Cross products, invariants, and centralizers

Alberto Elduque

(joint work with Georgia Benkart)

- 3 7-dimensional cross product
- ④ 3-dimensional cross product
- **5** A (1 | 2)-dimensional cross product

2 3-tangles

- 3 7-dimensional cross product
- ④ 3-dimensional cross product
- 5 A (1 | 2)-dimensional cross product

Schur-Weyl duality. General linear group

$$\label{eq:states} \begin{split} \mathbb{F}: \text{ algebraically closed field, char } \mathbb{F} = 0. \\ \text{V finite-dimensional vector space over } \mathbb{F}. \end{split}$$

$$GL(V) \curvearrowright V^{\otimes n} \backsim S_n$$

$$\begin{aligned} &\mathsf{End}_{\mathsf{GL}(\mathsf{V})}(\mathsf{V}^{\otimes n}) = \mathsf{alg}\langle \mathsf{action of } \mathsf{S}_n \rangle, \\ &\mathsf{End}_{\mathsf{S}_n}(\mathsf{V}^{\otimes n}) = \mathsf{alg}\langle \mathsf{action of } \mathsf{GL}(\mathsf{V}) \rangle. \end{aligned}$$

Assume that now V is endowed with a nondegenerate quadratic form. Then:

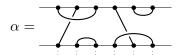
$$\operatorname{End}_{O(V)}(V^{\otimes n}) = \operatorname{alg} \operatorname{\langle action of } S_n \text{ and of the } c_{ij} \operatorname{'s} \operatorname{\rangle},$$

where the contractions are given by

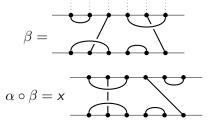
$$c_{ij}(v_1 \otimes \cdots \otimes v_n) = (v_i \mid v_j) \sum_{l=1}^r v_1 \otimes \cdots \otimes e_l \otimes \cdots \otimes f_l \otimes \cdots \otimes v_n,$$

where $\{e_l\}$ and $\{f_l\}$ are dual bases.

Br(x) is the algebra with basis consisting of diagrams of the form:



with multiplication given by *bordism*, and by multiplying by the parameter x each time we get a circle:



Orthogonal and symplectic groups

Orthogonal group: $O(V) \curvearrowright V^{\otimes n} \curvearrowleft Br(\dim V)$ $\operatorname{End}_{O(V)}(V^{\otimes n}) = \operatorname{alg} \operatorname{(\operatorname{action} of Br(\dim V))},$ $\operatorname{End}_{\operatorname{Br}(\dim V)}(V^{\otimes n}) = \operatorname{alg} \operatorname{(\operatorname{action of } O(V))}.$ Symplectic group: Sp(V) \curvearrowright V^{$\otimes n$} \checkmark Br(-dim V) $\operatorname{End}_{\operatorname{Sp}(V)}(V^{\otimes n}) = \operatorname{alg} \langle \operatorname{action of } \operatorname{Br}(-\operatorname{dim} V) \rangle,$ $\operatorname{End}_{\operatorname{Br}(-\dim V)}(V^{\otimes n}) = \operatorname{alg} \operatorname{(\operatorname{action of } Sp(V))}.$

What about G_2 and its natural representation?

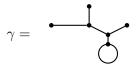
$$G_2 \ \curvearrowright \ V^{\otimes n} \ \curvearrowleft \ ??$$

7/34

- 3 7-dimensional cross product
- ④ 3-dimensional cross product
- 5 A (1 | 2)-dimensional cross product

3-tangles

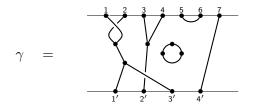
A 3-**tangle** is an *equivalence class* of graphs with nodes of valence 1, 2 or 3, together with an orientation on the edges incident to each node of valence 3:



The *boundary* consists of the nodes of valence 1: $\partial \gamma$.

