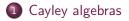
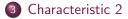
Octonions in low characteristics

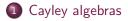
Alberto Elduque

Universidad de Zaragoza









2 Characteristic 3

3 Characteristic 2

Definition

A composition algebra over a field \mathbb{F} is a triple (C, \cdot, n) where

- C is a vector space over \mathbb{F} ,
- $x \cdot y$ is a bilinear multiplication $C \times C \rightarrow C$,
- n: C → F is a multiplicative (n(x · y) = n(x)n(y) ∀x, y ∈ C) nonsingular quadratic form.

Definition

A composition algebra over a field \mathbb{F} is a triple (C, \cdot, n) where

- C is a vector space over \mathbb{F} ,
- $x \cdot y$ is a bilinear multiplication $C \times C \rightarrow C$,
- n: C → F is a multiplicative (n(x · y) = n(x)n(y) ∀x, y ∈ C) nonsingular quadratic form.

The unital composition algebras are called Hurwitz algebras.

Hurwitz algebras form a class of degree two algebras:

$$x^{\cdot 2} - n(x, 1)x + n(x)1 = 0$$

for any x. $(n(x, y) := n(x + y) - n(x) - n(y).)$

Hurwitz algebras form a class of degree two algebras:

$$x^{\cdot 2} - n(x,1)x + n(x)1 = 0$$

for any x. (n(x, y) := n(x + y) - n(x) - n(y).)

They are endowed with an involution, the standard conjugation:

$$\bar{x} = n(x,1)1 - x,$$

satisfying

$$\overline{\overline{x}} = x$$
, $x + \overline{x} = n(x, 1)1$, $x \cdot \overline{x} = \overline{x} \cdot x = n(x)1$.

Cayley-Dickson doubling process

Let (B, \cdot, n) be an associative Hurwitz algebra, and let λ be a nonzero scalar in the ground field \mathbb{F} . Consider the direct sum of two copies of B:

$$C = B \oplus Bu$$
,

with the following multiplication and nondegenerate quadratic form that extend those on B:

$$(a + bu) \cdot (c + du) = (a \cdot c + \lambda \overline{d} \cdot b) + (d \cdot a + b \cdot \overline{c})u,$$

$$n(a + bu) = n(a) - \lambda n(b).$$

Then (C, \cdot, n) is again a Hurwitz algebra, which is denoted by $CD(B, \lambda)$

Cayley-Dickson doubling process

Let (B, \cdot, n) be an associative Hurwitz algebra, and let λ be a nonzero scalar in the ground field \mathbb{F} . Consider the direct sum of two copies of B:

$$C = B \oplus Bu$$
,

with the following multiplication and nondegenerate quadratic form that extend those on B:

$$(a + bu) \cdot (c + du) = (a \cdot c + \lambda \overline{d} \cdot b) + (d \cdot a + b \cdot \overline{c})u,$$

$$n(a + bu) = n(a) - \lambda n(b).$$

Then (C, \cdot, n) is again a Hurwitz algebra, which is denoted by $CD(B, \lambda)$

Notation: $CD(A, \mu, \lambda) := CD(CD(A, \mu), \lambda).$

Every Hurwitz algebra over a field \mathbb{F} is isomorphic to one of the following:

- (i) The ground field \mathbb{F} .
- (ii) A quadratic commutative and associative separable algebra K(μ) = F1 + Fv, with v² = v + μ and 4μ + 1 ≠ 0. The norm is given by its generic norm.
 If char F ≠ 2, these are the algebras CD(F, α).
- (iii) A quaternion algebra $Q(\mu, \beta) = CD(K(\mu), \beta)$. (These four dimensional algebras are associative but not commutative.)
- (iv) A Cayley algebra (or algebra of octonions) $C(\mu, \beta, \gamma) = CD(K(\mu), \beta, \gamma)$. (These eight dimensional algebras are alternative, but not associative.)

Corollary

Every Hurwitz algebra over a field \mathbb{F} of characteristic $\neq 2$ is obtained by applying the Cayley-Dickson doubling process to \mathbb{F} at most three times.

Proposition

Two Hurwitz algebras are isomorphic if and only if their norms are isometric.

