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Gradings on Lie algebras have been extensively used since the
beginning of Lie theory:

the Cartan grading on a complex semisimple Lie algebra is the
Zr -grading (r being the rank) whose homogeneous
components are the root spaces relative to a Cartan
subalgebra (which is the zero component),

symmetric spaces are related to Z2-gradings,

Kac–Moody Lie algebras to gradings by a finite cyclic group,

the theory of Jordan algebras and pairs to 3-gradings on Lie
algebras, etc.

2 / 98



In 1989, a systematic study of gradings on Lie algebras was started
by Patera and Zassenhaus.

Fine gradings on the classical simple complex Lie algebras, other
than D4, by arbitrary abelian groups were considered by Havĺıcek,
Patera, and Pelantova in 1998.

The arguments there are computational and the problem of
classification of fine gradings is not completely settled. The
complete classification, up to equivalence, of fine gradings on all
classical simple Lie algebras (including D4) over algebraically closed
fields of characteristic zero has been obtained quite recently.
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For any abelian group G , the classification of all G -gradings, up to
isomorphism, on the classical simple Lie algebras other than D4

over algebraically closed fields of characteristic different from two
has been achieved in 2010 by Bahturin and Kochetov, using
methods developed in the last years by a number of authors.

Gradings on the octonions, on the Albert algebra, and on some
other algebraic structures, are instrumental in obtaining a
classification of the gradings on the exceptional simple Lie algebras.
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Gradings

G abelian group, A algebra over a field F.

G -grading on A:

Γ : A = ⊕g∈GAg ,

AgAh ⊆ Agh ∀g , h ∈ G .
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Examples

Cartan grading:

g = h⊕
(
⊕α∈Φgα

)
(root space decomposition of a semisimple complex Lie algebra).

This is a grading by Zn, n = rank g.
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Examples

Pauli matrices: A = Matn(F)

X =


1 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε2 . . . 0
...

...
...

. . .
...

0 0 0 . . . εn−1

 Y =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


(ε a primitive nth root of 1)

X n = 1 = Y n, YX = εXY

A = ⊕(ı̄,̄)∈Zn×Zn
A(ı̄,̄), A(ı̄,̄) = FX iY j .

A becomes a graded division algebra.

This grading induces a grading on sln(F).
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Basic definitions (Patera-Zassenhaus)

Let Γ : A = ⊕g∈GAg be a grading on an algebra A:

The support of Γ is Supp Γ = {g ∈ G : Ag 6= 0}.

The universal grading group of Γ is the group U(Γ) generated
by Supp Γ subject to the relations g1g2 = g3 if
0 6= Ag1Ag2 ⊆ Ag3 .

The grading Γ is then a grading too by U(Γ).
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Basic definitions (Patera-Zassenhaus)

There appear several groups attached to Γ:

The automorphism group

Aut(Γ) = {ϕ ∈ AutA :

∃α ∈ Sym(Supp Γ) s.t. ϕ(Ag ) ⊆ Aα(g) ∀g}.

The stabilizer group

Stab(Γ) = {ϕ ∈ Aut(Γ) : ϕ(Ag ) ⊆ Ag ∀g}.

The diagonal group

Diag(Γ) = {ϕ ∈ Aut(Γ) :

∀g ∈ Supp Γ ∃λg ∈ F× s.t. ϕ|Ag = λg id}.

The quotient W (Γ) = Aut(Γ)/Stab(Γ) is the Weyl group of Γ.
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W (Γ) acts by automorphisms on U(Γ)

Each ϕ ∈ Aut(Γ) determines a self-bijection α of Supp Γ that
induces an automorphism of the universal grading group U(Γ).
Then, there appears a natural group homomorphism:

Aut(Γ)→ Aut(U(Γ))

with kernel Stab(Γ).

Thus, the Weyl group embeds naturally in Aut(U(Γ)), i.e., there is
a natural action of the Weyl group on U(Γ) by automorphisms.

Remark

Diag(Γ) is isomorphic to the group of characters of U(Γ).
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Fine gradings

Γ : A = ⊕g∈GAg , Γ′ : A = ⊕g ′∈G ′A
′
g ′ , gradings on A.

Γ is a refinement of Γ′ if for any g ∈ G there is a g ′ ∈ G ′ such
that Ag ⊆ Ag ′ .
Then Γ′ is a coarsening of Γ.

Γ is fine if it admits no proper refinement.

Remark

Any grading is a coarsening of a fine grading.
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Characteristic 0

F = F, charF = 0, dimA <∞.

Γ : A = ⊕g∈GAg grading,

Ĝ = HomGrp(G ,F×) group of characters of G .

Any χ ∈ Ĝ induces an automorphism of A:

χ : A −→ A,

x ∈ Ag 7→ χ(g)x .

The homogeneous components are the eigenspaces
for the action of Ĝ !!
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MAD subgroups

Theorem

(Fine) gradings
(up to equivalence)

←→
(maximal) abelian diagonalizable

subgroups of Aut(A)
(up to conjugation)

This is the point of view of Patera, Zassenhaus et al. (1989,
1998), who obtained a description of the fine gradings of the
simple classical Lie algebras (other than D4).

The complete classification of the fine gradings up to equivalence
on the classical Lie algebras (including D4) was obtained in 2010.
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Exceptional algebras

G2: Draper-Mart́ın (2006) and, independently,
Bahturin-Tvalavadze.

F4: Draper-Mart́ın (2009).

E6: Draper-Viruel (2015?).

E7, E8: Recent work by Jun Yu classifying conjugacy classes
of certain subgroups of the compact Lie groups classifies, in
particular, the fine gradings on E7 and E8 over C.
This is enough to classify these gradings over arbitrary
algebraically closed fields of characteristic 0 (E. 2014).

19 / 98



Exceptional algebras

G2: Draper-Mart́ın (2006) and, independently,
Bahturin-Tvalavadze.

F4: Draper-Mart́ın (2009).

E6: Draper-Viruel (2015?).

E7, E8: Recent work by Jun Yu classifying conjugacy classes
of certain subgroups of the compact Lie groups classifies, in
particular, the fine gradings on E7 and E8 over C.
This is enough to classify these gradings over arbitrary
algebraically closed fields of characteristic 0 (E. 2014).

