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Real numbers

R = {real numbers}

Real numbers are used in measurements.
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But we cannot solve equations as simple as X 2 + 1 = 0!
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Complex numbers

C = {a + bi : a, b ∈ R} (' R2)
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4 + 3i
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3

(a + bi)(c + di) = (ac − bd) + (ad + bc)i
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Complex numbers: properties

Exercise

|z1z2| = |z1||z2|

(|.| denotes the usual length.)

Exercise

Rotation of angle α in R2 ↔ multiplication by e iα = cosα+ i sinα.

SO(2) ' {z ∈ C : |z | = 1} ' S1
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A three-dimensional algebra?

Hamilton tried to find a multiplication, analogous to the
multiplication of complex numbers, but in dimension 3, that should
respect the “law of moduli”: |z1z2| = |z1||z2|:

(a + bi + cj)(a′ + b′i + c ′j) =???

(assuming i2 = −1 = j2)

Problem: ij , ji?

After years of struggle, he found the solution on October 16, 1843.
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A spark flashed forth

Letter from Sir W. R. Hamilton to his son Rev. Archibald H.
Hamilton, dated August 5 1865:

MY DEAR ARCHIBALD -
(1) I had been wishing for an occasion of corresponding a little
with you on QUATERNIONS: and such now presents itself, by your
mentioning in your note of yesterday, received this morning, that
you “have been reflecting on several points connected with them”
(the quaternions), “particularly on the Multiplication of Vectors.”

(2) No more important, or indeed fundamental question, in the
whole Theory of Quaternions, can be proposed than that which
thus inquires What is such MULTIPLICATION? What are its
Rules, its Objects, its Results? What Analogies exist between it
and other Operations, which have received the same general
Name? And finally, what is (if any) its Utility?
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A spark flashed forth

(3) If I may be allowed to speak of myself in connexion with the
subject, I might do so in a way which would bring you in, by
referring to an ante-quaternionic time, when you were a mere
child, but had caught from me the conception of a Vector, as
represented by a Triplet: and indeed I happen to be able to put the
finger of memory upon the year and month - October, 1843 - when
having recently returned from visits to Cork and Parsonstown,
connected with a meeting of the British Association, the desire to
discover the laws of the multiplication referred to regained with me
a certain strength and earnestness, which had for years been
dormant, but was then on the point of being gratified, and was
occasionally talked of with you. Every morning in the early part of
the above-cited month, on my coming down to breakfast, your
(then) little brother William Edwin, and yourself, used to ask me,
“Well, Papa, can you multiply triplets”? Whereto I was always
obliged to reply, with a sad shake of the head: “No, I can only add
and subtract them.”

10 / 32



A spark flashed forth

(4) But on the 16th day of the same month - which happened to
be a Monday, and a Council day of the Royal Irish Academy - I was
walking in to attend and preside, and your mother was walking
with me, along the Royal Canal, to which she had perhaps driven;
and although she talked with me now and then, yet an
under-current of thought was going on in my mind, which gave at
last a result, whereof it is not too much to say that I felt at once
the importance. An electric circuit seemed to close; and a spark
flashed forth, the herald (as I foresaw, immediately) of many long
years to come of definitely directed thought and work, by myself if
spared, and at all events on the part of others, if I should even be
allowed to live long enough distinctly to communicate the
discovery.
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A spark flashed forth

Nor could I resist the impulse -unphilosophical as it may have been-
to cut with a knife on a stone of Brougham Bridge1, as we passed
it, the fundamental formula with the symbols, i , j , k; namely,

i2 = j2 = k2 = ijk = −1

which contains the Solution of the Problem, but of course, as an
inscription, has long since mouldered away. A more durable notice
remains, however, on the Council Books of the Academy for that
day (October 16th, 1843), which records the fact, that I then
asked for and obtained leave to read a Paper on Quaternions, at
the First General Meeting of the session: which reading took place
accordingly, on Monday the 13th of the November following.
With this quaternion of paragraphs I close this letter I.; but I hope
to follow it up very shortly with another.
Your affectionate father, WILLIAM ROWAN HAMILTON.

