) y V⊗n x Br(dim V)

EndO(V)

(
V⊗n

)
= alg〈action of Br(dim V)〉,

EndBr(dim V)

(
V⊗n

)
= alg〈action of O(V)〉.

Symplectic group: Sp(V) y V⊗n x Br(− dim V)

EndSp(V)

(
V⊗n

)
= alg〈action of Br(− dim V)〉,

EndBr(− dim V)

(
V⊗n

)
= alg〈action of Sp(V)〉.

What about G2 and its natural representation?

G2 y V⊗n x ??
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3-tangles

A 3-tangle is an equivalence class of graphs with nodes of valence
1, 2 or 3, together with an orientation on the edges incident to
each node of valence 3:

γ =

The boundary consists of the nodes of valence 1: ∂γ.

Two such graphs are said to be equivalent if they have the same
boundary, and admit a common refinement. Refinements are
obtained by ‘splitting edges adding valence two nodes’:

refinement−−−−−−→ .
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3-tangles [n]→ [m]

For n ∈ N, let [n] = {1, . . . , n} with [0] = ∅. Then, for n,m ∈ N, a
3-tangle γ : [n]→ [m] is a 3-tangle γ with ∂γ = [n] t [m] (disjoint
union, which may thought of as {1, . . . , n, 1′, . . . ,m′}).

γ =

1 2 3 4 5 6 7

1′ 2′ 3′ 4′

(The orientation of a valency 3 node is given by clockwise order.)
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Operations on 3-tangles

γ =

1 2 3 4

1′ 2′

γt =

1′ 2′ 3′ 4′

1 2

transpose

γ∗ =

1 2

1′ 2′ 3′

γ t γ∗ =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′

disjoint union

γ ◦ γ∗ =

1 2 3 4

1′ 2′ 3′

composition
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Category T

Objects: [n], n ∈ N (0 ∈ N).

Morphisms: linear combinations of 3-tangles [n]→ [m].

t induces a tensor product t : T × T → T.

The transpose induces bijections
MorT([n], [m])→ MorT([m], [n]), γ 7→ γt , such that
(γ∗ ◦ γ)t = γt ◦ (γ∗)t whenever this makes sense.

There are natural maps
Φn,m : MorT([n], [m]) −→ MorT([n + m], [0]) and
Ψn,m : MorT([n + m], [0]) −→ MorT([n], [m]).
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Basic morphisms

The morphisms

I1 = β = µ =

τ = βt = µt =

are called basic. They constitute the alphabet of T.
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Category TΓ

In addition to generators, some relations can be imposed in the
category T.

Let
Γ = {γi ∈ MorT([ni ], [mi ]) : i = 1, . . . , k}

be a finite set of morphisms in T. For each n,m ∈ N, the set Γ
generates, through compositions and tensor products with arbitrary
3-tangles, a subspace RΓ([n], [m]) of MorT([n], [m]), and we define
a new category TΓ with the same objects and with

MorTΓ
([n], [m]) = MorT([n], [m])/RΓ([n], [m]).

TΓ is the 3-tangle category associated with the set of
relations Γ.
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The functor RV

V = (V, b,m) finite-dimensional nonassociative algebra with
multiplication m, endowed with an associative, nondegenerate,
symmetric bilinear form b : V × V→ F.
Let V be the category of finite-dimensional vector spaces over
F with linear maps as morphisms.
Denote by τ the switch map τ : V⊗2 → V⊗2, x ⊗ y 7→ y ⊗ x .
Identify b with a linear map V⊗2 → F and m with a linear
map V⊗2 → V. Let 1V be the identity map on V.

Theorem (Boos, Cadorin, Knus, Rost 1998–2005)

There exists a unique functor RV : T → V such that:

1. RV([0]) = F and RV([n]) = V⊗n, for any n ≥ 1.

2. RV(I1) = 1V and RV(τ) = τ .

3. RV(β) = b, RV(µ) = m, RV(γt) = RV(γ)t , and
RV(γ t δ) = RV(γ)⊗ RV(δ), for morphisms γ and δ in T.
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The functor RV

Remark

RV(βt ◦ β) = dim FV ∈ F ∼= HomF(F,F).

Let
ΓV = {ci ∈ HomF(V⊗ni ,V⊗mi ) : i = 1, . . . , k}

be a finite set of homomorphisms.

Definition

The algebra V is said to be of tensor type ΓV if the ci ’s are
identities for V, i.e., if

ci (x1 ⊗ · · · ⊗ xni ) = 0

for all i = 1, . . . , k , and all x1, . . . , xni ∈ V.
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The functor RV

Corollary

V = (V, b,m) be an algebra of tensor type
ΓV = {ci : i = 1, . . . , k}, for tensors ci expressible in terms of
the alphabet, 1V, m, mt , b, bt , and τ .

Γ = {γi : i = 1, . . . , k} with RV(γi ) = ci for all i = 1, . . . , k.

Then there is a unique functor RΓ : TΓ → V such that
RV = RΓ ◦ P, where P is the natural projection T → TΓ.

17/34



1 Schur-Weyl duality

2 3-tangles

3 7-dimensional cross product

4 3-dimensional cross product

5 A (1 | 2)-dimensional cross product

18/34



Cross products

Let (V, b) be a vector space V over F equipped with a
nondegenerate symmetric bilinear form b. A cross product on
(V, b) is a bilinear multiplication V × V→ V, (u, v) 7→ u × v , such
that:

u × u = 0,

b(u × v , u) = 0,

b(u × v , u × v) =

∣∣∣∣b(u, u) b(u, v)
b(v , u) b(v , v)

∣∣∣∣ ,
for any u, v ∈ V.