19 / 98



Exceptional algebras

G2: Draper-Mart́ın (2006) and, independently,
Bahturin-Tvalavadze.

F4: Draper-Mart́ın (2009).

E6: Draper-Viruel (2015?).

E7, E8: Recent work by Jun Yu classifying conjugacy classes
of certain subgroups of the compact Lie groups classifies, in
particular, the fine gradings on E7 and E8 over C.
This is enough to classify these gradings over arbitrary
algebraically closed fields of characteristic 0 (E. 2014).

19 / 98



Exceptional algebras

G2: Draper-Mart́ın (2006) and, independently,
Bahturin-Tvalavadze.

F4: Draper-Mart́ın (2009).

E6: Draper-Viruel (2015?).

E7, E8: Recent work by Jun Yu classifying conjugacy classes
of certain subgroups of the compact Lie groups classifies, in
particular, the fine gradings on E7 and E8 over C.
This is enough to classify these gradings over arbitrary
algebraically closed fields of characteristic 0 (E. 2014).

19 / 98



1 Definitions and examples

2 Characteristic 0

3 Gradings and affine group schemes

20 / 98



Gradings and comodule algebras

In the modular case, gradings are no longer given by eigenspaces of
abelian diagonalizable subgroups. A different approach is needed.

Γ : A = ⊕g∈GAg ⇒ η : A −→ A⊗ FG
xg 7→ xg ⊗ g

(algebra morphism and comodule map)

Γη : A = ⊕g∈GAg ⇐ η : A→ A⊗ FG
(Ag = {x ∈ A : η(x) = x ⊗ g})

Theorem

G-grading ←→ comodule algebra over the group algebra FG.
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Gradings and comodule algebras

A comodule algebra map

η : A→ A⊗ FG

induces a generic automorphism of FG -algebras

A⊗ FG −→ A⊗ FG
x ⊗ h 7→ η(x)h.

All the information on the grading Γ attached to η is contained in
this single automorphism!
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Affine group schemes and gradings

η : A→ A⊗ FG ⇐⇒ ρ : GD → Aut(A)

(comodule algebra) (morphism of affine group schemes)

where

GD : AlgF −→ Grp

R 7→ GD(R) = HomAlgF(FG ,R) ' HomGrp(G ,R×),

Aut(A) : AlgF −→ Grp

R 7→ AutR-alg(A⊗F R).
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Affine group schemes and gradings

η : A→ A⊗ FG ⇐⇒ ρ : GD → Aut(A)

(comodule algebra) (morphism of affine group schemes)

ρR(f )
(
xg ⊗ r

)
= xg ⊗ f (g)r

for f ∈ GD(R) = HomAlgF(FG ,R), xg ∈ Ag and r ∈ R.
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Affine group schemes and gradings

η : A→ A⊗ FG ⇐⇒ ρ : GD → Aut(A)

(comodule algebra) (morphism of affine group schemes)

Conversely,

ρ : GD → Aut(A) =⇒ η : A ↪→ A⊗ FG ρFG (id)−−−−→ A⊗F FG .
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Affine group schemes and gradings

Theorem

G-grading ←→ morphism (natural transformation) GD → Aut(A).

Message:

It is not enough to deal with Ĝ and AutA, but also with their
extensions to unital commutative and associative F-algebras.
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Consequences

Given a morphism Aut(A)→ Aut(B), any grading on A induces a
grading on B.

Example

Ad : Aut(A)→ Aut
(
Der(A)

)
.

If Aut(A) ∼= Aut(B), the problems of classifying fine gradings on
A and on B up to equivalence (or the problem of classifying

gradings up to isomorphism) are equivalent.
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Classical Lie algebras

Assume that the ground field F is algebraically closed of
characteristic not two.

Bn,Cn (n ≥ 2), Dn (n ≥ 5):

Aut(L) ∼= Aut(Mr (F), involution).

An:
Aut(L) ∼= Aut

(
Mr (F)(+)

)
,

(“Affine group scheme of automorphisms and
antiautomorphisms of the matrix algebra”)
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Classical Lie algebras

Gradings on matrix algebras (with involution) have been dealt with
by Bahturin et al.

The fine gradings are obtained by combining Pauli gradings and
coarsenings of Cartan gradings.

Question

D4 in the modular case?
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4 Composition algebras

5 Gradings on octonions and G2

6 Gradings on the Albert Algebra and F4
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Composition algebras

Definition

A composition algebra over a field F is a triple (C , ·, n) where

C is a vector space over F,

x · y is a bilinear multiplication C × C → C ,

n : C → F is a multiplicative nondegenerate quadratic form:

its polar n(x , y) = n(x + y)− n(x)− n(y) is nondegenerate,
n(x · y) = n(x)n(y) ∀x , y ∈ C .

The unital composition algebras will be called Hurwitz algebras.
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Hurwitz algebras

Hurwitz algebras form a class of degree two algebras:

x ·2 − n(x , 1)x + n(x)1 = 0

for any x .
They are endowed with an antiautomorphism, the standard
conjugation:

x̄ = n(x , 1)1− x ,

satisfying

¯̄x = x , x + x̄ = n(x , 1)1, x · x̄ = x̄ · x = n(x)1.
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Cayley-Dickson doubling process

Let (B, ·, n) be an associative Hurwitz algebra, and let λ be a
nonzero scalar in the ground field F. Consider the direct sum of
two copies of B:

C = B ⊕ Bu,

with the following multiplication and nondegenerate quadratic form
that extend those on B:

(a + bu) · (c + du) = (a · c + λd̄ · b) + (d · a + b · c̄)u,

n(a + bu) = n(a)− λn(b).

Then (C , ·, n) is again a Hurwitz algebra, which is denoted by
CD(B, λ)

Notation: CD(A, µ, λ) := CD
(
CD(A, µ), λ

)
.
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Generalized Hurwitz Theorem

Theorem

Every Hurwitz algebra over a field F is isomorphic to one of the
following:

(i) The ground field F if its characteristic is 6= 2.

(ii) A quadratic commutative and associative separable algebra
K (µ) = F1 + Fv, with v2 = v + µ and 4µ+ 1 6= 0. The
norm is given by its generic norm.

