
Gradings on semisimple algebras

Alberto Elduque

(joint work with Alejandra S. Córdova-Mart́ınez)



In 1989, Patera and Zassenhaus undertook a systematic study of
gradings by abelian groups on finite-dimensional simple Lie
algebras over the complex numbers, with fine gradings as the
central objects. A key example of fine grading is the root space
decomposition of a finite-dimensional semisimple Lie algebra
relative to a Cartan subalgebra, but there are many other fine
gradings that reflect the symmetries of these algebras.

A description of fine gradings on the classical simple Lie algebras
(other than D4, which is exceptional in many aspects) over C
followed in 1998 by Havlicek, Patera, and Pelantova. The
classification of fine gradings on all finite-dimensional simple Lie
algebras over an algebraically closed field has been recently
completed through the efforts of many authors.

Time is ripe to extend the known classifications on simple algebras
to semisimple algebras.
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Conventions

The ground field F will be assumed to be algebraically closed.

Only gradings by abelian groups will be considered.

Algebras will be assumed to be finite-dimensional.

Semisimple algebra = direct sum of simple algebras.
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Gradings

Definition

A grading on an algebra A is a set Γ of nonzero subspaces of A
such that A =

⊕
U∈Γ U and for any U,V ∈ Γ, there is a W ∈ Γ

such that UV ⊆W.

The pair (A, Γ) is said to be a graded algebra.

The elements of Γ are called the homogeneous components.
The nonzero elements of the homogeneous components are
called homogeneous elements.
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Fine gradings

Given another grading Γ′ on A, Γ is said to be a refinement of
Γ′ (and Γ′ a coarsening of Γ) if any subspace U ∈ Γ is
contained in a subspace in Γ′.

The grading Γ is said to be fine if it admits no proper
refinements.
Any grading on a finite-dimensional algebra is a coarsening of
a fine grading.

Given two graded algebras (A, Γ) and (A′, Γ′), an equivalence
ϕ : (A, Γ)→ (A′, Γ′) is an isomorphism ϕ : A→ A′ such that
ϕ(U) ∈ Γ′ for each U ∈ Γ.
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Universal group

Given a graded algebra (A, Γ), consider the abelian group U(Γ)
generated by the set Γ, subject to the relations UVW−1 = e for
each pair U,V in Γ such that 0 6= UV ⊆W:

U(Γ) := 〈Γ | UVW−1 = e if 0 6= UV ⊆W〉.

That is, U(Γ) is the quotient of the free abelian group generated
by Γ, modulo the normal subgroup generated by the elements
UVW−1 above.
Consider also the natural map:

δUΓ : Γ −→ U(Γ)

U 7→ [U],

where [U] denotes the class of U in U(Γ).

Definition

The pair
(
U(Γ), δUΓ

)
is called the universal group of the grading Γ.
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Group-gradings

Definition

Given an abelian group G , a G -grading on an algebra A is a triple
(Γ,G , δ), where Γ is a grading on A, and δ : Γ→ G is a one-to-one
map, such that for any U,V,W ∈ Γ such that 0 6= UV ⊆W,
δ(U)δ(V) = δ(W).

The 4-tuple (A, Γ,G , δ) is said to be a G -graded algebra. If
the other components are clear from the context, we may
refer simply to a G -graded algebra A.

Write Ag = U if δ(U) = g , and Ag = 0 otherwise. Then we
get the usual expression A =

⊕
g∈G Ag .

The range of δ is the subset SuppG (Γ) := {g ∈ G : Ag 6= 0},
which is called the support of the G -grading. Thus
Γ = {Ag | g ∈ SuppG (Γ)}.
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Group-gradings

Given two G -graded algebras (A, Γ,G , δ) and (A′, Γ′,G , δ′),
an isomorphism ϕ : (A, Γ,G , δ)→ (A′, Γ′,G , δ′) is an
isomorphism ϕ : A→ A′ such that ϕ(Ag ) = A′g for each
g ∈ G .

