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Abstract. The classical result that r-fold vector cross products exist
only for d-dimensional vector spaces with r = 1 and d even; r = 2
and d = 3 or 7; r = 3 and d = 8; and r = d − 1 for arbitrary d
will be explained. Vector cross products will then be used to construct
exceptional Lie superalgebras.

1. Bilinear vector cross products

We all are familiar with the usual vector cross product × in R3, which
satisfies:

u× v is bilinear,

u× v ⊥ u, v, (so (u× v) · w is skew symmetric, and so is u× v)

(u× v) · (u× v) =
∣∣ u·u u·v

v·u v·v
∣∣

Definition 1. Let V be a d-dimensional vector space over a field F of
characteristic 6= 2, endowed with a nondegenerate symmetric bilinear form
(. | .). A bilinear map × : V × V → V is called a vector cross product if it
satisfies the following conditions:

(u× v | u) = (u× v) | v) = 0, (1)

(u× v | u× v) =
∣∣∣∣(u | u) (u | v)
(v | u) (v | v)

∣∣∣∣ , (2)

for any u, v ∈ V .

Our main purpose in this talk is to provide a proof of the following result:

Theorem 1. Let × be a vector cross product on the vector space V . Then
dim V = 1, 3 or 7.

It is interesting to note that in 1943, Beno Eckmann gave a proof of this
result for real euclidean spaces, but where the map × is not supposed to
be bilinear, but continuous (which is manifestly a weaker condition). His
proof used algebraic topology. It was in 1967 when R.B. Brown and A. Gray
gave the first proof of the result above (actually, of an extension of it we
will consider later on). A completely new and surprising proof was given
in 1996 by M. Rost (later simplified by K. Meyberg in 2002). This proof is
completely elementary, but it is valid only over fields of characteristic 0:
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Surprising proof: (a variation of Rost’s proof)

By (2), for any a, b ∈ V , a× (a× b) = (a | b)a− (a | a)b, or

l2a = a⊗ a− (a | a)id, (3)

for any a, where la (respectively a ⊗ b) denotes the linear map V → V
such that la(b) = a × b (respectively (a ⊗ b)(c) = (b | c)a). Hence, for any
a, b, c ∈ V ,

(a⊗ b) ◦ lc = a⊗ (b× c), la ◦ (b⊗ c) = (a× b)⊗ c. (4)

(The first assertion holds because of the skew symmetry of the trilinear map
(u× v | w), implied by (1).) By linearization of (3) we get

a× (c× b) + c× (a× b) = (a | b)c + (b | c)a− 2(a | c)b, (5)

or

la×b + lalb = 2b⊗ a− a⊗ b− (a | b)id. (6)

Now, using (6) a couple of times, we obtain:

lalbla = −la×bla − a⊗ (b× a)− (a | b)la (7)

= l(a×b)×a − a⊗ (a× b) + (a× b)⊗ a− (a | b)la (8)

= (a | a)lb − 2(a | b)la − a⊗ (a× b) + (a× b)⊗ a (9)

Extend scalars if necessary, so that you can choose a basis {ei}d
i=1 of V

with (ei | ei) = 1 and (ei | ej) = 0 for any i 6= j. Hence, for any x ∈ V ,
x =

∑d
i=1(x | ei)ei. Consider the linear map:

S : End(V ) −→ End(V )

f 7→
d∑

i=1

lei ◦ f ◦ lei .

Then,

S(id) =
∑

i

l2ei
=

∑
i

ei ⊗ ei −
∑

i

(ei | ei)id = (1− d)id,

(because of (6))

S(a⊗ b) =
∑

i

lei ◦ (a⊗ b) ◦ lei =
∑

i

(ei × a)⊗ (b× ei) = lalb,

(because
∑

(ei × a)⊗ (b× ei) (c) =
∑

(b× ei | c)ei × a

= a×
∑

i

(
ei | b× c

)
ei = a× (b× c) )

S(lb) = (d− 2− 1− 1)lb = (d− 4)lb, (because of (9))

S(lalb) = −S(la×b) + 2S(a⊗ b)− S(a⊗ b)− (a | b)S(id) (using (6))

= −(d− 4)la×b + 2lbla − lalb − (1− d)(a | b)id.
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With all this, for any x ∈ V let us compute g =
∑d

i,j=1 lei lxlej lei lej in two
ways:

(i) g =
∑

i

lei lxS(lei) = (d− 4)S(lx) = (d− 4)2lx,

(ii) g =
∑

j

S(lxlej )lej

=
∑

j

(
−(d− 4)lx×ej lej + 2lej lxlej − lxl2ej

− (1− d)(x | ej)lej

)
= −(d− 4)S(lx) + 2S(lx)− lxS(id)− (1− d)lx

=
(
−(d− 4)2 + 2(d− 4) + 2(d− 1)

)
lx

where we have used that, by (7), −
∑

j lx×ej lej =
∑

j lej×xlej = −
∑

j lej lxlej−∑
j ej ⊗ (x × ej) −

∑
j(ej | x)lej = −S(lx), because −

∑
j ej ⊗ (x × ej) =(∑

j(ej ⊗ ej)
)
◦ lx = lx =

∑
j(ej | x)lej , by (4).