(iii) A quaternion algebra Q(µ, β) = CD(K (µ), β). (These four
dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra C (µ, β, γ) = CD(K (µ), β, γ). (These eight
dimensional algebras are alternative, but not associative.)
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Symmetric composition algebras

Definition

A composition algebra (S , ∗, n) is said to be symmetric if the polar
form of its norm is associative:

n(x ∗ y , z) = n(x , y ∗ z),

for any x , y , z ∈ S .

This is equivalent to the condition:

(x ∗ y) ∗ x = n(x)y = x ∗ (y ∗ x),

for any x , y ∈ S .
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Examples

Para-Hurwitz algebras: Given a Hurwitz algebra (C , ·, n),
its para-Hurwitz counterpart is the composition algebra
(C , •, n), where

x • y = x̄ · ȳ .

This algebra will be denoted by C̄ for short.

Okubo algebras: Assume charF 6= 3 and ∃ω 6= 1 = ω3 in
F. Consider the algebra A0 of zero trace elements in a central
simple degree 3 associative algebra with multiplication

x ∗ y = ωxy − ω2yx − ω − ω2

3
tr(xy)1,

and norm n(x) = −1
2 tr(x2).

(There is a more general definition valid over arbitrary fields.)
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Classification

Theorem (E.-Myung 93, E. 97)

Any symmetric composition algebra is either:

a para-Hurwitz algebra,

a form of a two-dimensional para-Hurwitz algebra without
idempotent elements (with a precise description),

an Okubo algebra.
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4 Composition algebras

5 Gradings on octonions and G2

6 Gradings on the Albert Algebra and F4
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The octonions

From now on, the ground field will be assumed to be algebraically
closed of characteristic 6= 2.

Cayley-Dickson process:

K = F⊕ F i, i2 = 1,

H = K⊕K j, j2 = 1,

O = H⊕H l, l2 = 1,

O is Z3
2-graded with

deg(i) = (1̄, 0̄, 0̄), deg(j) = (0̄, 1̄, 0̄), deg(l) = (0̄, 0̄, 1̄).

39 / 98



The octonions

From now on, the ground field will be assumed to be algebraically
closed of characteristic 6= 2.

Cayley-Dickson process:

K = F⊕ F i, i2 = 1,

H = K⊕K j, j2 = 1,

O = H⊕H l, l2 = 1,

O is Z3
2-graded with

deg(i) = (1̄, 0̄, 0̄), deg(j) = (0̄, 1̄, 0̄), deg(l) = (0̄, 0̄, 1̄).

39 / 98



Cartan grading on the Octonions

O contains canonical bases:

B = {e1, e2, u1, u2, u3, v1, v2, v3}

with

n(e1, e2) = n(ui , vi ) = 1, otherwise 0.

e2
1 = e1, e2

2 = e2,

e1ui = uie2 = ui , e2vi = vie1 = vi , (i = 1, 2, 3)

uivi = −e1, viui = −e2, (i = 1, 2, 3)

uiui+1 = −ui+1ui = vi+2, vivi+1 = −vi+1vi = ui+2, (indices modulo 3)

otherwise 0.

The Cartan grading is the Z2-grading determined by:

deg u1 = − deg v1 = (1, 0), deg u2 = − deg v2 = (0, 1).
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Fine gradings on the Octonions

Theorem (E. 1998)

Up to equivalence, the fine gradings on O are

the Cartan grading, and

the Z3
2-grading given by the Cayley-Dickson doubling process.
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Fine gradings on the Octonions

Sketch of proof:

The Cayley-Hamilton equation: x2 − n(x , 1)x + n(x)1 = 0,
implies that the norm has a good behavior relative to the
grading:

n(Og ) = 0 unless g2 = e, n(Og ,Oh) = 0 unless gh = e.

If there is a g ∈ Supp Γ with either order > 2 or dimOg ≥ 2,
there are elements x ∈ Og , y ∈ Og−1 with n(x) = 0 = n(y),
n(x , y) = 1. Then e1 = xȳ and e2 = y x̄ are orthogonal
primitive idempotents in Oe , and one uses the corresponding
Peirce decomposition to check that, up to equivalence, our
grading is the Cartan grading.

Otherwise dimOg = 1 and g2 = e for any g ∈ Supp Γ. We
get the Z3

2-grading.
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n(x , y) = 1. Then e1 = xȳ and e2 = y x̄ are orthogonal
primitive idempotents in Oe , and one uses the corresponding
Peirce decomposition to check that, up to equivalence, our
grading is the Cartan grading.

Otherwise dimOg = 1 and g2 = e for any g ∈ Supp Γ. We
get the Z3

2-grading.

42 / 98



Fine gradings on the Octonions

Sketch of proof:

The Cayley-Hamilton equation: x2 − n(x , 1)x + n(x)1 = 0,
implies that the norm has a good behavior relative to the
grading:

n(Og ) = 0 unless g2 = e, n(Og ,Oh) = 0 unless gh = e.

If there is a g ∈ Supp Γ with either order > 2 or dimOg ≥ 2,
there are elements x ∈ Og , y ∈ Og−1 with n(x) = 0 = n(y),
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n(x , y) = 1. Then e1 = xȳ and e2 = y x̄ are orthogonal
primitive idempotents in Oe , and one uses the corresponding
Peirce decomposition to check that, up to equivalence, our
grading is the Cartan grading.

Otherwise dimOg = 1 and g2 = e for any g ∈ Supp Γ. We
get the Z3

2-grading.

42 / 98



Z3
2-grading: Octonions as a twisted group algebra

Theorem (Albuquerque-Majid 1999)

The octonion algebra is the twisted group algebra

O = Fσ[Z3
2],

where
eαeβ = σ(α, β)eα+β

for α, β ∈ Z3
2, with

σ(α, β) = (−1)ψ(α,β),

ψ(α, β) = β1α2α3 + α1β2α3 + α1α2β3 +
∑
i≤j

αiβj .