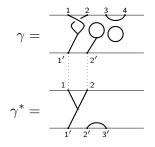
Two such graphs are said to be equivalent if they have the same boundary, and admit a common refinement. Refinements are obtained by 'splitting edges adding valence two nodes':

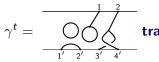
For $n \in \mathbb{N}$, let $[n] = \{1, ..., n\}$ with $[0] = \emptyset$. Then, for $n, m \in \mathbb{N}$, a 3-tangle $\gamma : [n] \to [m]$ is a 3-tangle γ with $\partial \gamma = [n] \sqcup [m]$ (disjoint union, which may thought of as $\{1, ..., n, 1', ..., m'\}$).



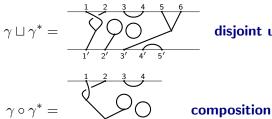
(The orientation of a valency 3 node is given by clockwise order.)

Operations on 3-tangles





transpose



2' 3' disjoint union

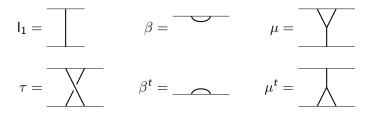
11/34

Objects: [n], $n \in \mathbb{N}$ $(0 \in \mathbb{N})$.

Morphisms: linear combinations of 3-tangles $[n] \rightarrow [m]$.

- \sqcup induces a tensor product $\sqcup : \mathfrak{T} \times \mathfrak{T} \to \mathfrak{T}$.
- The transpose induces bijections $Mor_{\mathfrak{T}}([n], [m]) \to Mor_{\mathfrak{T}}([m], [n]), \ \gamma \mapsto \gamma^{t}$, such that $(\gamma^{*} \circ \gamma)^{t} = \gamma^{t} \circ (\gamma^{*})^{t}$ whenever this makes sense.
- There are natural maps $\Phi_{n,m} : \operatorname{Mor}_{\mathfrak{T}}([n], [m]) \longrightarrow \operatorname{Mor}_{\mathfrak{T}}([n+m], [0]) \text{ and }$ $\Psi_{n,m} : \operatorname{Mor}_{\mathfrak{T}}([n+m], [0]) \longrightarrow \operatorname{Mor}_{\mathfrak{T}}([n], [m]).$

The morphisms



are called *basic*. They constitute the *alphabet* of \mathcal{T} .

In addition to generators, some relations can be imposed in the category $\ensuremath{\mathfrak{T}}$.

Let

$$\Gamma = \{\gamma_i \in \operatorname{Mor}_{\mathfrak{T}}([n_i], [m_i]) : i = 1, \dots, k\}$$

be a finite set of morphisms in \mathfrak{T} . For each $n, m \in \mathbb{N}$, the set Γ generates, through compositions and tensor products with arbitrary 3-tangles, a subspace $\mathbb{R}_{\Gamma}([n], [m])$ of $\operatorname{Mor}_{\mathfrak{T}}([n], [m])$, and we define a new category \mathfrak{T}_{Γ} with the same objects and with

 $\operatorname{Mor}_{\mathbb{T}_{\Gamma}}([n],[m]) = \operatorname{Mor}_{\mathbb{T}}([n],[m])/\operatorname{R}_{\Gamma}([n],[m]).$

${\mathfrak T}_{\Gamma}$ is the 3-tangle category associated with the set of relations $\Gamma.$

The functor $\mathcal{R}_\mathfrak{V}$

- 𝔅 = (V, b, m) finite-dimensional nonassociative algebra with multiplication m, endowed with an associative, nondegenerate, symmetric bilinear form b : V × V → 𝔽.
- Let \mathcal{V} be the category of finite-dimensional vector spaces over \mathbb{F} with linear maps as morphisms.
- Denote by τ the switch map τ : V^{⊗2} → V^{⊗2}, x ⊗ y ↦ y ⊗ x. Identify b with a linear map V^{⊗2} → F and m with a linear map V^{⊗2} → V. Let 1_V be the identity map on V.