Proposition

Two Hurwitz algebras are isomorphic if and only if their norms are isometric.

Proposition

For each dimension 2, 4 or 8, there is a unique, up to isomorphism, Hurwitz algebra with isotropic norm.

- $\mathbb{F} \times \mathbb{F}$ with $n((\alpha, \beta)) = \alpha \beta$,
- $Mat_2(\mathbb{F})$ with n = det,
- $\mathbb{C}_s := CD(Mat_2(\mathbb{F}), 1)$ (the split Cayley algebra).

If char $\mathbb{F} \neq 2$ and \mathbb{C} is a Cayley algebra, then $\mathbb{C} = \mathbb{F}1 \oplus \mathbb{C}_0$, where \mathbb{C}_0 is the subspace orthogonal to $\mathbb{F}1$. For $x, y \in \mathbb{C}_0$, $[x, y] := xy - yx \in \mathbb{C}_0$ and

$$xy = -\frac{1}{2}n(x,y)1 + \frac{1}{2}[x,y].$$

Besides,

$$[[x, y], y] = 2n(x, y)y - 2n(y, y)x,$$

so the multiplication in ${\mathfrak C}$ and its norm are determined by the bracket in ${\mathfrak C}_0.$

Theorem (Sagle 1962, Kuzmin 1968, Filippov 1976)

If char $\mathbb{F} \neq 2,3$, the anticommutative algebra \mathcal{C}_0 is a central simple non-Lie Malcev algebra, and any such algebra is, up to isomorphism, of this form.

Given a finite-dimensional simple Lie algebra \mathfrak{g} of type X_r over the complex numbers, and a Chevalley basis \mathfrak{B} , let $\mathfrak{g}_{\mathbb{Z}}$ be the \mathbb{Z} -span of \mathfrak{B} (a Lie algebra over \mathbb{Z}). The Lie algebra $\mathfrak{g}_{\mathbb{F}} := \mathfrak{g}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F}$ is the Chevalley algebra of type X_r .

Given a finite-dimensional simple Lie algebra \mathfrak{g} of type X_r over the complex numbers, and a Chevalley basis \mathfrak{B} , let $\mathfrak{g}_{\mathbb{Z}}$ be the \mathbb{Z} -span of \mathfrak{B} (a Lie algebra over \mathbb{Z}). The Lie algebra $\mathfrak{g}_{\mathbb{F}} := \mathfrak{g}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F}$ is the Chevalley algebra of type X_r .

Theorem

• The Chevalley algebra of type G_2 is isomorphic to $\mathfrak{Der}(\mathcal{C}_s)$.

Given a finite-dimensional simple Lie algebra \mathfrak{g} of type X_r over the complex numbers, and a Chevalley basis \mathfrak{B} , let $\mathfrak{g}_{\mathbb{Z}}$ be the \mathbb{Z} -span of \mathfrak{B} (a Lie algebra over \mathbb{Z}). The Lie algebra $\mathfrak{g}_{\mathbb{F}} := \mathfrak{g}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F}$ is the Chevalley algebra of type X_r .

Theorem

- The Chevalley algebra of type G_2 is isomorphic to $\mathfrak{Der}(\mathbb{C}_s)$.
- For any Cayley algebra C, the Lie algebra Der(C) is a twisted form of the Chevalley algebra Der(C_s).

Given a finite-dimensional simple Lie algebra \mathfrak{g} of type X_r over the complex numbers, and a Chevalley basis \mathcal{B} , let $\mathfrak{g}_{\mathbb{Z}}$ be the \mathbb{Z} -span of \mathcal{B} (a Lie algebra over \mathbb{Z}). The Lie algebra $\mathfrak{g}_{\mathbb{F}} := \mathfrak{g}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F}$ is the Chevalley algebra of type X_r .

Theorem

- The Chevalley algebra of type G_2 is isomorphic to $\mathfrak{Der}(\mathcal{C}_s)$.
- For any Cayley algebra C, the Lie algebra Det(C) is a twisted form of the Chevalley algebra Det(C_s).
- If char $\mathbb{F} \neq 2, 3$, then $\mathfrak{Der}(\mathbb{C})$ is simple.