This allows to consider the algebra of octonions as an “associative
algebra in a suitable category”.
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Cartan grading: Weyl group

Let S be the vector subspace spanned by (1, 1, 1) in R3 and
consider the two-dimensional real vector space E = R3/S . Take
the elements

ε1 = (1, 0, 0) + S , ε2 = (0, 1, 0) + S , ε3 = (0, 0, 1) + S .

The subgroup G = Zε1 + Zε2 + Zε3 is isomorphic to Z2, and we
may think of the Cartan grading Γ on the octonions O as the
grading in which

deg(e1) = 0 = deg(e2),

deg(ui ) = εi = − deg(vi ), i = 1, 2, 3.
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Cartan grading: Weyl group

Then Supp Γ = {0} ∪ {±εi | i = 1, 2, 3} and G is the universal
group.
The set

Φ :=
(
Supp Γ ∪ {α + β | α, β ∈ Supp Γ, α 6= ±β}

)
\ {0}

is the root system of type G2.
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Cartan grading: Weyl group

Identifying the Weyl group W (Γ) with a subgroup of Aut(G ), and
this with a subgroup of GL(E ), we have:

W (Γ) ⊂ {µ ∈ Aut(G ) | µ(Supp Γ) = Supp Γ}
⊂ {µ ∈ GL(E ) | µ(Φ) = Φ} =: Aut Φ.

The latter group is the automorphism group of the root system Φ,
which coincides with its Weyl group.

Theorem

Let Γ be the Cartan grading on the octonions. Identify
Supp Γ \ {0} with the short roots in the root system Φ of type G2.
Then W (Γ) = Aut Φ.
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Z3
2-grading: Weyl group

Theorem

Let Γ be the Z3
2-grading on the octonions induced by the

Cayley-Dickson doubling process. Then
W (Γ) = Aut(Z3

2) ∼= GL3(2).

Remark

As any ϕ ∈ Stab(Γ) multiplies each of the elements i, j, l by either
1 or −1, we see that Stab(Γ) = Diag(Γ) is isomorphic to Z3

2.
Therefore, the group Aut(Γ) is a (non-split) extension of Z3

2 by
W (Γ) ∼= GL3(2).
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Gradings on para-Hurwitz algebras

Theorem

Gradings on para-Hurwitz algebras of dimension 4 or 8

l

Gradings on their Hurwitz counterparts.

Therefore, any para-Cayley algebra is endowed with a Z3
2-grading.
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Gradings on Okubo algebras

Assuming F is a field of characteristic 6= 3 containing a primitive
third root ω of 1, then the matrix algebra Mat3(F) is generated by
the order 3 matrices:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 0 1
1 0 0
0 1 0

 ,

and the assignment

deg(x) = (1̄, 0̄), deg(y) = (0̄, 1̄),

gives a Z2
3-grading of Mat3(F), which is inherited by the Okubo

algebra
(
sl3(F), ∗, n

)
.

Over algebraically closed fields, any grading on an Okubo algebra
is a coarsening of either the natural Z2-grading (Cartan grading) or
this Z2

3-grading.
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Z2
3-grading

Consider the order three automorphism τ of O:

τ(ei ) = ei , i = 1, 2, τ(uj) = uj+1, τ(vj) = vj+1, j = 1, 2, 3,

and define a new multiplication on O:

x ∗ y = τ(x̄)τ2(ȳ).

It turns out that this is too the (split) Okubo algebra, defined in a
characteristic free way, and the Z2

3-grading is now given by setting

deg e1 = (1̄, 0̄) and deg u1 = (0̄, 1̄).
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It turns out that this is too the (split) Okubo algebra, defined in a
characteristic free way, and the Z2

3-grading is now given by setting

deg e1 = (1̄, 0̄) and deg u1 = (0̄, 1̄).

50 / 98



Z2
3-grading

e1 e2 u1 v1 u2 v2 u3 v3

e1 e2 0 0 −v3 0 −v1 0 −v2

e2 0 e1 −u3 0 −u1 0 −u2 0
u1 −u2 0 v1 0 −v3 0 0 −e1

v1 0 −v2 0 u1 0 −u3 −e2 0
u2 −u3 0 0 −e1 v2 0 −v1 0
v2 0 −v3 −e2 0 0 u2 0 −u1

u3 −u1 0 −v2 0 0 −e1 v3 0
v3 0 −v1 0 −u2 −e2 0 0 u3

Multiplication table of the (split) Okubo algebra
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Gradings on G2

If the characteristic of the ground field F is 6= 2, 3, then

Ad : AutO→ Aut g2

is an isomorphism.

Theorem

Up to equivalence, the fine gradings on g2 are

the Cartan grading, and

a Z3
2-grading with (g2)0 = 0 and where (g2)g is a Cartan

subalgebra of g2 for any 0 6= g ∈ Z3
2.
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4 Composition algebras

5 Gradings on octonions and G2

6 Gradings on the Albert Algebra and F4
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Albert algebra

A = H3(O) =


α1 ā3 a2

a3 α2 ā1

ā2 a1 α3

 | α1, α2, α3 ∈ F, a1, a2, a3 ∈ O


= FE1 ⊕ FE2 ⊕ FE3 ⊕ ι1(O)⊕ ι2(O)⊕ ι3(O),

where

E1 =

1 0 0
0 0 0
0 0 0

 , E2 =

0 0 0
0 1 0
0 0 0

 , E3 =

0 0 0
0 0 0
0 0 1

 ,

ι1(a) = 2

0 0 0
0 0 ā
0 a 0

 , ι2(a) = 2

0 0 a
0 0 0
ā 0 0

 , ι3(a) = 2

0 ā 0
a 0 0
0 0 0

 .
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Albert algebra

The multiplication in A is given by X ◦ Y = 1
2 (XY + YX ).

Then Ei are orthogonal idempotents with E1 + E2 + E3 = 1. The
rest of the products are as follows:

Ei ◦ ιi (a) = 0, Ei+1 ◦ ιi (a) =
1

2
ιi (a) = Ei+2 ◦ ιi (a),

ιi (a) ◦ ιi+1(b) = ιi+2(a • b), ιi (a) ◦ ιi (b) = 2n(a, b)(Ei+1 + Ei+2),

for any a, b ∈ O, with i = 1, 2, 3 taken modulo 3, where a • b = āb̄
is the para-Hurwitz multiplication.
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Cartan grading

Consider the following elements in Z4 = Z2 × Z2:

a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (−1,−1, 0, 0),

g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1), g3 = (0, 0,−1,−1).