Theorem (Boos, Cadorin, Knus, Rost 1998–2005)

There exists a unique functor $\mathcal{R}_{\mathfrak{V}}: \mathfrak{T} \to \mathcal{V}$ such that:

- 1. $\Re_{\mathfrak{V}}([0]) = \mathbb{F}$ and $\Re_{\mathfrak{V}}([n]) = V^{\otimes n}$, for any $n \ge 1$.
- 2. $\Re_{\mathfrak{V}}(\mathsf{I}_1) = 1_{\mathsf{V}} \text{ and } \Re_{\mathfrak{V}}(\tau) = \tau.$
- 3. $\mathcal{R}_{\mathfrak{V}}(\beta) = b$, $\mathcal{R}_{\mathfrak{V}}(\mu) = m$, $\mathcal{R}_{\mathfrak{V}}(\gamma^t) = \mathcal{R}_{\mathfrak{V}}(\gamma)^t$, and $\mathcal{R}_{\mathfrak{V}}(\gamma \sqcup \delta) = \mathcal{R}_{\mathfrak{V}}(\gamma) \otimes \mathcal{R}_{\mathfrak{V}}(\delta)$, for morphisms γ and δ in \mathfrak{T} .

Remark

$$\mathcal{R}_{\mathfrak{V}}(\beta^t \circ \beta) = \dim_{\mathbb{F}} \mathsf{V} \in \mathbb{F} \cong \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}, \mathbb{F}).$$

Let

$$\Gamma_{\mathfrak{V}} = \{\mathsf{c}_i \in \mathsf{Hom}_{\mathbb{F}}(\mathsf{V}^{\otimes n_i}, \mathsf{V}^{\otimes m_i}) : i = 1, \dots, k\}$$

be a finite set of homomorphisms.

Definition

The algebra \mathfrak{V} is said to be **of tensor type** $\Gamma_{\mathfrak{V}}$ if the c_i 's are identities for \mathfrak{V} , i.e., if

$$c_i(x_1\otimes\cdots\otimes x_{n_i})=0$$

for all $i = 1, \ldots, k$, and all $x_1, \ldots, x_{n_i} \in V$.

Corollary

- 𝔅 = (V, b, m) be an algebra of tensor type
 Γ_𝔅 = {c_i : i = 1,..., k}, for tensors c_i expressible in terms of the alphabet, 1_V, m, m^t, b, b^t, and τ.
- $\Gamma = \{\gamma_i : i = 1, \dots, k\}$ with $\Re_{\mathfrak{V}}(\gamma_i) = c_i$ for all $i = 1, \dots, k$.

Then there is a unique functor $\Re_{\Gamma} : \mathfrak{T}_{\Gamma} \to \mathcal{V}$ such that $\Re_{\mathfrak{V}} = \Re_{\Gamma} \circ \mathfrak{P}$, where \mathfrak{P} is the natural projection $\mathfrak{T} \to \mathfrak{T}_{\Gamma}$.

2 3-tangles

- 4 3-dimensional cross product
- 5 A (1 | 2)-dimensional cross product

Let (V, b) be a vector space V over \mathbb{F} equipped with a nondegenerate symmetric bilinear form b. A **cross product** on (V, b) is a bilinear multiplication $V \times V \rightarrow V$, $(u, v) \mapsto u \times v$, such that:

$$u \times u = 0,$$

$$b(u \times v, u) = 0,$$

$$b(u \times v, u \times v) = \begin{vmatrix} b(u, u) & b(u, v) \\ b(v, u) & b(v, v) \end{vmatrix},$$

for any $u, v \in V$.

A nonzero cross product exists only if dim $_{\mathbb{F}}V = 3$ or 7.