Given a G -graded algebra (A, Γ,G , δ) and a group H, any
group homomorphism β : G → H defines an H-grading
(A, Γ′,H, δ′) by A =

⊕
h∈H A′h, with A′h :=

⊕
β(g)=h Ag for

any h ∈ H. The new grading Γ′ is a coarsening of Γ. If
π : Γ→ Γ′ is the corresponding surjection, then the diagram

Γ
δ //

π
��

G

β
��

Γ′
δ′ // H

is commutative. In this case, the grading (Γ′,H, δ′) is said to
be the coarsening of (Γ,G , δ) induced by β.
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Group-gradings

Definition

A grading Γ on an algebra A is called a group-grading if there is an
abelian group G and a G -grading of the form (Γ,G , δ).

A group-grading Γ on an algebra A is said to be a fine
group-grading if it admits no proper refinements in the class of
group gradings.

Any group-grading on a finite-dimensional algebra is a coarsening
of a fine group-grading.
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Group-gradings

Remark

If charF = 2, then the algebra F× F admits a unique
group-grading: the trivial one. Thus the trivial grading is a fine
group-grading, but it is not a fine grading, because {F× 0, 0× F}
is finer.

Note that AutF(F× F) = C2, the constant group scheme
corresponding to the cyclic group of order 2, which is not
diagonalizable because charF = 2.
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The group grading induced by a grading

Definition

Let Γ be a grading on the algebra A, and let
(
U(Γ), δUΓ

)
be its

universal group. The coarsening Γgr defined by

Γgr :=

 ∑
δUΓ (U)=u

U
∣∣∣ u ∈ δUΓ (Γ)


is called the group-grading induced by Γ. The grading Γgr can be
realized by the U(Γ)-grading

(
Γgr,U(Γ), δUΓgr

)
, where

δUΓgr

( ∑
δUΓ (U)=u

U
)

= u

for any u ∈ δUΓ (Γ).

13/43



Product gradings

Definition

Let (Ai , Γi ) be a graded F-algebra, i = 1, . . . , n. The grading on
A1 × · · · ×An given by:

Γ1 × · · · × Γn :=
n⋃

i=1

{
0× · · · × U× · · · × 0 | U ∈ Γi

}
is called the product grading of the Γi ’s.

The universal group-grading of the product grading is (isomorphic
to) the cartesian product of the universal groups.
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Product group-grading

Even if Γ1, . . . , Γn are group-gradings, the product grading may fail
to be so. Therefore we need a different definition of product
grading for group-gradings.

Definition

Let (Ai , Γi ,G i , δi ) be a G i -group-graded algebra, i = 1, . . . , n,
then the product group-grading (Γ1,G 1, δ1)× · · · × (Γn,Gn, δn) is
the group-grading on A1 × · · · ×An by the abelian group
G 1 × · · · × Gn with:(

A1 × · · · ×An
)

(e,...,e)
= A1

e × · · · ×An
e ,(

A1 × · · · ×An
)

(e,...,gi ,...,e)
= 0× · · · ×Ai

gi
× · · · × 0, gi 6= e,(

A1 × · · · ×An
)

(g1,...,gn)
= 0, otherwise.
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Product group-grading

Tongue twister

If the grading groups are the universal groups, then the product
group-grading coincides with the group-grading induced by the
product grading.
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Free product group-gradings

Definition

Let Γi be a group-grading on an algebra Ai , i = 1, . . . , n. Then
the group-grading (Γ1 × · · · × Γn)gr on A1 × · · · ×An is called the
free product group-grading of the Γi ’s.
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Free product group-gradings

Example

Assume charF 6= 2. Up to equivalence, there are only two fine
gradings on sl2:

The Cartan grading Γ1
sl2

, with universal group Z and
homogeneous components:

(sl2)−1 = FF , (sl2)0 = FH, (sl2)1 = FE .