Then a1 + a2 + a3 = 0 = g1 + g2 + g3.

Take a canonical basis of the octonions. The assignment

deg e1 = deg e2 = 0, deg ui = gi = − deg vi

gives the Cartan grading on O.

Now, the Cartan grading on A is given by:

deg Ei = 0, deg ιi (e1) = ai = − deg ιi (e2),

deg ιi (ui ) = gi = − deg ιi (vi ),

deg ιi (ui+1) = ai+2 + gi+1 = − deg ιi (vi+1),

deg ιi (ui+2) = −ai+1 + gi+2 = − deg ιi (vi+2).
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Cartan grading: Weyl group

The universal group of the Cartan grading is Z4, which is
contained in E = R4. Consider the following elements of Z4:

ε0 = deg ι1(e1) = a1 = (1, 0, 0, 0),

ε1 = deg ι1(u1) = g1 = (0, 0, 1, 0),

ε2 = deg ι1(u2) = a3 + g2 = (−1,−1, 0, 1),

ε3 = deg ι1(u3) = −a2 + g3 = (0,−1,−1,−1).

Note that the εi ’s, 0 ≤ i ≤ 3, are linearly independent, but do not
form a basis of Z4. For instance,

deg ι2(e1) = a2 =
1

2
(−ε0 − ε1 − ε2 − ε3),

deg ι3(e1) = a3 =
1

2
(−ε0 + ε1 + ε2 + ε3).
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Cartan grading: Weyl group

The supports of the Cartan grading Γ on each of the subspaces
ιi (O) are:

Supp ι1(O) = {±εi | 0 ≤ i ≤ 3},

Supp ι2(O) = Supp ι1(O)(ι3(e1) + ι3(e2))

=

{
1

2
(±ε0 ± ε1 ± ε2 ± ε3) | even number of + signs

}
,

Supp ι3(O) = Supp ι1(O)(ι2(e1) + ι2(e2))

=

{
1

2
(±ε0 ± ε1 ± ε2 ± ε3) | odd number of + signs

}
.
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Cartan grading: Weyl group

Φ :=
(
Supp Γ ∪ {α + β | α, β ∈ Supp ι1(O), α 6= ±β}

)
\ {0}

= Supp ι1(O) ∪ Supp ι2(O) ∪ Supp ι3(O)

∪ {±εi ± εj | 0 ≤ i 6= j ≤ 3},
is the root system of type F4. (Note that the εi ’s, i = 0, 1, 2, 3,
form an orthogonal basis of E relative to the unique (up to scalar)
inner product that is invariant under the Weyl group of Φ.)

Identifying the Weyl group W (Γ) with a subgroup of Aut(Z4), and
this with a subgroup of GL(E ), we have:

Theorem

Let Γ be the Cartan grading on the Albert algebra. Identify
Supp Γ \ {0} with the short roots in the root system Φ of type F4.
Then W (Γ) = Aut Φ.
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Z5
2-grading

A is naturally Z2
2-graded with

A(0̄,0̄) = FE1 + FE2 + FE3,

A(1̄,0̄) = ι1(O), A(0̄,1̄) = ι2(O), A(1̄,1̄) = ι3(O).

This Z2
2-grading may be combined with the fine Z3

2-grading on O
to obtain a fine Z5

2-grading:

deg Ei = (0̄, 0̄, 0̄, 0̄, 0̄), i = 1, 2, 3,

deg ι1(x) = (1̄, 0̄, deg x),

deg ι2(x) = (0̄, 1̄, deg x),

deg ι3(x) = (1̄, 1̄, deg x).
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Z5
2-grading: Weyl group

Write Z5
2 = Z2a⊕ Z2b ⊕ Z2c1 ⊕ Z2c2 ⊕ Z2c3. Then the

Z5
2-grading Γ is defined by setting

deg ι1(1) = a, deg ι2(1) = b,

deg ι3(i) = a + b + c1, deg ι3(j) = a + b + c2, deg ι3(l) = a + b + c3.

Theorem

Let Γ be the Z5
2-grading on the Albert algebra. Let T = ⊕3

i=1Z2ci .
Then

W (Γ) = {µ ∈ Aut(Z5
2) : µ(T ) = T}.

Remark

Any ψ ∈ Stab(Γ) fixes Ei and multiplies
ι1(1), ι2(1), ι3(i), ι3(j), ι3(l), by either 1 or −1. Hence
Stab(Γ) = Diag(Γ) is isomorphic to Z5

2.
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Z× Z3
2-grading

Take an element i ∈ F with i2 = −1 and consider the following
elements in A:

E = E1, Ẽ = 1− E = E2 + E3,

ν(a) = iι1(a) for all a ∈ O0,

ν±(x) = ι2(x)± iι3(x̄) for all x ∈ O,

S± = E3 − E2 ±
i

2
ι1(1).

A is then 5-graded:

A = A−2 ⊕ A−1 ⊕ A0 ⊕ A1 ⊕ A2,

with A±2 = FS±, A±1 = ν±(O), and A0 = FE ⊕
(
FẼ ⊕ ν(O0)

)
.
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Z× Z3
2-grading

The Z3
2-grading on O combines with this Z-grading

A = FS− ⊕ ν−(O)⊕ A0 ⊕ ν+(O)⊕ FS+

to give a fine Z× Z3
2-grading as follows:

deg S± = (±2, 0̄, 0̄, 0̄),

deg ν±(x) = (±1, deg x),

deg E = 0 = deg Ẽ ,

deg ν(a) = (0, deg a),

for homogeneous elements x ∈ O and a ∈ O0.
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Z× Z3
2-grading: Weyl group

Theorem

Let Γ be the Z× Z3
2-grading on the Albert algebra. Then

W (Γ) = Aut(Z× Z3
2).

Remark

One can show that Stab(Γ) = Diag(Γ), which is isomorphic to
F× × Z3

2.

64 / 98



Z× Z3
2-grading: Weyl group

Theorem

Let Γ be the Z× Z3
2-grading on the Albert algebra. Then

W (Γ) = Aut(Z× Z3
2).

