Cross products,
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Schur-Weyl duality. General linear group

F: algebraically closed field, charF = 0.
V finite-dimensional vector space over F.

GL(V) ~ Ve~ S,

Endgi(v)(V®") = alg(action of S,),

Ends, (V®") = alg(action of GL(V)).
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Orthogonal group

Assume that now V is endowed with a nondegenerate quadratic
form. Then:

Endo(vy (V") = alg(action of S, and of the ¢;'s),
where the contractions are given by

R
Cij(V1®"'®Vn):(Vi|Vj)ZV1®"‘®GI®"‘®fI®‘“®Vm
=1

where {e/} and {f/} are dual bases.
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Brauer algebra

Br(x) is the algebra with basis consisting of diagrams of the form:

with multiplication given by bordism, and by multiplying by the
parameter x each time we get a circle:

8= ; E

aofl=x I E
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Orthogonal and symplectic groups

Orthogonal group:  O(V) ~ V@' ~  Br(dimV)
Endov) (V®") = alg(action of Br(dimV)),
Endg,(dimv) (V®") = alg(action of O(V)).

Symplectic group:  Sp(V) ~ V®* .~  Br(—dimV)
Endsp(vy (V") = alg(action of Br(—dimV)),
Endg,(_ dimv) (V®") = alg(action of Sp(V)).

What about G, and its natural representation?

G, ~ VO ~ 77
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3-tangles

A 3-tangle is an equivalence class of graphs with nodes of valence
1, 2 or 3, together with an orientation on the edges incident to
each node of valence 3:

’y:

The boundary consists of the nodes of valence 1: 9~.

Two such graphs are said to be equivalent if they have the same
boundary, and admit a common refinement. Refinements are
obtained by ‘splitting edges adding valence two nodes’:

refinement
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_3-tangles [n] — [m]

For ne N, let [n] = {1,...,n} with [0] = 0. Then, for n,meN, a
3-tangle ~y : [n] — [m] is a 3-tangle v with 0y = [n] U [m] (disjoint
union, which may thought of as {1,...,n,1',..., m'}).

(The orientation of a valency 3 node is given by clockwise order.)
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Operations on 3-tangles

1 2 3 4 1 2
v = ; QO = O S é transpose
1/ 2/ l/ 2/ 3/ 4/
1 2
*
’y - K
1/ 2/ 3/

—
U~ = ? 9() disjoint union
N\

Yo = O composition
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Category T

Objects:  [n], n€ N (0 € N).

Morphisms:  linear combinations of 3-tangles [n] — [m].

@ Ll induces a tensor product LI : T x T — 7.

@ The transpose induces bijections
Morg([n], [m]) — Morg([m], [n]), v — ~*, such that
(v* o)t =~" o (v*)" whenever this makes sense.

@ There are natural maps
&, m : Morg([n], [m]) — Morq([n + m],[0]) and
Vn,m - Morg([n + m], [0]) — Morg([n], [m]).
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Basic morphisms

The morphisms

are called basic. They constitute the alphabet of T.
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Category Tt

In addition to generators, some relations can be imposed in the
category 7.

Let
I = {yi € Morg([n;],[mi]) :i=1,..., k}

be a finite set of morphisms in T. For each n,m € N, the set I'
generates, through compositions and tensor products with arbitrary
3-tangles, a subspace Rr([n], [m]) of Mors([n], [m]), and we define
a new category Jr with the same objects and with

Mory, ([n], [m]) = Morg([n], [m])/ Rr ([n], [m])-

Tr is the 3-tangle category associated with the set of
relations [.
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The functor Ry

e U = (V, b, m) finite-dimensional nonassociative algebra with
multiplication m, endowed with an associative, nondegenerate,
symmetric bilinear form b : V xV — F.

@ Let V be the category of finite-dimensional vector spaces over
F with linear maps as morphisms.

@ Denote by 7 the switch map 7: V®? 5 V®? x®@y — y ® x.
Identify b with a linear map V€2 — F and m with a linear
map V®2 — V. Let 1y be the identity map on V.

Theorem (Boos, Cadorin, Knus, Rost 1998-2005)

There exists a unique functor Ry : T — V such that:
1. Ry([0]) = F and Ry([n]) = V®", for any n > 1.
2. fRQ; l1) =1y and Ry(7) = 7.

(
Res(B) = b, 53%( ) =m, Ry(7") = Ry(v)*, and
IRq;('y L) = Ry(y) ® Ry(d), for morphisms v and & in 7.
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The functor Ry

Remark

Ry (Bt 0 B) = dimpV € F = Homp(F, F).

Let
My = {C,’ € HomF(V®ni,V®mi) i=1,..., k}

be a finite set of homomorphisms.

Definition
The algebra U is said to be of tensor type [y if the ¢;'s are
identities for °3, i.e., if

Ci(x1® - ®xp) =0

forall i=1,...,k and all xq,...,x, € V.
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The functor Ry

Corollary
e U = (V,b,m) be an algebra of tensor type
Fy={ci:i=1,...,k}, for tensors c; expressible in terms of
the alphabet, 1y, m, mt, b, bt, and 7.

o N={ri:i=1,... k} withRy(yi)=cj foralli=1,... k.