The Pauli grading Γ2
sl2

with universal group (Z/2)2 and
homogeneous components:

(sl2)(1̄,0̄) = FH, (sl2)(0̄,1̄) = F(E +F ), (sl2)(1̄,1̄) = F(E −F ).
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Free product group-gradings

Example (continued)

The gradings on L = sl2× sl2 obtained as free product
group-gradings of the fine gradings above are the following:(

Γ1
sl2
× Γ1

sl2

)
gr

with universal group Z× Z and homogeneous
components:

L(0,0) = FH × FH,
L(1,0) = FE × 0, L(0,1) = 0× FE ,
L(−1,0) = FF × 0, L(0,−1) = 0× FF .

(This is the Cartan grading!)
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Free product group-gradings

Example (continued)(
Γ1
sl2
× Γ2

sl2

)
gr

with universal group Z× (Z/2)2 and

homogeneous components:

L(0,(0̄,0̄)) = FH × 0, L(0,(1,0̄)) = 0× FH,
L(1,(0̄,0̄)) = FE × 0, L(−1,(0̄,0̄)) = FF × 0,

L(0,(0̄,1̄)) = 0× F(E + F ), L(0,(1̄,1̄)) = 0× F(E − F ).
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Free product group-gradings

Example (continued)(
Γ2
sl2
× Γ2

sl2

)
gr

with universal group (Z/2)4 and homogeneous
components:

L(1̄,0̄,0̄,0̄) = FH × 0, L(0̄,0̄,1̄,0̄) = 0× FH,
L(0̄,1̄,0̄,0̄) = F(E + F )× 0, L(0̄,0̄,0̄,1̄) = 0× F(E + F ),

L(1̄,1̄,0̄,0̄) = F(E − F )× 0 L(0̄,0̄,1̄,1̄) = 0× F(E − F ).

All these free product gradings are fine group-gradings, but they do
not exhaust the list of fine group-gradings.

Question

What is missing?
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Product G -grading

Besides the product grading, the product group-grading, and the
free product group-grading, there is one more natural definition of
product of gradings.

Given an abelian group G , and G -graded algebras (Ai , Γi ,G , δi ),
i = 1, . . . , n, there is a natural G -grading (Γ,G , δ) on the cartesian
product A1 × · · · ×An determined by

(A1 × · · · ×An)g = A1
g × · · · ×An

g

for any g ∈ G .

Definition

The G -grading above will be denoted by(
A1 × · · · ×An, Γ1 ×G · · · ×G Γn,G , δ1 ×G · · · ×G δ

n
)

and will be
called the product G -grading of the (Γi ,G , δi )’s.
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Simple algebras

Let B be an algebra over F:

B is simple if it has no proper ideals and B2 6= 0.
In other words, B is simple if it is simple as a module for its
multiplication algebra Mult(B).

The centroid of B is the centralizer of Mult(B) in EndF(B):

C (B) := {f ∈ EndF(B) : f (xy) = f (x)y = xf (y) ∀x , y ∈ B}.

C (B) is commutative if B2 = B, and it is a field (an
extension field of F) if B is simple.

B is central simple if it is simple and central: C (B) = Fid.
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Graded-simple algebras

Let (B, Γ,G , δ) be a G -graded algebra: B =
⊕

g∈G Bg .

B is graded-simple if it has no proper graded ideals and
B2 6= 0.

Its centroid inherits a G -grading:

C (B)g := {f ∈ C (B) : f (Bh) ⊆ Bgh ∀h ∈ G}.

B is graded-central if C (B)e = Fid.

B is graded-central-simple if it is graded-simple and
graded-central.
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Graded-simple algebras

Let (B, Γ,G , δ) be a graded-simple algebra, then:

C (B) is a graded field (i.e., a commutative graded division
algebra).

B is simple (ungraded) if and only if C (B) is a field.

K = C (B)e is a field, and B is graded-central-simple
considered as an algebra over K.