Cross products

 \bullet Anticommutativity of the cross product corresponds, through $\mathcal{R}_{\mathfrak{V}}$ to the identity

• The last condition on the definition of cross product corresponds to

• The dimension corresponds to:

$$\gamma_0: \ \beta^t \circ \beta - (\dim_{\mathbb{F}} \mathsf{V}) \mathbb{1} = \bigcirc - (\dim_{\mathbb{F}} \mathsf{V}) \mathbb{1} = 0.$$

Proposition

If $\mathfrak{V} = (\mathsf{V},\mathsf{b},\times)$ for a vector space V endowed with a nonzero cross product \times relative to the nondegenerate symmetric bilinear form b, then the functor $\mathcal{R}_\mathfrak{V}$ induces a functor $\mathcal{R}_\Gamma: \mathfrak{T}_\Gamma \to \mathcal{V}$, with $\Gamma = \{\gamma_0, \gamma_1, \gamma_2\}.$

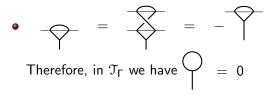
Goal

To prove that

$$\mathfrak{R}_{\Gamma}: \mathrm{Mor}_{\mathfrak{T}_{\Gamma}}([n],[m]) \longrightarrow \mathsf{Hom}_{\mathsf{Aut}(\mathsf{V}, imes)}(\mathsf{V}^{\otimes n},\mathsf{V}^{\otimes m})$$

is a bijection.

Several steps will be followed:

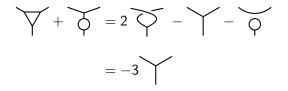


• Relation γ_2 gives:

$$= - \left| + 2 \left| - \right| - \left| - \right|$$
$$= (1 - \dim_{\mathbb{F}} \mathsf{V}) = -6 \left| . \right|$$

-6

• Again with relation γ_2 , we get:



so we can get rid of triangles:

$$= 3$$

Theorem

Let $n, m \in \mathbb{N}$, and $\Gamma = \{\gamma_0, \gamma_1, \gamma_2\}$,

(a) The classes modulo Γ of the 3-tangles $[n] \rightarrow [m]$ without crossings and without any of the subgraphs:

$$\bigcirc, \bigcirc, \diamondsuit, \diamondsuit, \forall, \forall, \bigstar,$$

form a basis of $Mor_{\mathcal{T}_{\Gamma}}([n], [m])$.

(b) The functor \mathfrak{R}_{Γ} gives a linear isomorphism

 $\operatorname{Mor}_{\mathbb{T}_{\Gamma}}([n],[m]) \to \operatorname{Hom}_{\operatorname{Aut}(V,\times)}(V^{\otimes n},V^{\otimes m}).$

(c) The 3-tangles $[n] \rightarrow [n]$ as in part (a) give a basis of the centralizer algebra: $\operatorname{End}_{\operatorname{Aut}(V,\times)}(V^{\otimes n}) \simeq \operatorname{Mor}_{\mathcal{T}_{\Gamma}}([n], [n]).$

2 3-tangles

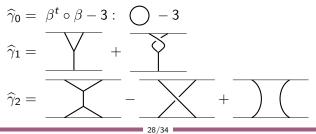
- 3 7-dimensional cross product
- ④ 3-dimensional cross product
- 5 A (1 | 2)-dimensional cross product

 $\mathfrak{V} = (V, b, \times)$ a 3-dimensional vector space over \mathbb{F} , endowed with a nonzero cross product $u \times v$, relative to a nondegenerate symmetric bilinear form b. Then we have

$$\begin{split} u \times u &= 0, \\ \mathsf{b}(u \times v, u) &= 0, \\ (u \times v) \times w &= \mathsf{b}(u, w)v - \mathsf{b}(v, w)u, \end{split}$$

for any $u, v, w \in V$.

We must replace $\Gamma = \{\gamma_0, \gamma_1, \gamma_2\}$ above by $\widehat{\Gamma} = \{\widehat{\gamma}_0, \widehat{\gamma}_1 = \gamma_1, \widehat{\gamma}_2\}$:



Theorem

Let
$$n, m \in \mathbb{N}$$
, and $\widehat{\Gamma} = \{\widehat{\gamma}_0, \widehat{\gamma}_1, \widehat{\gamma}_2\}$.