1The actual name of this bridge is Broome, not Brougham
12 / 32



H

H = R1⊕ Ri ⊕ Rj ⊕ Rk ,
i2 = j2 = k2 = −1,

ij = −ji = k , jk = −kj = i , ki = −ik = j .

Hamilton and his quaternions
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Some properties of H

|q1q2| = |q1||q2| ∀q1, q2 ∈ H
(|a + bi + cj + dk|2 = a2 + b2 + c2 + d2)

H is an associative division algebra (but it is not
commutative).
Therefore S3 ' {q ∈ H : |q| = 1} is a (Lie) group.
(This implies the parallelizability of S3.)

H0 = Ri ⊕ Rj ⊕ Rk ' R3, H = R⊕H0, and ∀u, v ∈ H0:

uv = −u · v + u × v

(where u · v and u × v denote the usual scalar and cross
products).
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Some properties of H

∀q = a1 + u ∈ H, q2 = (a2 − u · u) + 2au, so

q2 − (2a)q + |q|2 = 0 (H is quadratic.)

The map q = a + u 7→ q̄ = a− u is an involution, with
q + q̄ = 2a and qq̄ = q̄q = |q|2.

H = C⊕ Cj ' C2 is a two-dimensional vector space over C.
Multiplication is given by:

(p1 + p2j)(q1 + q2j) = (p1q1 − q̄2p2) + (q2p1 + p2q̄1)j
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Rotations in three-dimensional space

q ∈ H, |q| = 1 ⇒ ∃α ∈ [0, π], u ∈ H0, |u| = 1

such that q = (cosα)1 + (sinα)u

Take v ∈ H0 of norm 1 and orthogonal to u, so that {u, v , u × v}
is a positively oriented orthonormal basis of R3 = H0.

Consider the linear map:

ϕq : H0 −→ H0,

x 7→ qxq−1 = qxq̄.
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Coordinate matrix of ϕq

ϕq(u) = quq−1 = u (porque uq = qu),

ϕq(v) =
(
(cosα)1 + (sinα)u

)
v((cosα)1− (sinα)u)

=
(
(cosα)v + (sinα)u × v

)
((cosα)1− (sinα)u)

= (cos2 α)v + 2(cosα sinα)u × v − (sin2 α)(u × v)× u

= (cos 2α)v + (sin 2α)u × v ,

ϕq(u × v) = ... = −(sin 2α)v + (cos 2α)u × v .
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Coordinate matrix of ϕq

Thus the coordinate matrix of ϕq relative to the basis {u, v , u × v}
is 1 0 0

0 cos 2α − sin 2α
0 sin 2α cos 2α



ϕq is a rotation around the axis R+u of angle 2α
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SO(3)

The map

ϕ : S3 ' {q ∈ H : |q| = 1} −→ SO(3),

q 7→ ϕq

is a surjective (Lie) group homomorphism with kerϕ = {±1}:

S3/{±1} ' SO(3)

(S3 is the universal cover of SO(3))
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Rotations in three-dimensional space

Rotations in R3 ←→ Conjugation in H0 by norm 1

quaternions “modulo ±1”

It is quite easy now to compose rotations in three-dimensional
space!

It is enough to multiply norm 1 quaternions! (ϕp ◦ ϕq = ϕpq)

Now one can deduce easily the formulas by Olinde Rodrigues
(1840) for the composition of rotations.
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Rotations in R4

∀p ∈ H with |p| = 1, the left (resp. right) multiplication Lp
(resp. Rp) by p is an isometry, due to the multiplicativity of
the norm.

For p = (cosα)1 + (sinα)u, (α ∈ [0, π], u ∈ H0, |u| = 1), we
have p2 − 2(cosα)p + 1 = 0, so the minimal polynomial of
the multiplication by p is either X ± 1 for p = ∓1, or the
irreducible polynomial X 2 − 2(cosα)X + 1 otherwise.

Hence the characteristic polynomial of the multiplication by p
is always (

X 2 − 2(cosα)X + 1
)2

and, in particular, the determinant of the multiplication by p
is 1.