Cayley algebras and simple Lie algebras of type G_2

Theorem (Jacobson 1931, Barnes 1961)

If char $\mathbb{F} \neq 2, 3$,

- Any twisted form of the Chevalley algebra of type G₂ is isomorphic to $\mathfrak{Der}(\mathbb{C})$ for a Cayley algebra \mathbb{C} .
- Two Cayley algebras C_1 and C_2 are isomorphic if and only if their Lie algebras of derivations are isomorphic.

Cayley algebras and simple Lie algebras of type G_2

Theorem (Jacobson 1931, Barnes 1961)

If char $\mathbb{F} \neq 2, 3$,

- Any twisted form of the Chevalley algebra of type G₂ is isomorphic to $\mathfrak{Der}(\mathbb{C})$ for a Cayley algebra \mathbb{C} .
- Two Cayley algebras C_1 and C_2 are isomorphic if and only if their Lie algebras of derivations are isomorphic.

Sketch of a 'modern' proof

For any Cayley algebra $\ensuremath{\mathfrak{C}},$ the adjoint map

$$\begin{split} \operatorname{Ad}: \operatorname{\mathsf{Aut}}(\operatorname{\mathfrak{C}}) &\longrightarrow \operatorname{\mathsf{Aut}}\bigl(\operatorname{\mathfrak{Der}}(\operatorname{\mathfrak{C}})\bigr) \\ f &\mapsto \operatorname{Ad}(f): d \mapsto \mathit{fd} f^{-1}, \end{split}$$

is an isomorphism of affine group schemes.



In any algebra A, the Jacobian of the elements x_1, x_2, x_3 is

$$J(x_1, x_2, x_3) := [[x_1, x_2], x_3] + [[x_2, x_3], x_1] + [[x_3, x_1], x_2].$$

In any algebra A, the Jacobian of the elements x_1, x_2, x_3 is

$$J(x_1, x_2, x_3) := [[x_1, x_2], x_3] + [[x_2, x_3], x_1] + [[x_3, x_1], x_2].$$

Expand to get:

$$\begin{aligned} J(x_1, x_2, x_3) &= \left((x_1 x_2 - x_2 x_1) x_3 - x_3 (x_1 x_2 - x_2 x_1) \right) + \text{cyclically} \\ &= \left((x_1 x_2) x_3 - x_1 (x_2 x_3) \right) + \cdots \\ &= \sum_{\sigma \in \Sigma_3} (-1)^{\sigma} (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}), \end{aligned}$$

where (x, y, z) := (xy)z - x(yz) is the associator.

But in any Cayley algebra \mathcal{C} ,

$$x^2y = x(xy)$$
 and $yx^2 = (yx)x$

for any x, y. That is, (x, x, y) = 0 = (y, x, x), and hence:

$$J(x_1, x_2, x_3) = \sum_{\sigma \in \Sigma_3} (-1)^{\sigma} (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}) = 6(x_1, x_2, x_3).$$

Let \mathbb{C} be a Cayley algebra over a field \mathbb{F} of characteristic 3.

• The simple Malcev algebra C_0 is a Lie algebra!!

- The simple Malcev algebra \mathcal{C}_0 is a Lie algebra!!
- \mathcal{C}_0 is a twisted form of the projective special linear algebra $\mathfrak{psl}_3(\mathbb{F})$.

- The simple Malcev algebra \mathcal{C}_0 is a Lie algebra!!
- \mathcal{C}_0 is a twisted form of the projective special linear algebra $\mathfrak{psl}_3(\mathbb{F})$.
- Der(C) is a semisimple Lie algebra, but not a direct sum of simple ideals.

- The simple Malcev algebra \mathcal{C}_0 is a Lie algebra!!
- \mathcal{C}_0 is a twisted form of the projective special linear algebra $\mathfrak{psl}_3(\mathbb{F})$.
- Der(C) is a semisimple Lie algebra, but not a direct sum of simple ideals.
- $\mathfrak{Det}(\mathbb{C})$ contains a unique proper ideal: $\operatorname{ad}(\mathbb{C}_0)$, isomorphic to \mathbb{C}_0 , and the quotient $\mathfrak{Det}(\mathbb{C})/\operatorname{ad}(\mathbb{C}_0)$ is isomorphic again to \mathbb{C}_0 .