Therefore, we conclude that
(
(d− 4)2 − (d− 4)− (d− 1)

)
lx = 0, or

(d− 3)(d− 7)lx = 0

for any x ∈ V . Hence, if the characteristic of the ground field is 0, either
lx = 0 for any x ∈ V , which is possible only if d = dim V = 1, because of
(2), or d = 3, or d = 7, as required.

Brown-Gray’s method:
Consider the vector space A = F1⊕ V and define a multiplication and a

nondegenerate quadratic form on A by means of:

(α1 + u)(β1 + v) =
(
αβ − (u | v)

)
1 +

(
αv + βu + u× v

)
,

q(α1 + u) = α2 + (u | u),

for any α, β ∈ F and u, v ∈ V . Then

q
(
(α1 + u)(β1 + v)

)
=

(
αβ − (u | v)

)2
+ (αv + βu + u× v | αv + βu + u× v)

=
(
α2 + (u | u)

)(
β2 + (v | v)

)
(by (2))

= q(α1 + u)q(β1 + v)

That is, A is a unital algebra, with a nondegenerate quadratic form satisfying
q(xy) = q(x)q(y) for any x, y ∈ A. In other words, A is a composition
algebra.

A classical theorem, due to Hurwitz∗ (1898) and Jacobson (1958), asserts
that in this case the dimension of A is restricted to 1, 2, 4 or 8, and that A
is a ‘variation’ of the classical algebras R, C, H (Hamilton quaternions) and
O (the octonions). In particular, the dimension of V is restricted to 1, 3 or
7.

∗Hurwitz considered the real and complex cases.
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2. r-fold vector cross products

Throughout the years, the concept of vector cross product was extended
as follows:

Definition 2. Let V be a d-dimensional vector space over a field F of
characteristic 6= 2, endowed with a nondegenerate symmetric bilinear form
(. | .). A multilinear map X : V r → V (1 ≤ r ≤ d) is called a (r-fold) vector
cross product if it satisfies the following conditions:(

X(u1, . . . , ur) | ui

)
= 0 for any i = 1, . . . , r, (10)(

X(u1, . . . , ur) | X(u1, . . . , ur)
)

= det
(
(ui | uj)

)
, (11)

for any u1, . . . , ur ∈ V .

What are the possibilities for this extended definition?

Eckmann (1943) and Whitehead (1963) solved this problem in the ‘con-
tinuous’ case over real euclidean spaces, while Brown and Gray (1967) solved
the multilinear case. Before stating their result, let us look at some partic-
ular cases:

r = 1 : In this case, X : V → V is an isometry (11) such that X(u) is
orthogonal to u for any u ∈ V , that is, X∗ = −X, where X∗ denotes the
adjoint relative to the bilinear form ((X(u) | v) = (u | X∗(v)) for any
u, v ∈ V ). Hence X2 = −XX∗ = −id and X is just a ‘complex structure’
on V . In particular, the dimension of V has to be even (for any u ∈ V with
(u | u) 6= 0, V = (Fu ⊕ F (Xu)) ⊕ (Fu ⊕ F (Xu))⊥ and (Fu ⊕ F (Xu))⊥ is
closed under X, so we may repeat the process).

Note that in Rd, with the standard inner product, such an X gives a
tangent unit vector field on the sphere Sd−1.

r = d− 1 : Let us extend scalars and fix an orthonormal basis {e1, . . . , er+1}
of V . This provides a multilinear map

V r −→ V ∗

(v1, . . . , vr) 7→
(
v 7→ det(v1| . . . |vr|v)

)
(the determinant of the matrix whose columns are the coordinates of the
vectors v1, . . . , vr, v in the chosen basis). Besides, the nondegenerate bilinear
form (. | .) on V provides a linear isomorphism V → V ∗, v 7→ (v | .).

Composing these two maps, one gets a multilinear map X : V r → V ,
which satisfies trivially (10) (the determinant of a matrix with two equal
columns is 0!) and which satisfies (11) too.

Observe that for d = 3 and r = 2, the construction above gives exactly
the usual vector cross product on R3.

Are there any other possibilities for r ≥ 3?
By extending scalars, we may assume that our ground field is algebraically

closed. First note that if there is an r-fold vector cross product X on a vector
space of dimension d, v is a fixed vector with (v, v) = 1, and W = (Fv)⊥,



VECTOR CROSS PRODUCTS 5

then X̃ : W r−1 → W , defined by X̃(w1, . . . , wr−1) = X(v, w1, . . . , wr−1),
provides an (r − 1)-fold vector cross product on W .