Multiplication by norm 1 quaternions are rotations in H ' R4.
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Rotations in R4

If ψ is a rotation in R4 ' H, a = ψ(1) is a norm 1 quaternion,
and

Lā ◦ ψ(1) = āa = |a|2 = 1,

so Lā ◦ ψ is actually a rotation in R3 ' H0.

Therefore, there is a norm 1 quaternion q ∈ H such that

āψ(x) = qxq−1

for any x ∈ H. That is:

ψ(x) = (aq)xq−1 ∀x ∈ H.
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SO(4)

The map

Ψ : S3 × S3 −→ SO(4),

(p, q) 7→ ψp,q (x 7→ pxq−1)

is a surjective (Lie) group homomorphism with ker Ψ = {±(1, 1)}.

S3 × S3/{±(1,1)} ' SO(4)

(From here we get SO(3)× SO(3) ' PSO(4))
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Rotations in R4

It is quite easy to compose rotations in four-dimensional space!

It is enough to multiply pairs of norm 1 quaternions!
(ψp1,q1 ◦ ψp2,q2 = ψp1p2,q1q2)

Exercise

What kind of rotation is ψp,q for p + p̄ = 2 cosα and
q + q̄ = 2 cosβ?

Solution: A “double rotation” with angles α + β and α− β.
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Octonions (1843-1845)

There is still something in the system which gravels
me. I have not yet any clear views as to the extent to
which we are at liberty arbitrarily to create imaginaries,
and to endow them with supernatural properties.

If with your alchemy you can make three pounds of
gold, why should you stop there?

(Letter from John T. Graves to Hamilton, dated October 26,
1843!)
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Octonions (1843-1845)

The algebra of quaternions is obtained
by doubling suitably the field of
complex numbers:

H = C⊕ Cj .

Doubling again we get the octonions
(Graves – Cayley):

O = H⊕Hl .

Arthur Cayley
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Octonions

O = H⊕Hl = R〈1, i , j , k , l , il , jl , kl〉

with multiplication

(p1 + p2l)(q1 + q2l) = (p1q1 − q̄2p2) + (q2p1 + p2q̄1)l

and norm:
|p1 + p2l |2 = |p1|2 + |p2|2

These are the same formulas that allow us to pass from C to H!
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Some algebraic properties

|xy | = |x ||y |, ∀x , y ∈ O.

O is a division algebra, it is neither commutative nor
associative!
But it is alternative: any two elements generate an associative
subalgebra.
Theorem (Zorn 1933): The only finite-dimensional real
alternative division algebras are R, C, H and O.

The only such associative algebras R, C and H (Frobenius
1877).

S7 ' {x ∈ O : |x | = 1} is not a group (associativity fails), but
it constitutes the most important example of a Moufang loop.

O0 = R〈i , j , k , l , il , jl , kl〉. ∀u, v ∈ O0:

uv = −u · v + u × v .

(Cross product in R7!: (u × v)× v = (u · v)v − (v · v)u.)

O is quadratic: ∀x = a1 + u ∈ O, x2 − 2ax + |x |2 = 0.
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Some geometric properties

The groups Spin7 and Spin8 (universal covers of SO(7) and
SO(8)) can be described easily in terms of octonions.

O division algebra ⇒ S7 parallelizable.
S1, S3 and S7 are the only parallelizable spheres (Milnor and
Kervaire).

S6 ' {x ∈ O0 : |x | = 1} is endowed with an almost complex
structure, inherited from the multiplication of octonions.
S2 and S6 are the only spheres with such structures (Adams).

Non-desarguesian projective plane OP2.

The only spheres that can be described as homogeneous
spaces of nonclassical groups are S6 = AutO/SU(3),
S7 = Spin7/AutO and S15 = Spin9/Spin7.
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O is certainly a beautiful mathematical object!

The saying that God is the mathematician, so that,
even with meager experimental support, a
mathematically beautiful theory will ultimately have a
greater chance of being correct, has been attributed to
Dirac. Octonion algebra may surely be called a beautiful
mathematical entity.

It is possible that this and other non-associative
algebras (other than Lie algebras) may play some
essential future role in the ultimate theory, yet to be
discovered.

(Susumu Okubo)

Thanks
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