- (a) The classes modulo $\widehat{\Gamma}$ of normalized 3-tangles $[n] \to [m]$ form a basis of $\operatorname{Mor}_{\mathfrak{T}_{\widehat{\Gamma}}}([n], [m])$.
- $(b) \ \ \mathcal{R}_{\widehat{\Gamma}}$ gives a linear isomorphism

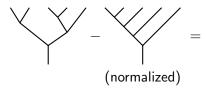
$$\operatorname{Mor}_{\mathbb{T}_{\widehat{\Gamma}}}([n],[m]) \to \operatorname{Hom}_{\operatorname{SO}(V,b)}(V^{\otimes n},V^{\otimes m}).$$

(c) The normalized 3-tangles $[n] \rightarrow [n]$ give a basis of the centralizer algebra $\operatorname{End}_{SO(V,b)}(V^{\otimes n}) \simeq \operatorname{Mor}_{\mathbb{T}_{\widehat{\Gamma}}}([n], [n])$, and dim $\operatorname{End}_{SO(V,b)}(V^{\otimes n})$ equals the number a(2n) of Catalan partitions.

For the proof, as for the 7-dimensional case, we can get rid of crossings, circles, and here we get rid also of all cycles.

Relation $\hat{\gamma}_2 = 0$ can be thought as:

which allows to prove, for instance,



integral linear combination of 'tree' 3-tangles with a lower number of trivalent nodes.

2 3-tangles

- 3 7-dimensional cross product
- 4 3-dimensional cross product
- 5 A (1 | 2)-dimensional cross product

$$V_{\overline{0}} = \mathbb{F}e, \qquad V_{\overline{1}} = \mathbb{F}p \oplus \mathbb{F}q,$$

with

$$e \times e = e, \quad e \times u = u \times e = \frac{1}{2}u \quad \forall u \in V_{\overline{1}},$$

 $p \times p = q \times q = 0, \quad p \times q = -q \times p = e.$

Consider the even nondegenerate supersymmetric bilinear form $b:V\times V\to \mathbb{F}$ such that

$$b(e,e)=rac{1}{2},\quad b(p,q)=1.$$

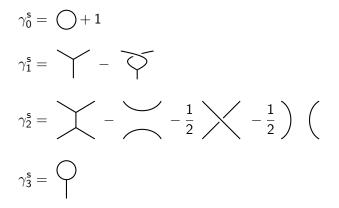
Then

$$e \times e = e$$
, $e \times u = u \times e = \frac{1}{2}u$, $u \times v = b(u, v)e$,

for all $u, v \in V_{\overline{1}}$.

$(1 \mid 2)$ -dimensional cross product

We must replace here $\Gamma = \{\gamma_0, \gamma_1, \gamma_2\}$ by $\Gamma^s = \{\gamma_0^s, \gamma_1^s, \gamma_2^s, \gamma_3^s\}$, with



Theorem

Let V be the 3-dimensional Kaplansky superalgebra over a field \mathbb{F} of characteristic 0. Let $n, m \in \mathbb{N}$.

- (a) The classes modulo Γ^{s} of the normalized 3-tangles $[n] \rightarrow [m]$ form a basis of $\operatorname{Mor}_{\mathcal{T}_{\Gamma^{s}}}([n], [m])$.
- (b) There is a natural functor \mathfrak{R}_{Γ^s} that gives a linear isomorphism

$$\operatorname{Mor}_{\mathbb{T}_{\mathsf{F}}}([n],[m]) \to \operatorname{Hom}_{\mathfrak{osp}(\mathsf{V},\mathsf{b})}(\mathsf{V}^{\otimes n},\mathsf{V}^{\otimes m}).$$

(Caution: the switch map is now $u \otimes v \mapsto (-1)^{uv} v \otimes u$.)

(c) The normalized 3-tangles $[n] \to [n]\,$ give a basis of the centralizer algebra

$$\operatorname{End}_{\mathfrak{osp}(V,b)}(V^{\otimes n}) \simeq \operatorname{Mor}_{\mathcal{T}_{\Gamma^{s}}}([n],[n]),$$

whose dimension is the number a(2n) of Catalan partitions.