A nonzero cross product exists only if dim FV = 3 or 7.
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Cross products

Anticommutativity of the cross product corresponds, through
RV to the identity

γ1 : + = 0.

The last condition on the definition of cross product
corresponds to

γ2 : + −2 + + = 0.

The dimension corresponds to:

γ0 : βt ◦ β − (dim FV)1 = − (dim FV)1 = 0.
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Cross products

Proposition

If V = (V, b,×) for a vector space V endowed with a nonzero
cross product × relative to the nondegenerate symmetric bilinear
form b, then the functor RV induces a functor RΓ : TΓ → V, with
Γ = {γ0, γ1, γ2}.
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7-dimensional cross product

Goal

To prove that

RΓ : MorTΓ
([n], [m]) −→ HomAut(V,×)(V⊗n,V⊗m)

is a bijection.

Several steps will be followed:

= = −

Therefore, in TΓ we have = 0
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7-dimensional cross product

Relation γ2 gives:

= − + 2 − −

= 0 + 2 − −

= (1− dim FV) = −6 .

so = −6
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7-dimensional cross product

Again with relation γ2, we get:

+ = 2 − −

= −3

so we can get rid of triangles: = 3
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7-dimensional cross product

= −2

[
+

]
+ 3

[
+

]

=

[
+ + + +

]

−

[
+ + + +

]
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7-dimensional cross product

Theorem

Let n,m ∈ N, and Γ = {γ0, γ1, γ2},
(a) The classes modulo Γ of the 3-tangles [n]→ [m] without

crossings and without any of the subgraphs:

, , , , , ,

form a basis of MorTΓ
([n], [m]).

(b) The functor RΓ gives a linear isomorphism

MorTΓ
([n], [m])→ HomAut(V,×)

(
V⊗n,V⊗m

)
.

(c) The 3-tangles [n]→ [n] as in part (a) give a basis of the
centralizer algebra: EndAut(V,×)

(
V⊗n

)
' MorTΓ

([n], [n]).
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3-dimensional cross product

V = (V, b,×) a 3-dimensional vector space over F, endowed with
a nonzero cross product u × v , relative to a nondegenerate
symmetric bilinear form b. Then we have

u × u = 0,

b(u × v , u) = 0,

(u × v)× w = b(u,w)v − b(v ,w)u,

for any u, v ,w ∈ V.

We must replace Γ = {γ0, γ1, γ2} above by Γ̂ = {γ̂0, γ̂1 = γ1, γ̂2}:

γ̂0 = βt ◦ β − 3 : − 3

γ̂1 = +

γ̂2 = − +
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3-dimensional cross product

Theorem

Let n,m ∈ N, and Γ̂ = {γ̂0, γ̂1, γ̂2}.
(a) The classes modulo Γ̂ of normalized 3-tangles [n]→ [m] form

a basis of MorT
Γ̂
([n], [m]).

(b) R
Γ̂

gives a linear isomorphism

MorT
Γ̂
([n], [m])→ HomSO(V,b)(V⊗n,V⊗m).

(c) The normalized 3-tangles [n]→ [n] give a basis of the
centralizer algebra EndSO(V,b)

(
V⊗n

)
' MorT

Γ̂
([n], [n]), and

dim EndSO(V,b)

(
V⊗n

)
equals the number a(2n) of Catalan

partitions.
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3-dimensional cross product

For the proof, as for the 7-dimensional case, we can get rid of
crossings, circles, and here we get rid also of all cycles.

Relation γ̂2 = 0 can be thought as:

− = −

which allows to prove, for instance,

− =
integral linear combination of ‘tree’ 3-tangles

with a lower number of trivalent nodes.

(normalized)
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Kaplansky superalgebra

V0̄ = Fe, V1̄ = Fp ⊕ Fq,

with

e × e = e, e × u = u × e =
1

2
u ∀u ∈ V1̄,

p × p = q × q = 0, p × q = −q × p = e.

Consider the even nondegenerate supersymmetric bilinear form
b : V × V→ F such that

b(e, e) =
1

2
, b(p, q) = 1.

Then

e × e = e, e × u = u × e =
1

2
u, u × v = b(u, v)e,

for all u, v ∈ V1̄.
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(1 | 2)-dimensional cross product

We must replace here Γ = {γ0, γ1, γ2} by Γs = {γs0, γs1, γs2, γs3},
with

γs
0 = + 1

γs
1 = −

γs
2 = − − 1

2
− 1

2

γs
3 =
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(1 | 2)-dimensional cross product

Theorem

Let V be the 3-dimensional Kaplansky superalgebra over a field F
of characteristic 0. Let n,m ∈ N.

(a) The classes modulo Γs of the normalized 3-tangles [n]→ [m]
form a basis of MorTΓs ([n], [m]).

(b) There is a natural functor RΓs that gives a linear isomorphism

MorTΓs ([n], [m])→ Homosp(V,b)(V⊗n,V⊗m).

(Caution: the switch map is now u ⊗ v 7→ (−1)uvv ⊗ u.)

(c) The normalized 3-tangles [n]→ [n] give a basis of the
centralizer algebra

Endosp(V,b)

(
V⊗n

)
' MorTΓs ([n], [n]),

whose dimension is the number a(2n) of Catalan partitions.
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