Remark

One can show that Stab(Γ) = Diag(Γ), which is isomorphic to
F× × Z3

2.

64 / 98



Z3
3-grading

Recall that the Okubo algebra can be defined on the octonions,
with new multiplication:

x ∗ y = τ(x̄)τ2(ȳ).

where τ is the order three automorphism of O given by:

τ(ei ) = ei , i = 1, 2, τ(uj) = uj+1, τ(vj) = vj+1, j = 1, 2, 3.
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Z3
3-grading

Define ι̃i (x) = ιi (τ
i (x)) for all i = 1, 2, 3 and x ∈ O. Then the

multiplication in the Albert algebra

A = ⊕3
i=1

(
FEi ⊕ ι̃i (O)

)
becomes:

E ◦2i = Ei , Ei ◦ Ei+1 = 0,

Ei ◦ ι̃i (x) = 0, Ei+1 ◦ ι̃i (x) =
1

2
ι̃i (x) = Ei+2 ◦ ι̃i (x),

ι̃i (x) ◦ ι̃i+1(y) = ι̃i+2(x ∗ y), ι̃i (x) ◦ ι̃i (y) = 2n(x , y)(Ei+1 + Ei+2),

for i = 1, 2, 3 and x , y ∈ O.
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Z3
3-grading

Assume now charF 6= 3. Then the Z2
3-grading on the Okubo

algebra is determined by two commuting order 3 automorphisms
ϕ1, ϕ2 ∈ Aut(O, ∗):

ϕ1(e1) = ωe1, ϕ1(u1) = u1,

ϕ2(e1) = e1, ϕ2(u1) = ωu1,

where ω is a primitive cubic root of unity in F.
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Z3
3-grading

The commuting order 3 automorphisms ϕ1, ϕ2 of (O, ∗) extend to
commuting order 3 automorphisms of A:

ϕj(Ei ) = Ei , ϕj

(
ι̃i (x)

)
= ι̃i (ϕj(x)).

On the other hand, the linear map ϕ3 ∈ End(A) defined by

ϕ3(Ei ) = Ei+1, ϕ3

(
ι̃i (x)

)
= ι̃i+1(x),

is another order 3 automorphism, which commutes with ϕ1 and ϕ2.

The subgroup of Aut(A) generated by ϕ1, ϕ2, ϕ3 is isomorphic to
Z3

3 and induces a Z3
3-grading on A.

All the homogeneous components have dimension 1.
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Z3
3-grading: Weyl group

The Z3
3-grading is determined by

deg
(∑3

i=1 ι̃i (e1)
)

= (1̄, 0̄, 0̄),

deg
(∑3

i=1 ι̃i (u1)
)

= (0̄, 1̄, 0̄),

deg
(∑3

i=1 ω
−iEi

)
= (0̄, 0̄, 1̄),

Theorem

Let Γ be the Z3
3-grading on the Albert algebra. Then W (Γ) is the

commutator subgroup of Aut(Z3
3), i.e.,

W (Γ) ∼= SL3(3).
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Z3
3-grading: Weyl group

Why SL3(3) and not GL3(3)?

Consider the Z3
3-grading Γ− determined by

deg
(∑3

i=1 ι̃i (e1)
)

= (0̄, 1̄, 0̄),

deg
(∑3

i=1 ι̃i (u1)
)

= (1̄, 0̄, 0̄),

deg
(∑3

i=1 ω
−iEi

)
= (0̄, 0̄, 1̄),

Then, for X1 ∈ A(1̄,0̄,0̄), X2 ∈ A(0̄,1̄,0̄), X3 ∈ A(0̄,0̄,1̄), we have:

(X1 ◦ X2) ◦ X3 =

{
ωX1 ◦ (X2 ◦ X3), for Γ,

ω−1X1 ◦ (X2 ◦ X3), for Γ−.

Hence Γ and Γ− are equivalent, but NOT isomorphic, gradings.

Besides, any fine Z3
3-grading on A is isomorphic to either Γ or Γ−,

so W (Γ) has index two in Aut(U(Γ)) ∼= GL3(3).
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Z3
3-grading and the Tits construction

Let R = Mat3(F). Then

A = R0 ⊕ R1 ⊕ R2,

with R0, R1, R2 copies of R.

The product in A satisfies Ri ◦ Rj ⊆ Ri+j (mod 3) and:

◦ a′0 b′1 c ′2

a0 (a ◦ a′)0 (āb′)1 (c ′ā)2

b1 (ā′b)1 (b × b′)2 (bc ′)2

c2 (cā′)2 (b′c)0 (c × c ′)1

where

a ◦ a′ = 1
2 (aa′ + a′a),

a× b = a ◦ b − 1
2 (tr(a)b + tr(b)a) + 1

2

(
tr(a) tr(b)− tr(ab)

)
1,

ā = a× 1 = 1
2

(
tr(a)1− a

)
.
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A = R0 ⊕ R1 ⊕ R2,

with R0, R1, R2 copies of R.
The product in A satisfies Ri ◦ Rj ⊆ Ri+j (mod 3) and:

◦ a′0 b′1 c ′2

a0 (a ◦ a′)0 (āb′)1 (c ′ā)2

b1 (ā′b)1 (b × b′)2 (bc ′)2

c2 (cā′)2 (b′c)0 (c × c ′)1
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Z3
3-grading and the Tits construction

Assume charF 6= 3. Take Pauli matrices in R:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 1 0
0 0 1
1 0 0

 ,

where ω, ω2 are the primitive cubic roots of 1, which satisfy

x3 = 1 = y3, yx = ωxy .

These Pauli matrices give a grading by Z2
3 on R, with

R(α1,α2) = Fxα1yα2 .

This grading combines with the Z3-grading on A induced by Tits
construction, to give the unique, up to equivalence, fine grading by
Z3

3 of the Albert algebra.
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Z3
3-grading and the Tits construction

For α = (α1, α2, α3) ∈ Z3
3 consider the element

Zα := (xα1yα2)α3 ∈ Rα3 ⊆ A.