Therefore, for r = 3 we have to consider only the case of d = 8.

r = 3, d = 8 : Assume that X : V × V × V → V is a 3-fold vector cross
product on a vector space V of dimension 8, and take a vector e ∈ V with
(e | e) 6= 0. Consider the bilinear multiplication and the quadratic form on
V given by

xy = (e | e)−1
(
X(x, e, y) + (x | e)y + (y | e)x− (x | y)e

)
,

q(x) =
(x | x)
(e | e)

,

for any x, y ∈ V . Then it follows that ex = xe = x for any x, so this is a
unital algebra, and also q(xy) = q(x)q(y) for any x, y ∈ V (this follows from
(11)). Moreover, it can be checked that one of the following formulas hold:

X(a, b, c) = (e | e)(ab̄)c− (a | b)c− (b | c)a + (a | c)b, or

X(a, b, c) = (e | e)a(b̄c)− (a | b)c− (b | c)a + (a | c)b,
(12)

where x 7→ x̄ denotes the standard conjugation in the composition algebra
defined on V . This gives two different types of 3-fold vector cross products.

Finally, working with composition algebras of dimension 8 (or Cayley
algebras), it can be shown that there are no 4-fold vector cross products on
vector spaces of dimension 9. Thus we arrive at the following result that
summarizes the previous work:

Theorem 2. (Eckmann, Whitehead, Brown-Gray) A vector cross
product exists in precisely the following cases:

d is even, r = 1,

d is arbitrary, r = d− 1,

d = 3, 7, r = 2,

d = 8, r = 3.

3. Vector cross products and exceptional simple Lie
superalgebras

The results in this section are based on joint work with N. Kamiya and
S. Okubo.

First, we will attach some Lie algebras to several instances of vector cross
products:

d = 4, r = 3 : Consider a nonzero, skew-symmetric multilinear map Φ :
V × V × V × V −→ F (a ‘determinant’); and define a skew-symmetric
trilinear map X : V × V × V → V by means of(

X(v1, v2, v3) | v4

)
= Φ(v1, v2, v3, v4)

for any v1, v2, v3, v4 ∈ v. Then it can be proven that(
X(v1, v2, v3) | X(w1, w2, w3)

)
= µdet

(
(vi | wj)

)
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for some 0 6= µ ∈ F . (It turns out that µ(F×)2 is the discriminant of (. | .).)
Note that in this case, if µ ∈ F 2, µ−

1
2 X is a vector cross product. Now

consider the operators

du,v = X(u, v,−) + σu,v

where σu,v(w) = (u | w)v − (v | w)u. Then dV,V is a semisimple Lie algebra
(a direct sum of two copies of a simple Lie algebra of type A1).

d = 8, r = 3 : Let X be a 3-fold vector cross product on a vector space V
and consider the operators

du,v =
ε

3
X(u, v,−) + σu,v,

where ε = ±1 according to the type of X in (12). Again, dV,V is a Lie
algebra, which is simple of type B3.

d = 7, r = 2 : Let u× v denote a (bilinear) vector cross product and con-
sider the operators

du,v =
1
2

(
−lu×v + 3σu,v

)
.

As before, dV,V is a Lie algebra, which is simple of type G2.

Finally, let (U,ϕ) be a two dimensional vector space U , endowed with
a nonzero skew-symmetric bilinear form ϕ. For any a, b ∈ U , let ϕa,b =
ϕ(a,−)b + ϕ(b,−)a. The symplectic Lie algebra sp(U,ϕ) is spanned by
these operators.

For any of the three classes of vector cross products above consider the
superalgebra g = g0̄ ⊕ g1̄, where

g0̄ = sp(U,ϕ)⊕ dV,V , g1̄ = U ⊗ V,

and multiplication given by the usual Lie bracket on g0̄, the natural action
of g0̄ on g1̄, and

[a⊗ x, b⊗ y] = 〈u | v〉ϕa,b + ϕ(a, b)du,v,

for any a, b ∈ U and x, y ∈ V .
With this bracket, g is then a Lie superalgebra.
In the classification of the simple finite dimensional Lie superalgebras by

V. Kac (1977), there appear some infinite families and three exceptional
cases: D(2, 1;µ), F (4) and G(3). Then, with Vd denoting the vector space
of dimension d = 4, 8 or 7, and with g(Vd,Φ,X or ×) each of the Lie super-
algebras defined above:

Theorem 3.
• g(V4,Φ) is a form of D(2, 1;µ),
• g(V8, X) is a form of F (4),
• g(V7,×) is a form of G(3).

Also, in the three cases considered above, define a triple product on V as
follows:

xyz = dx,yz + (x | y)z
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for any x, y, z ∈ V . Then V , with this triple product, becomes what is
known by a (−1,−1) balanced Freudenthal-Kantor triple system (BFKTS
for short). In this way, three different classes of simple (−1,−1)-BFKTS’s
are obtained.
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