- The simple Malcev algebra \mathcal{C}_0 is a Lie algebra!!
- \mathcal{C}_0 is a twisted form of the projective special linear algebra $\mathfrak{psl}_3(\mathbb{F})$.
- Der(C) is a semisimple Lie algebra, but not a direct sum of simple ideals.
- $\mathfrak{Det}(\mathbb{C})$ contains a unique proper ideal: $\operatorname{ad}(\mathbb{C}_0)$, isomorphic to \mathbb{C}_0 , and the quotient $\mathfrak{Det}(\mathbb{C})/\operatorname{ad}(\mathbb{C}_0)$ is isomorphic again to \mathbb{C}_0 .

Let ${\mathbb C}$ be a Cayley algebra over a field ${\mathbb F}$ of characteristic 3.

- The simple Malcev algebra \mathcal{C}_0 is a Lie algebra!!
- \mathcal{C}_0 is a twisted form of the projective special linear algebra $\mathfrak{psl}_3(\mathbb{F})$.
- Der(C) is a semisimple Lie algebra, but not a direct sum of simple ideals.
- $\mathfrak{Der}(\mathbb{C})$ contains a unique proper ideal: $ad(\mathbb{C}_0)$, isomorphic to \mathbb{C}_0 , and the quotient $\mathfrak{Der}(\mathbb{C})/ad(\mathbb{C}_0)$ is isomorphic again to \mathbb{C}_0 .

Remark

Actually, there are no 'prime' non-Lie Malcev algebras over fields of characteristic 3.

In spite of this strange behavior, still we get:

Theorem

Let ${\mathfrak C}$ be a Cayley algebra over a field ${\mathbb F}$ of characteristic 3, the adjoint map

$$\begin{aligned} \operatorname{Ad}: \operatorname{Aut}(\mathcal{C}) &\longrightarrow \operatorname{Aut}(\mathfrak{Der}(\mathcal{C})) \\ f &\mapsto \operatorname{Ad}(f): d \mapsto \mathit{fd} f^{-1} \end{aligned}$$

is an isomorphism of affine group schemes.

In spite of this strange behavior, still we get:

Theorem

Let ${\mathfrak C}$ be a Cayley algebra over a field ${\mathbb F}$ of characteristic 3, the adjoint map

$$\begin{aligned} \operatorname{Ad}: \operatorname{\mathsf{Aut}}(\operatorname{\mathfrak{C}}) &\longrightarrow \operatorname{\mathsf{Aut}}(\operatorname{\mathfrak{Der}}(\operatorname{\mathfrak{C}})) \\ f &\mapsto \operatorname{Ad}(f): d \mapsto \mathit{fd} f^{-1} \end{aligned}$$

is an isomorphism of affine group schemes.

The proof uses the fact that, even in characteristic 3, any derivation of $\mathfrak{Der}(\mathbb{C})$ is inner.

Corollary

Denote by Isom(Cayley), Isom(G_2), and Isom(\overline{A}_2), the sets of isomorphism classes of Cayley algebras, twisted forms of the Chevalley algebra of type G_2 , and twisted forms of $\mathfrak{psl}_3(\mathbb{F})$, respectively.

Then we have bijections:

$$\begin{array}{rcl} \mathsf{Isom}(\bar{A}_2) & \longleftrightarrow & \mathsf{Isom}(\mathsf{Cayley}) & \longleftrightarrow & \mathsf{Isom}(G_2) \\ [\mathfrak{C}_0] & \leftarrow & [\mathfrak{C}] & \to & [\mathfrak{Der}(\mathfrak{C})] \end{array}$$

Let \mathcal{C} be a Cayley algebra over a field \mathbb{F} of characteristic 2, then the Lie algebra $\mathfrak{Det}(\mathcal{C})$ is isomorphic to the projective special linear Lie algebra $\mathfrak{psl}_4(\mathbb{F})$.