Then, for any α, β ∈ Z3
3:

Zα ◦ Zβ =

ω
ψ̃(α,β)Zα+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)Zα+β otherwise,

where

ψ̃(α, β) = (α2β1 − α1β2)(α3 − β3)− (α1β2 + α2β1).
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Z3
3-grading and the Tits construction

Consider now the elements (Racine 1990, unpublished)

W α := ω−α1α2Zα.

W α ◦W β = ω−α1α2−β1β2Zα ◦ Zβ

=

ω
ψ̃(α,β)−(α1α2+β1β2)Zα+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)−(α1α2+β1β2)Zα+β otherwise,

=

ω
ψ̃(α,β)+(α1β2+α2β1)W α+β if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ̃(α,β)+(α1β2+α2β1)W α+β otherwise.
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The Albert algebra as a twisted group algebra

Theorem (Griess 1990)

The Albert algebra is, up to isomorphism, the twisted group algebra

A = Fσ[Z3
3],

with

σ(α, β) =

ω
ψ(α,β) if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ(α,β) otherwise,

where
ψ(α, β) = (α2β1 − α1β2)(α3 − β3).
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Fine gradings on the Albert algebra

Theorem (Draper–Mart́ın-González 2009 (char = 0),
E.–Kochetov 2012)

Up to equivalence, the fine gradings of the Albert algebra are:

1 The Cartan grading (weight space decomposition relative to a
Cartan subalgebra of f4 = Der(A)).

2 The Z5
2-grading obtained by combining the natural Z2

2-grading
on 3× 3 hermitian matrices with the fine grading by Z3

2 of O.

3 The Z× Z3
2-grading obtained by combining a 5-grading and

the Z3
2-grading on O.

4 The Z3
3-grading with dimAg = 1 ∀g (charF 6= 3).

All the gradings up to isomorphism on A have been classified too
(E.–Kochetov).
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Gradings on F4

The adjoint mapt

Ad : Aut(A)→ Aut(f4)

(where A = H3(O) is the Albert algebra) is an isomorphism.

Therefore, we can transfer the classification of gradings on the
Albert algebra to the simple Lie algebra of type F4.
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Gradings on F4

Theorem

Up to equivalence, the fine gradings on f4 are

the Cartan grading,

a grading by Z5
2, obtained by combining the Z2

2-grading given
by the decomposition f4 = d4⊕natural⊕ spin⊕ spin, with the
Z3

2-grading on the octonions (which is the vector space behind
the natural and spin representations of d4).

a grading by Z× Z3
2, obtained by looking at f4 as the Kantor

Lie algebra of a structurable algebra: f4 = K(O,−), and
combining the natural 5-grading on K(O,−) and the
Z3

2-grading on O.

a Z3
3-grading (only if charF 6= 3), with (f4)0 = 0 and where

(f4)g ⊕ (f4)−g is a Cartan subalgebra of f4 for any 0 6= g ∈ Z3
3.
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7 Triality

8 Cyclic compositions and trialitarian algebras

9 Gradings on D4
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Triality

Let (C, ∗, n) be an eight-dimensional symmetric composition
algebra.
The linear map

C −→ EndF(C⊕ C)

x 7→
(

0 lx
rx 0

)
induces an algebra isomorphism

α : Cl0̄(C, n)→ EndF(C)× EndF(C).
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Triality

For any u ∈ Spin(C, n), if α(u) = (ρ+
u , ρ

−
u ), then

χu(x ∗ y) = ρ−u (x) ∗ ρ+
u (y)

for any x , y ∈ C. (Here χu(x) = u · x · u−1 is the natural
representation of Spin(C, n) on C.)

This provides a group isomorphism:

Spin(C, n)→ Tri(C, ∗, n)

u 7→ (χu, ρ
−
u , ρ

+
u )

where the triality group is defined by

Tri(C, ∗, n) := {(f1, f2, f3) ∈ O(C, n)3 :

f1(x ∗ y) = f2(x) ∗ f3(y) ∀x , y ∈ C}.

(This isomorphism can be defined at the level of the corresponding
affine group schemes.)
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Triality Lie algebra

There is also a local version of triality for charF 6= 2.

Let (S , ∗, n) be any symmetric composition algebra and consider
the corresponding orthogonal Lie algebra:

o(S , n) = {d ∈ EndF(S) : n
(
d(x), y

)
+ n
(
x , d(y)

)
= 0 ∀x , y ∈ S},

and the subalgebra of o(S , n)3 (with componentwise
multiplication):

tri(S , ∗, n) =
{(d1, d2, d3) ∈ o(S , n)3 : d3(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) ∀x , y}

This is the triality Lie algebra.

The map: θ : tri(S , ∗, n)→ tri(S , ∗, n), (d1, d2, d3) 7→ (d3, d1, d2)
is an automorphism of order 3, (triality automorphism).
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Principle of Local Triality

Theorem (Principle of Local Triality)

Let (S , ∗, n) be an eight dimensional symmetric composition
algebra. Then the projection

π1 : tri(S , ∗, n) −→ o(S , n)

(d1, d2, d3) 7→ d1,

is an isomorphism of Lie algebras.
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Freudenthal’s Magic Square

Let (S , ∗, n) and (S ′, ?, n′) be two symmetric composition algebras.
One can construct a Lie algebra as follows:

g = g(S , S ′) =
(
tri(S)⊕ tri(S ′)

)
⊕
(
⊕3

i=1ιi (S ⊗ S ′)
)
,

with bracket given by:

the Lie bracket in tri(S)⊕ tri(S ′), which thus becomes a Lie
subalgebra of g,

[(d1, d2, d3), ιi (x ⊗ x ′)] = ιi
(
di (x)⊗ x ′

)
,

[(d ′1, d
′
2, d
′
3), ιi (x ⊗ x ′)] = ιi

(
x ⊗ d ′i (x

′)
)
,

[ιi (x ⊗ x ′), ιi+1(y ⊗ y ′)] = ιi+2

(
(x ∗ y)⊗ (x ′ ? y ′)