If B is graded-central simple, and H is the support of the
induced grading on C (B), then C (B) is isomorphic to the
group algebra FH, as a G -graded algebra.
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Loop algebras

Definition (Allison, Berman, Faulkner, Pianzola)

Let π : G → G be a surjective group homomorphism between the
abelian groups G and G . Given any G -graded algebra (A, Γ,G , δ̄),
the associated loop algebra is the G -graded algebra
(Lπ(A), Γ,G , δ), where

Lπ(A) :=
⊕
g∈G

Aπ(g) ⊗ g
(
≤ A⊗F FG

)
and Lπ(A)g = Aπ(g) ⊗ g for any g ∈ G .
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Loop algebras
Universal groups

Proposition

Let π : G → G be a surjective group homomorphism of abelian
groups. Let (A, Γ,G , δ̄) be a G -graded algebra, and let
(Lπ(A), Γ,G , δ) be the associated loop algebra. Then (G , δ̄) is, up
to isomorphism, the universal group of Γ if and only if (G , δ) is, up
to isomorphism, the universal group of Γ.

28/43



Loop algebras
Properties

Theorem

1. Let π : G → G be a surjective group homomorphism with
kernel H and let (A, Γ,G , δ̄) be a central simple G -graded
algebra. Then the associated loop algebra (Lπ(A), Γ,G , δ) is
graded-central-simple and the map

FH −→ C
(
Lπ(A)

)
h 7→

(
x ⊗ g 7→ x ⊗ hg

)
for any g ∈ G and x ∈ Aπ(g), is an isomorphism of G -graded
algebras.
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Loop algebras
Properties

Theorem (continued)

2. Let (B, Γ̃,G , δ̃) be a graded-central-simple G -graded algebra,
and H = SuppG (ΓC(B)). Let π : G → G be a surjective group
homomorphism with kernel H. Then there exists a central
simple G -graded algebra (A, Γ,G , δ̄) such that (B, Γ̃,G , δ̃) is
isomorphic, as a G -graded algebra, to the associated loop
algebra (Lπ(A), Γ,G , δ).
Moreover, the algebra A is a quotient of B.

30/43



Loop algebras
Properties

Theorem (continued)

3. Let H1 and H2 be subgroups of G , consider the quotient

groups G
i

= G/H i and the natural projections πi : G → G
i
,

i = 1, 2. Let (Ai , Γ
i
,G

i
, δ̄i ) be a central simple G

i
-graded

algebra for i = 1, 2. Then the associated loop algebras
(Lπ1(A1), Γ1,G , δ1) and (Lπ2(A2), Γ2,G , δ2) are isomorphic,
as G -graded algebras, if and only if H1 = H2 and the

G = G/H1-graded algebras (A1, Γ
1
,G

1
, δ̄1) and

(A2, Γ
2
,G

2
, δ̄2) are isomorphic.
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Loop algebras
Semisimplicity

Theorem

Let π : G → G be a surjective group homomorphism of abelian
groups with finite kernel H = ker π. Let (A, Γ,G , δ̄) be a central
simple G -graded algebra and let (Lπ(A), Γ,G , δ) be the associated
loop algebra. Then Lπ(A) is semisimple if and only if the
characteristic of F does not divide the order of H.
If this is the case, then Lπ(A) is isomorphic to the cartesian
product of |H| copies of A.
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Gradings on semisimple algebras, up to isomorphism

Theorem

1. Let (B, Γ,G , δ) be a semisimple G -graded algebra, then
(B, Γ,G , δ) is isomorphic, as a G -graded algebra, to a product
G -grading(

B1 × · · · ×Bn, Γ1 ×G · · · ×G Γn,G , δ1 ×G · · · ×G δ
n
)

for some graded-simple and semisimple G -graded algebras
(Bi , Γi ,G , δi ), i = 1, . . . , n.
The factors (Bi , Γi ,G , δi ) are uniquely determined up to
reordering and G -graded isomorphisms.
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Gradings on semisimple algebras, up to isomorphism

Theorem (continued)

2. Any finite-dimensional graded-simple G -graded algebra
(B, Γ̃,G , δ̃) is isomorphic, as a G -graded algebra, to the loop
algebra (Lπ(A), Γ,G , δ) associated to a surjective group
homomorphism π : G → G with finite kernel H, and a central
simple G -graded algebra (A, Γ,G , δ̄). The algebra A is a
quotient of B.
Moreover, in this situation B is semisimple if and only if
charF does not divide the order of H.
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Fine gradings on semisimple algebras