Let \mathcal{C} be a Cayley algebra over a field \mathbb{F} of characteristic 2, then the Lie algebra $\mathfrak{Dec}(\mathcal{C})$ is isomorphic to the projective special linear Lie algebra $\mathfrak{psl}_4(\mathbb{F})$.

The isomorphism class of $\mathfrak{Der}(\mathcal{C})$ does not depend on $\mathcal{C}!!$

• Any $d \in \mathfrak{Der}(\mathbb{C})$ preserves \mathbb{C}_0 and $\mathbb{F}1$, and $1 \in \mathbb{C}_0!!!$

- Any $d \in \mathfrak{Der}(\mathbb{C})$ preserves \mathbb{C}_0 and \mathbb{F}_1 , and $1 \in \mathbb{C}_0!!!$
- Hence d induces a linear map on the six-dimensional quotient C₀/F1, which is endowed with a nondegenerate alternating bilinear form induced by the norm n. (n(x, x) = 2n(x) = 0!!)

- Any $d \in \mathfrak{Der}(\mathbb{C})$ preserves \mathbb{C}_0 and $\mathbb{F}1$, and $1 \in \mathbb{C}_0!!!$
- Hence d induces a linear map on the six-dimensional quotient C₀/F1, which is endowed with a nondegenerate alternating bilinear form induced by the norm n. (n(x, x) = 2n(x) = 0!!)
- This embeds $\mathfrak{Der}(\mathbb{C})$ into the symplectic Lie algebra $\mathfrak{sp}_6(\mathbb{F})$, and hence into $\mathfrak{sp}_6(\mathbb{F})^{(2)}$, which is isomorphic to $\mathfrak{psl}_4(\mathbb{F})$. But dim $\mathfrak{psl}_4(\mathbb{F}) = 14 = \dim \mathfrak{Der}(\mathbb{C})$.

Corollary

In characteristic 2, the Chevalley algebra of type G_2 is isomorphic to $\mathfrak{psl}_4(\mathbb{F})$ (the classical simple Lie algebra of type A_3).

Let \mathbb{F} be a field of characteristic 2. Then the affine group scheme of automorphisms of $\mathfrak{psl}_4(\mathbb{F})$ is isomorphic to the affine group scheme of automorphisms of the algebra with involution (Mat₆(\mathbb{F}), t_s), where t_s is the canonical symplectic involution.

Let \mathbb{F} be a field of characteristic 2. Then the affine group scheme of automorphisms of $\mathfrak{psl}_4(\mathbb{F})$ is isomorphic to the affine group scheme of automorphisms of the algebra with involution $(Mat_6(\mathbb{F}), t_s)$, where t_s is the canonical symplectic involution.

Sketch of proof

Any automorphism of $Mat_6(\mathbb{F})$ commuting with the involution t_s restricts to an automorphism of the Lie algebra $\mathfrak{sp}_6(\mathbb{F})^{(2)}$. This induces a closed embedding of group schemes. But the two group schemes involved are connected, smooth and of the same dimension.

Corollary

Let \mathbb{F} be a field of characteristic 2. The map

 $(\mathcal{B},\tau) \mapsto \operatorname{Skew}(\mathcal{B},\tau)^{(2)}$

that sends any central simple associative algebra of degree 6 over \mathbb{F} endowed with a symplectic involution (\mathfrak{B}, τ) to the second derived power of the Lie algebra of its skew-symmetric elements $\mathrm{Skew}(\mathfrak{B}, \tau)$, gives a bijection between the set of isomorphism classes of such pairs (\mathfrak{B}, τ) to the set of isomorphism classes of twisted forms over \mathbb{F} of the Lie algebra $\mathfrak{psl}_4(\mathbb{F})$.

A. Castillo-Ramírez and A. Elduque. Some special features of Cayley algebras, and G₂, in low characteristics.

J. Pure Appl. Algebra 220 (2016), no. 3, 1188-1205.

A. Castillo-Ramírez and A. Elduque. Some special features of Cayley algebras, and G₂, in low characteristics.

J. Pure Appl. Algebra 220 (2016), no. 3, 1188-1205.

