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Gradings on Lie algebras have been extensively used since the
beginning of Lie theory:

the Cartan grading on a complex semisimple Lie algebra is the
Zr -grading (r being the rank) whose homogeneous
components are the root spaces relative to a Cartan
subalgebra (which is the zero component),

symmetric spaces are related to Z2-gradings,

Kac–Moody Lie algebras to gradings by a finite cyclic group,

the theory of Jordan algebras and pairs to 3-gradings on Lie
algebras, etc.
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In 1989, a systematic study of gradings on Lie algebras was started
by Patera and Zassenhaus.

Fine gradings on the classical simple complex Lie algebras, other
than D4, by arbitrary abelian groups were considered by Havĺıcek,
Patera, and Pelantova in 1998.

The arguments there are computational and the problem of
classification of fine gradings is not completely settled. The
complete classification, up to equivalence, of fine gradings on all
classical simple Lie algebras (including D4) over algebraically closed
fields of characteristic zero has been obtained quite recently.
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For any abelian group G , the classification of all G -gradings, up to
isomorphism, on the classical simple Lie algebras other than D4

over algebraically closed fields of characteristic different from two
has been achieved in 2010 by Bahturin and Kochetov, using
methods developed in the last years by a number of authors.

Gradings on the octonions, on the Albert algebra, and on some
other algebraic structures, are instrumental in obtaining a
classification of the gradings on the exceptional simple Lie algebras.
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Gradings

G abelian group, A algebra over a field F.

G -grading on A:

Γ : A =
⊕

g∈G Ag ,

AgAh ⊆ Agh ∀g , h ∈ G .
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Examples

Cartan grading:

g = h⊕
(
⊕α∈Φgα

)
(root space decomposition of a semisimple complex Lie algebra).

This is a grading by Zn, n = rank g.
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Examples

Pauli matrices: A = Matn(F)

X =


1 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε2 . . . 0
...

...
...

. . .
...

0 0 0 . . . εn−1

 Y =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


(ε a primitive nth root of 1)

X n = 1 = Y n, YX = εXY

A =
⊕

(ı̄,̄)∈Zn×Zn
A(ı̄,̄), A(ı̄,̄) = FX iY j .

A becomes a graded division algebra.

This grading induces a grading on sln(F).
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Basic definitions (Patera-Zassenhaus)

Let Γ : A =
⊕

g∈G Ag be a grading on an algebra A:

The support of Γ is Supp Γ = {g ∈ G : Ag 6= 0}.

The universal grading group of Γ is the group U(Γ) generated
by Supp Γ subject to the relations g1g2 = g3 if
0 6= Ag1Ag2 ⊆ Ag3 .

The grading Γ is then a grading too by U(Γ).
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Basic definitions (Patera-Zassenhaus)

There appear several groups attached to Γ:

The automorphism group

Aut(Γ) = {ϕ ∈ AutA :

∃α ∈ Sym(Supp Γ) s.t. ϕ(Ag ) ⊆ Aα(g) ∀g}.

The stabilizer group

Stab(Γ) = {ϕ ∈ Aut(Γ) : ϕ(Ag ) ⊆ Ag ∀g}.

The diagonal group

Diag(Γ) = {ϕ ∈ Aut(Γ) :

∀g ∈ Supp Γ ∃λg ∈ F× s.t. ϕ|Ag = λg id}.

The quotient W (Γ) = Aut(Γ)/Stab(Γ) is the Weyl group of Γ.
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W (Γ) acts by automorphisms on U(Γ)

Each ϕ ∈ Aut(Γ) determines a self-bijection α of Supp Γ that
induces an automorphism of the universal grading group U(Γ).
Then, there appears a natural group homomorphism:

Aut(Γ)→ Aut(U(Γ))

with kernel Stab(Γ).

Thus, the Weyl group embeds naturally in Aut(U(Γ)), i.e., there is
a natural action of the Weyl group on U(Γ) by automorphisms.

Remark

Diag(Γ) is isomorphic to the group of characters of U(Γ).
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Fine gradings

Γ : A =
⊕

g∈G Ag , Γ′ : A =
⊕

g ′∈G ′ A′g ′ , gradings on A.

Γ is a refinement of Γ′ if for any g ∈ G there is a g ′ ∈ G ′ such
that Ag ⊆ Ag ′ .
Then Γ′ is a coarsening of Γ.

Γ is fine if it admits no proper refinement.

Remark

Any grading is a coarsening of a fine grading.
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Characteristic 0

F = F, charF = 0, dimA <∞.

Γ : A =
⊕

g∈G Ag grading,

Ĝ = HomGrp(G ,F×) group of characters of G .

Any χ ∈ Ĝ induces an automorphism of A:

χ : A −→ A,

x ∈ Ag 7→ χ(g)x .

The homogeneous components are the eigenspaces
for the action of Ĝ !!
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MAD subgroups

Theorem

(Fine) gradings
(up to equivalence)

←→
(maximal) abelian diagonalizable

subgroups of Aut(A)
(up to conjugation)

This is the point of view of Patera, Zassenhaus et al. (1989,
1998), who obtained a description of the fine gradings of the
simple classical Lie algebras (other than D4).

The complete classification of the fine gradings up to equivalence
on the classical Lie algebras (including D4) was obtained in 2010.
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Exceptional algebras

G2: Draper-Mart́ın (2006) and, independently,
Bahturin-Tvalavadze.