Then there is a unique functor Ry : Tr — V such that
Ryg = Rr o P, where P is the natural projection T — Tr.
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Cross products

Let (V,b) be a vector space V over F equipped with a
nondegenerate symmetric bilinear form b. A cross product on
(V,b) is a bilinear multiplication V x V — V, (u,v) — u X v, such
that:

uxu=0,

b(u x v,u) =0,

b(u,u) b(u,v)
b(v,u) b(v,v)

)

b(uxv,uxv):‘

for any u,v € V.

A nonzero cross product exists only if dimgV =3 or 7.
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Cross products

@ Anticommutativity of the cross product corresponds, through
Rgy to the identity

@ The last condition on the definition of cross product
corresponds to

SOOI

@ The dimension corresponds to:

Y : BroB—(dmeV)l1 =) — (dimgV)l =0.
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Cross products

Proposition

If B = (V,b, x) for a vector space V endowed with a nonzero
cross product X relative to the nondegenerate symmetric bilinear
form b, then the functor Ry induces a functor R : Tr — V, with

= {v,71,7}
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7-dimensional cross product

Goal
To prove that

Rr: MorTr([nL [m]) — HomAut(V,X)(V®naV®m)

is a bijection.

Several steps will be followed:

o .7

Therefore, in Tr we have CP =0
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7-dimensional cross product

@ Relation v, gives:

00X Of- X
oe]-0|

:(l—dim]FV)‘:—6‘.

N




7-dimensional cross product

o Again with relation ,, we get:

— ~
NEE R A
_ —3Y
so we can get rid of triangles: \V/ _ 3Y }
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7-dimensional cross product

Theorem
Let n,meN, and I = {70,71, 72},

(a) The classes modulo T of the 3-tangles [n] — [m] without
crossings and without any of the subgraphs:

0. Q. Q. Y. X ¥

form a basis of Morg, ([n], [m]).

(b) The functor R gives a linear isomorphism
Morg, ([n], [m]) — Homaue(v,<) (VE", VE™).

(c) The 3-tangles [n] — [n] as in part (a) give a basis of the
centralizer algebra: EndAut(V7x)(V®”) ~ Morg, ([n], [n]).
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@ 3-dimensional cross product
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3-dimensional cross product

U = (V, b, x) a 3-dimensional vector space over F, endowed with
a nonzero cross product u X v, relative to a nondegenerate
symmetric bilinear form b. Then we have

uxu=0,
b(u x v,u) =0,
(uxv)xw=b(uw)v—Db(v,w)u,
for any u,v,w € V.
We must replace M= {707’71772} above by /r\ = {:?07:7\1 = 717:)/\2}:
Yo=pBop-3: (O -3

ae Y o+ 9
- X
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3-dimensional cross product

Theorem

Let ny,m e N, andF = {:y\o,;y\l,:y\g}.
(a) The classes modulo T of normalized 3-tangles [n] — [m] form

a basis of Morg_([n], [m]).
(b) R gives a linear isomorphism

Moy ([n], [m]) = Homso(v p)(VE", VE™).

(c) The normalized 3-tangles [n] — [n] give a basis of the
centralizer algebra Endsoy,p) (V®") = Morg_([n], [n]), and
dim Endso(v p) (V") equals the number a(2n) of Catalan

partitions.
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3-dimensional cross product

For the proof, as for the 7-dimensional case, we can get rid of
crossings, circles, and here we get rid also of all cycles.

Relation 7> = 0 can be thought as:

NN

which allows to prove, for instance,

|ntegral linear combination of ‘tree’ 3-tangles
with a lower number of trivalent nodes.

(normalized)
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© A (1] 2)-dimensional cross product
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Kaplansky superalgebra

V5 = Fe, Vi =Fp @ Fq,
with 1
exe=e exu=uxe= u Vu € Vi,

pxp=qgxq=0, pxg=—-qgxp=e.

Consider the even nondegenerate supersymmetric bilinear form
b:V xV — F such that

1
b(e,e):§, b(p,q) = 1.
Then
1
exe=e, exu:uxeziu, uxv=nb(uv)e,

for all u,v € Vy.
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(1 | 2)-dimensional cross product

We must replace here ' = {y0,71,72} by " ={§,7{.75.73},

with
%= O+1

2
)
1

-0y <

N—
7N\

) (

N =

X_

N~
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(1 | 2)-dimensional cross product

Theorem

Let V be the 3-dimensional Kaplansky superalgebra over a field F
of characteristic 0. Let n,m € N.

(a) The classes modulo T® of the normalized 3-tangles [n] — [m]
form a basis of Morg([n], [m]).

(b) There is a natural functor Rrs that gives a linear isomorphism
Morg ([n], [m]) — Homosp(v,b)(V®",V®’").

Caution: the switch map is now u ® v — (—1)"Yv ® wu.
(

(¢) The normalized 3-tangles [n] — [n] give a basis of the
centralizer algebra

Endospv,b) (VE") >~ Morg, ([n], [n]),

whose dimension is the number a(2n) of Catalan partitions.

4
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