)
,

[ιi (x ⊗ x ′), ιi (y ⊗ y ′)] = n′(x ′, y ′)θi (tx ,y ) + n(x , y)θ′i (t ′x ′,y ′),
for some natural triples tx ,y and t ′x ′, y ′.
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Freudenthal’s Magic Square

dim S ′

g(S ,S ′) 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6
dim S

4 C3 A5 D6 E7

8 F4 E6 E7 E8
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Cyclic compositions (Springer)

Definition

A cyclic composition is a 5-tuple (V ,L, ρ, ∗,Q) consisting of

a cubic étale F-algebra L with an F-automorphism ρ of order
3,

a free L-module V ,

a quadratic form Q : V → L with nondegenerate polar form
bQ ,

an F-bilinear multiplication ∗ : V × V → V such that, for any
x , y , z ∈ V and ` ∈ L:

(`x) ∗ y = ρ(`)(x ∗ y), x ∗ (`y) = ρ2(`)(x ∗ y),

Q(x ∗ y) = ρ(Q(x))ρ2(Q(y)),

bQ(x ∗ y , z) = ρ
(
Q(y ∗ z , x)

)
= ρ2

(
bQ(z ∗ x , y)

)
.
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Cyclic compositions

Example

Let (C, ?, n) be a symmetric composition algebra (over F) and let
L = F× F× F and ρ : (α1, α2, α3) 7→ (α2, α3, α1).
Then

(
C⊗F L,L, ρ, ∗,Q), with Q = (n, n, n) and

(x1, x2, x3) ∗ (y1, y2, y3) = (x2 ? y3, x3 ? y1, x1 ? y2)

for any x1, . . . , y3 ∈ C, is a cyclic composition.

In this example, the automorphism group scheme is given by:

AutF(V ,L, ρ, ∗,Q) = Tri(C, ?, n) o A3
∼= Spin(C, n) o A3.
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Trialitarian algebras (The Book of Involutions)

Let (V ,L, ρ, ∗,Q) be an eight-dimensional cyclic composition.

The associative algebra E = EndL(V ) is endowed with the
involution σ determined by Q and an isomorphism

α : Cl(E , σ)
∼−→ ρE × ρ2

E ,

where the superscripts denote the twist of scalar multiplication
(i.e., ρE is E as an F-algebra with involution, but with the new
L-module structure defined by ` · a = ρ(`)a).

(In the example above, this isomorphism is induced by the
isomorphism Cl0̄(C, n) ' EndF(C)× EndF(C).)

The quadruple (E ,L, σ, α) is an example of a trialitarian algebra.
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Trialitarian algebras

The subspace

L(E ) := {x ∈ Skew(E , σ) : α(“x”) = (x , x)}

is a central simple Lie algebra of type D4.

Theorem

Aut
(
L(E )

)
' Aut(E ,L, σ, α).

Remark

Conjugation gives a natural morphism

Int : Aut(V ,L, ρ, ∗,Q)→ Aut(E ,L, σ, α).
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Type I, II, III gradings

From now on the ground field F will be assumed to be algebraically
closed of characteristic not two.

Let L be the simple Lie algebra of type D4.

1 // PGO+
8

// AutF(L)
π // S3

// 1

If Γ : L =
⊕

g∈G Lg is a grading and η : GD → Aut(L) the
corresponding morphism of group schemes, then the image of πη is
a diagonalizable subgroupscheme of the constant scheme S3, so it
corresponds to an abelian subgroup of the symmetric group S3,
and hence its order is 1, 2 or 3. The grading Γ will be said to have
Type I, II, or III respectively.
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From now on the ground field F will be assumed to be algebraically
closed of characteristic not two.

Let L be the simple Lie algebra of type D4.

1 // PGO+
8

// AutF(L)
π // S3

// 1
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Type III gradings

The classification of type I or II gradings follow the same lines
as the classification of gradings for Dn, n ≥ 5.

Type III gradings do not appear in characteristic 3.

From now on we will deal with type III gradings Γ on L. If
(E ,L, σ, α) is the trialitarian algebra over F, the isomorphism
Aut

(
L(E )

)
' Aut(E ,L, σ, α) allows us to transfer Γ to a grading

on (E ,L, σ, α).
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Lifting to Aut(V ,L, ρ, ∗,Q)

Theorem

Any type III grading, identified with a morphism
η : GD → Aut(E ,L, σ, α), can be lifted to a grading on the cyclic
composition (V ,L, ρ, ∗,Q):

AutF(V ,L, ρ, ∗,Q)

Int

��

GD

η′
77

η

''

AutF(E ,L, σ, α)
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Gradings on (V ,L, ρ, ∗,Q)

Theorem

Let Γ be a Type III grading by an abelian group G on the
eight-dimensional cyclic composition (V ,L, ρ, ∗,Q) over an
algebraically closed field F, charF 6= 2, 3, and let ΓL be the
induced grading on L.

1 If Ve = 0, then (V ,L, ρ, ∗,Q) is isomorphic to
(O, ?, n)⊗ (L, ρ) as a graded cyclic composition algebra,
where (O, ?, n) is the Okubo algebra, endowed with a
G-grading ΓO with Oe = 0, and the grading on
(O, ?, n)⊗ (L, ρ) is ΓO ⊗ ΓL.
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Gradings on (V ,L, ρ, ∗,Q)

Theorem (continued)

2 Otherwise, (V ,L, ρ, ∗,Q) is isomorphic to (C, •, n)⊗ (L, ρ) as
a graded cyclic composition algebra, where (C, •, n) is the
para-octonion algebra, endowed with a G-grading ΓC, and the
grading on (C, •, n)⊗ (L, ρ) is ΓC ⊗ ΓL.

The proof uses the fact that J(L,V ) = L⊕ V is the Albert
algebra, and we know classification of the gradings on this algebra.
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Gradings on D4

Theorem

Up to equivalence, there are three fine gradings of Type III on the
simple Lie algebra of type D4 over an algebraically closed field F,
charF 6= 2, 3. Their universal groups are Z2 ×Z3, Z3

2 ×Z3 and Z3
3.

Theorem

Let F be an algebraically closed field and let L be the simple Lie
algebra of type D4 over F.

1 If charF 6= 2, 3 then there are, up to equivalence, 17 fine
gradings on L.

2 If charF = 3 then there are, up to equivalence, 14 fine
gradings on L.
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That’s all.
Thanks
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