F4: Draper-Mart́ın (2009).

E6: Draper-Viruel (2016).

E7, E8: Recent work by Jun Yu classifying conjugacy classes
of certain subgroups of the compact Lie groups classifies, in
particular, the fine gradings on E7 and E8 over C.
This is enough to classify these gradings over arbitrary
algebraically closed fields of characteristic 0 (E. 2014).
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Gradings and comodule algebras

In the modular case, gradings are no longer given by eigenspaces of
abelian diagonalizable subgroups. A different approach is needed.

Γ : A =
⊕

g∈G Ag ⇒ η : A −→ A⊗ FG
xg 7→ xg ⊗ g

(algebra morphism and comodule map)

Γη : A =
⊕

g∈G Ag ⇐ η : A→ A⊗ FG
(Ag = {x ∈ A : η(x) = x ⊗ g})

Theorem

G-grading ←→ comodule algebra over the group algebra FG.
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Gradings and comodule algebras

A comodule algebra map

η : A→ A⊗ FG

induces a generic automorphism of FG -algebras

A⊗ FG −→ A⊗ FG
x ⊗ h 7→ η(x)h.

All the information on the grading Γ attached to η is contained in
this single automorphism!
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Affine group schemes and gradings

η : A→ A⊗ FG ⇐⇒ ρ : GD → Aut(A)

(comodule algebra) (morphism of affine group schemes)

where

GD : AlgF −→ Grp

R 7→ GD(R) = HomAlgF(FG ,R) ' HomGrp(G ,R×),

Aut(A) : AlgF −→ Grp

R 7→ AutR-alg(A⊗F R).
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Affine group schemes and gradings

η : A→ A⊗ FG ⇐⇒ ρ : GD → Aut(A)

(comodule algebra) (morphism of affine group schemes)

ρR(f )
(
xg ⊗ r

)
= xg ⊗ f (g)r

for f ∈ GD(R) = HomAlgF(FG ,R), xg ∈ Ag and r ∈ R.
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Affine group schemes and gradings

η : A→ A⊗ FG ⇐⇒ ρ : GD → Aut(A)

(comodule algebra) (morphism of affine group schemes)

Conversely,

ρ : GD → Aut(A) =⇒ η : A ↪→ A⊗ FG ρFG (id)−−−−→ A⊗F FG .
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Affine group schemes and gradings

Theorem

G-grading ←→ morphism (natural transformation) GD → Aut(A).

Message:

It is not enough to deal with Ĝ and AutA, but also with their
extensions to unital commutative and associative F-algebras.
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Consequences

Given a morphism Aut(A)→ Aut(B), any grading on A induces a
grading on B.

Example

Ad : Aut(A)→ Aut
(
Der(A)

)
.

If Aut(A) ∼= Aut(B), the problems of classifying fine gradings on
A and on B up to equivalence (or the problem of classifying

gradings up to isomorphism) are equivalent.
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Classical Lie algebras

Assume that the ground field F is algebraically closed of
characteristic not two.

Bn,Cn (n ≥ 2), Dn (n ≥ 5):

Aut(L) ∼= Aut(Mr (F), involution).

An:
Aut(L) ∼= Aut

(
Mr (F)(+)

)
,

(“Affine group scheme of automorphisms and
antiautomorphisms of the matrix algebra”)
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Classical Lie algebras

Gradings on matrix algebras (with involution) have been dealt with
by Bahturin et al.

The fine gradings are obtained by combining Pauli gradings and
coarsenings of Cartan gradings.

D4 requires a different treatment in the modular case (E.-Kochetov
2015)
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Octonions and G2

Aut(L) ∼= Aut(O).

There are, up to equivalence, two fine gradings on the octonions
(E. 1998):

The Cartan grading, obtained as the eigenspace
decomposition for a maximal torus in Aut(O).

A Z3
2-grading that appears naturally while constructing O from

the ground field using the Cayley-Dickson doubling process.

The induced Z3
2-grading on the simple Lie algebra of type G2

satisfies that L0 = 0 and Lα is a Cartan subalgebra of L for any
0 6= α ∈ Z3

2.
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The Albert algebra and F4

Aut(L) ∼= Aut(A), where A = H3(O) is the Albert algebra
(exceptional simple Jordan algebra).

There are, up to equivalence, four fine gradings on the Albert
algebra –Draper-Mart́ın (charF = 0, 2009); E.-Kochetov (2012)–:

The Cartan grading, obtained as the eigenspace
decomposition for a maximal torus in Aut(A).

A Z× Z3
2-grading related to the fine Z3

2-grading on the
octonions

A Z5
2-grading obtained by combining a natural Z2

2-grading on
3× 3 hermitian matrices with the fine grading over Z3

2 of O.

A Z3
3-grading with dimAg = 1 ∀g (charF 6= 3).

The induced Z3
3-grading on the simple Lie algebra of type F4

satisfies that L0 = 0 and Lα ⊕ L−α is a Cartan subalgebra of L
for any 0 6= α ∈ Z3

3.
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Open problem:

Fine gradings on E6, E7, E8 in the modular case?

A. Elduque and M. Kochetov.
Gradings on simple Lie algebras.
Mathematical Surveys and Monographs 189,
American Mathematical Society, 2013.

Thanks
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