Fine (general) gradings behave very well with respect to cartesian
products:

Proposition

Let Γ be a fine grading on an algebra which is a direct sum of
graded ideals B = B1 ⊕ · · · ⊕Bn. Let Γi = Γ|Bi be the induced
grading on Bi for each i = 1, . . . , n. Then each Γi is a fine
grading, and Γ is equivalent to the product grading
Γ|B1 × · · · × Γ|Bn on B1 × · · · ×Bn (naturally isomorphic to B).
Conversely, let Γi be a fine grading on Bi , for i = 1, . . . , n, then the
product grading Γ1 × · · · × Γn is a fine grading on B1 × · · · ×Bn.

For fine group-gradings, the situation is a bit more involved.
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Fine group-gradings on semisimple algebras

Theorem

1. Any fine group-grading on a finite-dimensional semisimple
algebra is equivalent to a free product group-grading
(Γ1 × · · · × Γn)gr, with the Γi ’s being fine group-gradings on a
semisimple graded-simple algebra Bi , satisfying one of the
following extra conditions:

charF = 2 and for any index i such that Γi is trivial, there is at
most one other index j such that (Bi , Γi ) is equivalent to
(Bj , Γj).
charF 6= 2 and for any index i such that Γi is trivial, there is
no other index j such that (Bi , Γi ) is equivalent to (Bj , Γj).

And conversely, any such free product group-grading is a fine
group-grading.
Moreover, the factors (Bi , Γi ) are uniquely determined, up to
reordering and equivalence.
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Fine group-gradings on semisimple algebras

Theorem (continued)

2. Any finite-dimensional graded-simple algebra (B, Γ′) such that
Γ′ is a fine group-grading is equivalent to a loop algebra
(Lπ(A), Γ,U, δ) associated to a surjective group
homomorphism π : U → U with finite kernel, and a simple
finite-dimensional graded algebra (A, Γ,U, δ̄) with Γ a fine
group-grading with universal group (U, δ̄).
And conversely.
Moreover, in this situation B is semisimple if and only if
charF does not divide the order of ker π.
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Fine group-gradings on semisimple algebras

Theorem (continued)

3. For i = 1, 2, let (Ai , Γ
i
,U

i
, δ̄i ) consist of a simple algebra Ai

endowed with a fine group-grading Γi with universal group

(U
i
, δ̄i ), and let πi : U i → U

i
be a surjective group

homomorphism. Let (Lπi (Ai ), Γi ,U i , δi ) be the associated
loop algebra. Then the group-graded algebras (Lπ1(A1), Γ1)
and (Lπ2(A2), Γ2) are equivalent if and only if there is an

equivalence ϕ : (A1, Γ
1
)→ (A2, Γ

2
) such that the associated

group isomorphism αU
ϕ : U

1 → U
2

extends to a group

isomorphism α̃U
ϕ : U1 → U2.
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Fine group-gradings on semisimple algebras

Example

Assume charF 6= 2. Up to equivalence, the fine gradings on
L = sl2× sl2 are:

The free product group-gradings (Γ1
sl2
× Γ1

sl2
)gr, (Γ1

sl2
× Γ2

sl2
)gr,

and (Γ2
sl2
× Γ2

sl2
)gr , with respective universal groups Z2,

Z×
(
Z/2

)2
, and

(
Z/2

)4
, that were considered before.

Three more fine group-gradings obtained through the loop
algebra construction:

Γ1
L(Z× Z/2, (0, 1̄), 1) obtained from the Cartan grading Γ1

sl2

on sl2.

Γ2
L

((
Z/2

)3
, (0̄, 0̄, 1̄),

(
Z/2

)2
)

and

Γ2
L(Z/4× Z/2, (2̂, 0̄),Z/2× Z/2), obtained from the Pauli

grading Γ2
sl2

on sl2.
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In conclusion ...

Group-gradings on semisimple algebras appear as a combination of:

different kinds of product gradings, and

gradings obtained by means of the loop algebra construction.
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Thank you!
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